• No results found

The existence of solutions for some fractional finite difference equations via sum boundary conditions

N/A
N/A
Protected

Academic year: 2020

Share "The existence of solutions for some fractional finite difference equations via sum boundary conditions"

Copied!
16
0
0

Loading.... (view fulltext now)

Full text

(1)

R E S E A R C H

Open Access

The existence of solutions for some fractional

finite difference equations via sum boundary

conditions

Ravi P Agarwal

1,2

, Dumitru Baleanu

3,4*

, Shahram Rezapour

5

and Saeid Salehi

5

*Correspondence:

dumitru@cankaya.edu.tr

3Department of Mathematics,

Cankaya University, Ogretmenler Cad. 14, Balgat, Ankara, 06530, Turkey

4Institute of Space Sciences,

Magurele, Bucharest, Romania Full list of author information is available at the end of the article

Abstract

In this manuscript we investigate the existence of the fractional finite difference equation (FFDE)

μμ–2x(t) =g(t+

μ

– 1,x(t+

μ

– 1),

x(t+

μ

– 1)) via the boundary conditionx(μ– 2) = 0 and the sum boundary conditionx(μ+b+ 1) =αk=μ–1x(k) for order 1 <

μ

≤2, whereg:Nμμ+–1b+1×R×R→R,

α

∈Nμμ–1+b, andt∈Nb0+2. Along the same lines, we discuss the existence of the solutions for the following FFDE:

μμ–3x(t) =g(t+

μ

– 2,x(t+

μ

– 2)) via the boundary conditionsx(μ– 3) = 0 and

x(μ+b+ 1) = 0 and the sum boundary conditionx(α) =kβ=γx(k) for order 2 <

μ

≤3, whereg:Nμμ+–2b+1×R→R,b∈N0,t∈Nb+3

0 , and

α

,β,γ ∈N μ+b

μ–2 with

γ

<

β

<

α.

MSC: 34A08

Keywords: fractional finite difference equation; fixed point

1 Introduction

By the late th century, combined efforts made by several mathematicians led to a fairly solid understanding of fractional calculus in the continuous setting but significantly less is still known about discrete fractional calculus (see for example [, ] and [] and the references therein). Recently, there has been a strong interest in this subject but still little progress was made in developing the theory of fractional finite difference equations (see [–] and [] and the references therein).

Discrete fractional calculus is a powerful tool for the processes which appears in na-ture,e.g.biology, ecology and other areas (see for example [] and [] and the references therein), where the discrete models have to be considered in order to describe properly the complexity of the dynamical processes with memory effect. We notice that the exis-tence of solutions for fractional finite difference equations is a hot topic of the fractional calculus with direct implications in modeling of some real world phenomena which have only discrete behaviors.

Motivated by the above mentioned results, in this paper we investigate the fractional finite difference equation

μμ–x(t) =gt+μ– ,x(t+μ– ),x(t+μ– )

(2)

via the boundary conditionsx(μ– ) =  andx(μ+b+ ) =kα=μ–x(k), whereb∈N,

t∈Nb+

 ,  <μ≤,g:N

b+μ+

μ– ×R×R→R, andα∈N

b+μ μ–.

Moreover, we investigate the FFDE given by

μμ–x(t) =gt+μ– ,x(t+μ– )

via the boundary conditionsx(μ– ) = ,x(μ+b+ ) = , andx(α) =βk=γx(k), where b∈N,t∈Nb+,  <μ≤,g:N

μ+b+

μ– ×R→Randα,β,γ ∈N

μ+b

μ–withγ <β<α.

In the following we present the basic definitions and theorems used in this manuscript. In Section  we present the main result. The manuscript ends with our conclusions.

2 Preliminaries

As you know, the gamma function is defined by

(z) =

ettz–dt,

which converges in the right half of the complex planeRe(z) > . It is well known that

(z+ ) =z(z) and(n) = (n– )! for alln∈N. Now, we define

:= (t+ )

(t+  –μ)

for allt,μ∈R[]. Ift+  –μis a pole of the gamma function andt+  is not a pole, then we define=  []. For example, we have (μ– )μ–= . Also, one can verify that

μμ=μμ–=(μ+ ) andtμ+=tμ.

In this paper, we use the notationsNp={p,p+ ,p+ , . . .}for allp∈RandNqp={p,p+

,p+ , . . . ,q}for all real numberspandqwheneverqpis a natural number.

Letμ>  withm–  <μ<mfor some natural numberm. Theμth fractional sum off based atais defined as []

aμf(t) = 

(μ)

tμ

r=a

tσ(r)μ–f(r)

for allt∈Na+μ, whereσ(r) =r+  is the forward jump operator. Similarly, we define

μaf(t) = 

(–μ)

t+μ

r=a

tσ(r)–μ–f(r)

for allt∈Na+mμ[]. Note that the domain ofraf isNa+mrforr>  andNarforr< .

Also, for the natural numberμ=m, we have the known formula []

μaf(t) =mf(t) =

m

i=

(–)i

m i

f(t+mi).

We define

(3)

Lemma .[] Let g:Na→Rbe a mapping and m a natural number.Then the general

solution of the equationμa+μmx(t) =g(t)is given by

x(t) =

m

i=

Ci(ta)μi+aμg(t)

for all t∈Na+μm,where C, . . . ,Cmare arbitrary constants.

Letg:N++–μ×R×R→Rbe a mapping andma natural number. By using a similar

proof, one can check that the general solution of the equationμμmx(t) =g(t+μm+

,x(t+μm+ ),x(t+μm+ )) is given by

x(t) =

m

i=

Citμi+μg

t+μm+ ,x(t+μm+ ),x(t+μm+ )

for allt∈Nμm. In particular, the general solution has the following representation:

x(t) =

m

i=

Citμi+

(μ)

tμ

r=

tσ(r)μ–

×gr+μm+ ,x(r+μm+ ),x(r+μm+ ) (.)

for allt∈Nμm. The next theorem plays an important role in our main results.

Theorem .[] Every continuous function from a compact,convex,nonempty subset of

a Banach space to itself has a fixed point.

3 Main results

In the following, we are ready to provide the main results. First, we investigate the FFDE

μμ–x(t) =gt+μ– ,x(t+μ– ),x(t+μ– )

via the boundary conditionsx(μ– ) =  andx(μ+b+ ) =kα=μ–x(k), whereb∈N,

t∈Nb+

 ,  <μ≤,g:N

b+μ+

μ– ×R×R→R, andα∈N

b+μ μ–.

Lemma . Let b∈N,t∈Nb+,  <μ≤,g:N

b+μ+

μ– ×R×R→R,andα∈N

b+μ μ–.Then

xis a solution of the problem

μμ–x(t) =gt+μ– ,x(t+μ– ),x(t+μ– )

via the boundary conditions x(μ+b+ ) =αk=μ–x(k)and x(μ– ) = if and only if xis

a solution of the fractional sum equation

x(t) =

b+

r=

(4)

where

G(t,r,α) = t μ–α

k=r+μ(kσ(r)) μ–

((μ+b+ )μ––μ(α+ )μ)(μ)

– (μ+b+  –σ(r)) μ– 

μ(α+ ) μtμ–

(μ+b+ )μ–(μ)((μ+b+ )μ––μ(α+ )μ)

–(μ+b+  –σ(r)) μ–tμ–

(μ)(μ+b+ )μ– +

(tσ(r))μ–

(μ)

whenever r<tμαμor rαμ<tμ,

G(t,r,α) = – (μ+b+  –σ(r)) μ– 

μ(α+ ) μ

–

(μ+b+ )μ–(μ)((μ+b+ )μ–

μ(α+ ) μ)

–(μ+b+  –σ(r)) μ–tμ–

(μ)(μ+b+ )μ– +

(tσ(r))μ– (μ)

wheneverαμ<rtμ,

G(t,r,α) = t μ–α

k=r+μ(kσ(r)) μ–

((μ+b+ )μ––μ(α+ )μ)(μ)

– (μ+b+  –σ(r)) μ– 

μ(α+ ) μtμ–

(μ+b+ )μ–(μ)((μ+b+ )μ––μ(α+ )μ)

–(μ+b+  –σ(r)) μ–tμ–

(μ)(μ+b+ )μ–

whenever tμrαμand

G(t,r,α) = – (μ+b+  –σ(r)) μ– 

μ(α+ ) μ

–

(μ+b+ )μ–(μ)((μ+b+ )μ–

μ(α+ ) μ)

–(μ+b+  –σ(r)) μ–tμ–

(μ)(μ+b+ )μ–

whenever tμαμ<r orαμtμ<r.

Proof Letxbe a solution of the problem

μμ–x(t) =gt+μ– ,x(t+μ– ),x(t+μ– )

via the boundary conditionsx(μ+b+ ) =αk=μ–x(k) andx(μ– ) = . By using

Lem-ma ., we get

x(t) =C–+C–+μg

t+μ– ,x(t+μ– ),x(t+μ– )

=C–+C–+

(μ)

tμ

r=

tσ(r)μ–

×gr+μ– ,x(r+μ– ),x(r+μ– )

(5)
(6)

Hence,

and so by interchanging the order of summations, we have

α

Now, letxbe a solution of the fractional sum equation

x(t) =

b+

r=

(7)

Thenxis a solution of the equation

x(t) =  (μ+b+ )μ–

α

k=μ–

x(k)

– 

(μ)

b+

r=

μ+b+  –σ(r)μ–gr+μ– ,x(r+μ– ),x(r+μ– )

–

+ 

(μ)

tμ

r=

tσ(r)μ–gr+μ– ,x(r+μ– ),x(r+μ– )

= 

(μ+b+ )μ– α

k=μ–

x(k) – 

(μ)

b+

r=

μ+b+  –σ(r)μ–

×gr+μ– ,x(r+μ– ),x(r+μ– )

–

+μgt+μ– ,x(t+μ– ),x(t+μ– ).

It is easy to check thatx(μ– ) = . Also, we have

x(μ+b+ )

= 

(μ+b+ )μ–

α

k=μ–

x(k) –

(μ)

b+

r=

μ+b+  –σ(r)μ–

×gr+μ– ,x(r+μ– ),x(r+μ– )

(μ+b+ )μ–

+ 

(μ)

b+

r=

μ+b+  –σ(r)μ–gr+μ– ,x(r+μ– ),x(r+μ– )

= α

k=μ–

x(k).

Moreover, we haveμμ–x(t) =g(t+μ– ,x(t+μ– ),x(t+μ– )). This completes

the proof.

Some authors tried to find the maximum or exact value ofbr=+|G(t,r,α)|in some pa-pers (see for example [, ] and []). Now, we show thatbr=+G(t,r,α) is bounded, whereG(t,r,α) is the Green function of the last result.

Lemma . For each t∈Nbμ++–μandα∈Nbμ+–μ,we have

b+

r=

G(t,r,α)

b+

r=

G(t,r,α)≤MG

(8)

Proof Since(α) >  for allα> , we have

(μ+b+ )μ–=(μ+b+ ) (b+ )! > 

for allμ>  andb> . Thus,G(t,r,α) is a (finite) real number, for allt∈N++–μ,α∈N

b+μ μ–

andr∈Nb+. Consequently, both sums in the statement are finite, becauseNb+is finite.

Theorem . Let g:Nμb+–μ+×R×R→Rbe bounded and continuous in its second and

third variables.Then the fractional finite difference equationμμ–x(t) =g(t+μ– ,x(t+

μ– ),x(t+μ– ))via the boundary conditions x(μ+b+ ) =αk=μ–x(k)and x(μ– ) =  has a solution xwith x(t)∈[–MG,MG],for all admissible t.

Proof Sinceg is bounded, there exists a constantC such that|g(u,v,w)| ≤Cfor allu∈ Nb+μ+

μ– andv,w∈R. LetXbe the Banach space of real valued functions defined onN

μ+b+

μ–

via the norm

x=maxx(t):t∈Nμμ+–b+

andK={xX :xCMG}. One can check easily thatK is a compact, convex, and

nonempty subset ofX. Now, define the mapTonKby

Tx(t) =

b+

r=

G(t,r,α)gr+μ– ,x(r+μ– ),x(r+μ– )

for allt∈Nμμ+–b+. First, we show thatT(K)⊆K. LetxKandt∈N

μ+b+

μ– . Then

Tx(t)=

b+

r=

G(t,r,α)gr+μ– ,x(r+μ– ),x(r+μ– )

b+

r=

G(t,r,α)gr+μ– ,x(r+μ– ),x(r+μ– )

CMG.

Sincet∈Nμμ+–b+ was arbitrary,TxCMGand soT(K)⊆K. Now, we show thatT is

continuous. Let>  be given. Sincegis continuous in its second and third variables, it is uniformly continuous in its second and third variables on [–CMG,CMG] and so there

existsδ>  such that|g(t,u,u) –g(t,v,v)|< MG for allt∈Nμμ+–b+ andu,u,v,v∈

[–CMG,CMG] with|u–v|<δand|u–v|<δ. Thus, we get

Ty(t) –Tx(t)

=

b+

r=

G(t,r,α)gr+μ– ,y(r+μ– ),y(r+μ– )

b+

r=

G(t,r,α)gr+μ– ,x(r+μ– ),x(r+μ– )

(9)

b+

r=

G(t,r,α)gr+μ– ,y(r+μ– ),y(r+μ– )

gr+μ– ,x(r+μ– ),x(r+μ– )

b+

r=

G(t,r,α) MG

MG

MG

=

for allt∈Nμμ+–b+. Hence,TxTy<and soTis continuous onK. By using Theorem ., Thas a fixed pointxand so, by using Lemma ., the fractional finite difference equation

μμ–x(t) =gt+μ– ,x(t+μ– ),x(t+μ– )

via the boundary conditionsx(μ+b+ ) =αk=μ–x(k) andx(μ– ) =  has a solution in

[–MG,MG].

Now, we consider the fractional finite difference equationμμ–x(t) =g(t+μ– ,x(t+

μ– )) via the boundary conditionsx(μ– ) = ,x(μ+b+ ) =  andx(α) =βk=γx(k), where  <μ≤ andα,β,γ ∈Nμμ+–bwithγ<β<α.

Lemma . Let b∈N,t∈Nb+,  <μ≤,g:N

b+μ+

μ– ×R→R,andα,β,γ ∈N

μ+b

μ–with γ <β<α.Then xis a solution of the problemμμ–x(t) =g(t+μ– ,x(t+μ– ))via the

boundary conditions x(μ+b+ ) = ,x(α) =βk=γx(k),and x(μ– ) = if and only if xis

a solution of the fractional sum equation

x(t) =

b+

r=

G(t,r,β,α)gr+μ– ,x(r+μ– ),

where

G(t,r,β,α)

= (t

μ–tμ–)(μ+br)μ–

(αμ–(bα+μ+ ) –μ–((β+ )μ–γμ–) –

μ((β+ )

μγμ))

× (

μ–((β+ )

μ–γμ–)(αμ+ ) –

μ((β+ ) μ

γμ))

(bα+μ+ )(μ+b+ )μ–(μ)

+(t

μ–(αμ+ ) –tμ–)(μ+br)μ–

(bα+μ+ )(μ+b+ )μ–(μ)

+ (t

μ–tμ–)(αr– )μ–

(αμ–(bα+μ+ ) – (μ–((β+ )μ––γμ–) –μ((β+ )μγμ)))

× (

μ((β+ )

μγμ) – (b+ )

μ–((β+ )

μ–γμ–))

αμ–(bα+μ+ )(μ)

+(t

μ–– (b+ )tμ–)(αr– )μ–

αμ–(bα+μ+ )(μ)

+ (t

μ–tμ–)β

k=r+μ(kσ(r)) μ–

(αμ–(bα+μ+ ) – (μ–((β+ )μ–γμ–) –

μ((β+ )

μγμ)))(μ)

+(tσ(r)) μ–

(10)

whenever rtμ,rβμ,

G(t,r,β,α)

= (t

μ–tμ–)(μ+br)μ–

(αμ–(bα+μ+ ) –μ–((β+ )μ––γμ–) –μ((β+ )μγμ))

× (

μ–((β+ )

μ–γμ–)(αμ+ ) –

μ((β+ ) μ

γμ))

(bα+μ+ )(μ+b+ )μ–(μ)

+(t

μ–(αμ+ ) –tμ–)(μ+br)μ–

(bα+μ+ )(μ+b+ )μ–(μ)

+ (t

μ–tμ–)(αr– )μ–

(αμ–(bα+μ+ ) – (μ–((β+ )μ––γμ–) –μ((β+ )μγμ)))

× (

μ((β+ )

μγμ) – (b+ )

μ–((β+ )

μ–γμ–))

αμ–(bα+μ+ )(μ)

+(t

μ–– (b+ )tμ–)(αr– )μ–

αμ–(bα+μ+ )(μ)

+ (t

μ–tμ–)β

k=r+μ(kσ(r)) μ–

(αμ–(bα+μ+ ) – (μ–((β+ )μ––γμ–) –μ((β+ )μγμ)))(μ)

whenever tμ<r,rβμ,

G(t,r,β,α)

= (t

μ–tμ–)(μ+br)μ–

(αμ–(bα+μ+ ) –μ–((β+ )μ––γμ–) –μ((β+ )μγμ))

× (

μ–((β+ )

μ–γμ–)(αμ+ ) –

μ((β+ ) μγμ))

(bα+μ+ )(μ+b+ )μ–(μ)

+(t

μ–(αμ+ ) –tμ–)(μ+br)μ–

(bα+μ+ )(μ+b+ )μ–(μ)

+ (t

μ–tμ–)(αr– )μ–

(αμ–(bα+μ+ ) – (μ–((β+ )μ–γμ–) –

μ((β+ )

μγμ)))

× (

μ((β+ ) μ

γμ) – (b+ )μ–((β+ )μ––γμ–))

αμ–(bα+μ+ )(μ)

+(t

μ–– (b+ )tμ–)(αr– )μ–

αμ–(bα+μ+ )(μ)

whenever tμ<r,βμ<r,rαμ,

G(t,r,β,α)

= (t

μ–tμ–)(μ+br)μ–

(αμ–(bα+μ+ ) –μ–((β+ )μ––γμ–) –μ((β+ )μγμ))

× (

μ–((β+ )

μ–γμ–)(αμ+ ) –

μ((β+ ) μ

γμ))

(bα+μ+ )(μ+b+ )μ–(μ)

+(t

μ–(αμ+ ) –tμ–)(μ+br)μ–

(bα+μ+ )(μ+b+ )μ–(μ) +

(tσ(r))μ–

(11)

whenever rtμ,αμ<r and

G(t,r,β,α)

= (t

μ–tμ–)(μ+br)μ–

(αμ–(bα+μ+ ) –μ–((β+ )μ––γμ–) –μ((β+ )μγμ))

× (

μ–((β+ )

μ–γμ–)(αμ+ ) –

μ((β+ ) μ

γμ))

(bα+μ+ )(μ+b+ )μ–(μ)

+(t

μ–(αμ+ ) –tμ–)(μ+br)μ–

(bα+μ+ )(μ+b+ )μ–(μ)

whenever tμ<r,αμ<r.

Proof Letxbe a solution of the problemμμ–x(t) =g(t+μ– ,x(t+μ– )) via the

bound-ary conditionsx(μ+b+ ) = ,x(α) =βk=γx(k), andx(μ– ) = . By using Lemma ., we get

x(t) =C–+C–+C–+

(μ)

tμ

r=

tσ(r)μ–gr+μ– ,x(r+μ– )

.

Similar to the proof of Lemma ., by using the boundary value conditions we obtainC=

,

C=

–

αμ–(bα+μ+ ) β

k=γ

x(k)

– 

(bα+μ+ )(μ+b+ )μ–(μ)

b+

r=

(μ+br)μ–gr+μ– ,x(r+μ– )

+ 

αμ–(bα+μ+ )(μ) αμ

r=

(αr– )μ–gr+μ– ,x(r+μ– )

and

C=

b+ 

αμ–(bα+μ+ ) β

k=γ

x(k)

+ αμ+ 

(bα+μ+ )(μ+b+ )μ–(μ)

b+

r=

(μ+br)μ–gr+μ– ,x(r+μ– )

b+ 

αμ–(bα+μ+ )(μ) αμ

r=

(αr– )μ–gr+μ– ,x

(r+μ– )

.

Thus,

x(t) =

–––

αμ–(bα+μ+ ) β

k=γ

x(k)

+ t

μ–(αμ+ ) –tμ–

(bα+μ+ )(μ+b+ )μ–(μ)

b+

r=

(12)

×gr+μ– ,x(r+μ– )

(13)

by replacing (.) in (.), we get

x(t)

=

b+

r=

(–tμ–)(μ+br)μ–

(αμ–(bα+μ+ ) –μ–((β+ )μ––γμ–) – μ((β+ )μγμ))

× (

μ–((β+ )

μ–γμ–)(αμ+ ) –

μ((β+ ) μγμ))

(bα+μ+ )(μ+b+ )μ–(μ)

+(t

μ–(αμ+ ) –tμ–)(μ+br)μ–

(bα+μ+ )(μ+b+ )μ–(μ)

gr+μ– ,x(r+μ– )

+ αμ

r=

(–tμ–)(αr– )μ–

(αμ–(bα+μ+ ) – (μ–((β+ )μ––γμ–) –μ((β+ )μγμ)))

× (

μ((β+ )

μγμ) – (b+ )

μ–((β+ )

μ–γμ–))

αμ–(bα+μ+ )(μ)

+(t

μ–– (b+ )tμ–)(αr– )μ–

αμ–(bα+μ+ )(μ)

gr+μ– ,x(r+μ– )

+ βμ

r=

(–––)kβ=r+μ(kσ(r)) μ–

(αμ–(bα+μ+ ) – (μ–((β+ )μ–γμ–) –

μ((β+ )

μγμ)))(μ)

×gr+μ– ,x(r+μ– )

+

tμ

r=

(tσ(r))μ– (μ) g

r+μ– ,x(r+μ– )

=

b+

r=

G(t,r,β,α)gr+μ– ,x(r+μ– )

.

Now, letxbe a solution of the fractional sum equation

x(t) =

b+

r=

G(t,r,β,α)gr+μ– ,x(r+μ– ).

Similar to proof of the Lemma ., we conclude thatxis a solution to the problem

μμ–x(t) =gt+μ– ,x(t+μ– )

via the boundary conditionsx(μ+b+ ) = , x(α) =βk=γx(k), andx(μ– ) = . This

completes the proof.

By using similar proofs of Lemma . and Theorem ., we obtain the next results.

Lemma . For each t∈N++–μandα,β∈N

b+μ

μ–,we have

b+

r=

G(t,r,β,α)

b+

r=

G(t,r,β,α)≤MG

(14)

Theorem . Assume that g:N+–μ+×R→Ris continuous and bounded in its second

variable.Then the fractional finite difference equationμμ–x(t) =g(t+μ– ,x(t+μ– )) via the boundary conditions x(μ– ) = ,x(μ+b+ ) = ,and x(α) =βk=γx(k)has a

solution xwith x(t)∈[–MG,MG],for all admissible t.

4 An example

Now, we provide an example for the first investigated problem.

Example . Consider the equation

via the boundary value conditions x(–

) =  and x(

in the first problem. Thus, we should investigate the fractional finite difference equation

is continuous and bounded in its second and third variables. Now, we show thatMG=

.. Also, the Green function is given by

(15)

Table 1 The values of the Green function

Similar calculations give us the values ofGsummarized in Table . Thus,MG

r=|G(t,r,α)|= .. Hence by using Theorem ., (.) has a solution

xwithx(t)∈[–., .] for all admissiblet.

5 Conclusions

In this manuscript based on a fixed point theorem we provided the existence results for two fractional finite difference equations in the presence of the sum boundary conditions. One example illustrates our results.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final version of the manuscript.

Author details

1Department of Mathematics, Texas A&M University-Kingsville, 700 University Blvd., Kingsville, TX 78363-8202, USA. 2Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80204, Jeddah, 21589, Saudi Arabia. 3Department of Mathematics, Cankaya University, Ogretmenler Cad. 14, Balgat, Ankara, 06530, Turkey.4Institute of Space

Sciences, Magurele, Bucharest, Romania. 5Department of Mathematics, Azarbaijan Shahid Madani University, Azarshahr,

Tabriz, Iran.

Acknowledgements

Research of the third and fourth authors was supported by Azarbaijan Shahid Madani University.

Received: 16 September 2014 Accepted: 17 October 2014 Published:31 Oct 2014

References

1. Baleanu, D, Diethelm, K, Scalas, E, Trujillo, JJ: Fractional Calculus Models and Numerical Methods. World Scientific, Singapore (2012)

(16)

3. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)

4. Atici, FM, Eloe, PW: A transform method in discrete fractional calculus. Int. J. Differ. Equ.2, 165-176 (2007)

5. Atici, FM, Eloe, PW: Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ.3, special edition I, 1-12 (2009)

6. Baleanu, D, Rezapour, S, Salehi, S: Ak-dimensional system of fractional finite difference equations. Abstr. Appl. Anal.

2014, Article ID 312578 (2014)

7. Elaydi, SN: An Introduction to Difference Equations. Springer, Berlin (1996)

8. Goodrich, CS: Some new existence results for fractional difference equations. Int. J. Dyn. Syst. Differ. Equ.3, 145-162 (2011)

9. Holm, M: Sum and differences compositions in discrete fractional calculus. CUBO13, 153-184 (2011)

10. Miller, KS, Ross, B: Fractional difference calculus. In: Proc. International Symposium on Univalent Functions, Fractional Calculus and Their Applications. Nihon University, Koriyama (1988)

11. Mohan, JJ, Deekshitulu, GVSR: Fractional order difference equations. Int. J. Differ. Equ.2012, Article ID 780619 (2012) 12. Pan, Y, Han, Z, Sun, S, Zhao, Y: The existence of solutions to a system of discrete fractional boundary value problems.

Abstr. Appl. Anal.2012, Article ID 707631 (2012)

13. Wu, GC, Baleanu, D: Discrete fractional logistic map and its chaos. Nonlinear Dyn.75, 283-287 (2014) 14. Wu, GC, Baleanu, D: Discrete chaos in fractional sine and standard maps. Phys. Lett. A378, 484-487 (2013) 15. Alyousef, K: Boundary value problems for discrete fractional equations. PhD thesis, University of Nebraska-Lincoln

(2012)

16. Awasthi, P: Boundary value problems for discrete fractional equations. PhD thesis, University of Nebraska-Lincoln, Ann Arbor, MI (2013)

17. Holm, M: The theory of discrete fractional calculus: development and applications. PhD thesis, University of Nebraska-Lincoln, Ann Arbor, MI (2011)

18. Garling, DJH, Gorenstein, D, Diesk, TT, Walters, P: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)

19. Atici, FM, Eloe, PW: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc.137, 981-989 (2009)

10.1186/1687-1847-2014-282

Figure

Table 1 The values of the Green function

References

Related documents

All schools regard medicine as a tool for the moral control of society, but functionalists regard such control as benevolent whereas the political economy perspective considers it

The concept of ontological security - a sense of confidence and trust in the world as it appears to be’ (Dupuis and Thorns 1998, p. 27) - was then used to make sense of the

Particular emphasis will be attached to elements like the role o f small member states in the definition o f the foreign policy interests o f the EU and the

For the OP- UCE Browser, it is worth noting that the process of exploring and discovering services using the OPUCE Browser GUI is very fast since during the process there is no need

Title: An examination of the security implications of the supervisory control and data acquisition (SCADA) system in a mobile networked environment: An augmented vulnerability

The  EGLD­ICA  algorithm  for  ICA  estimates  the  independent  component  from  given  multidimensional  Seismic  data  signals.  Based  on  the  Blind 

In an attempt to facilitate more critical engagement with the relatively new curriculum subject of global citizenship, students generated specific assignment

which since 1999 has been ‘promoting and role modelling people living positively with HIV.’ In everyday life, the collectivity of HIV acceptance disseminates