• No results found

The nonabelian tensor square of a Bieberbach group with symmetric point group of order six

N/A
N/A
Protected

Academic year: 2020

Share "The nonabelian tensor square of a Bieberbach group with symmetric point group of order six"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

78:1 (2016) 189–193 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

THE NONABELIAN TENSOR SQUARE OF A

BIEBERBACH GROUP WITH SYMMETRIC

POINT GROUP OF ORDER SIX

Tan Yee Ting

a

, Nor’ashiqin Mohd Idrus

a*

, Rohaidah

Masri

a

, Wan Nor Farhana Wan Mohd Fauzi

a

, Nor Haniza

Sarmin

b

, Hazzirah Izzati Mat Hassim

b

a

Department of Mathematics, Faculty of Science and

Mathematics, Universiti Pendidikan Sultan Idris, 35900

Tanjung Malim, Perak, Malaysia

b

Department of Mathematical Sciences, Faculty of

Science, Universiti Teknologi Malaysia, 81310 UTM Johor

Bahru, Johor, Malaysia

Article history

Received

9 April 2015

Received in revised form

28 July 2015

Accepted

15 December 2015

*Corresponding author

norashiqin@fsmt.upsi.edu.my

Graphical abstract

Abstract

Bieberbach groups are torsion free crystallographic groups. In this paper, our focus is given on the Bieberbach groups with symmetric point group of order six. The nonabelian tensor square of a group is a well known homological functor which can reveal the properties of a group. With the method developed for polycyclic groups, the nonabelian tensor square of one of the Bieberbach groups of dimension four with symmetric point group of order six is computed. The nonabelian tensor square of this group is found to be not abelian and its presentation is constructed.

Keywords: Bieberbach group, nonabelian tensor square, polycyclic group

Abstrak

Kumpulan Bieberbach merupakan kumpulan kristolografi yang bebas kilasan. Dalam makalah ini, fokus kami diberi kepada kumpulan Bieberbach dengan kumpulan titik simetrik berperingkat enam. Kuasa dua tensor tak abelan merupakan fungtor berhomologi terkenal yang dapat mendedahkan ciri-ciri sesuatu kumpulan. Dengan kaedah yang dibangunkan untuk kumpulan polikitaran, kuasa dua tensor tak abelan bagi salah satu kumpulan Bieberbach yang berdimensi empat dengan kumpulan titik simetrik berperingkat enam dikira. Hasil menunjukkan kuasa dua tensor tak abelan bagi kumpulan ini adalah tidak abelan dan persembahannya dibina.

Kata kunci: Kumpulan Bieberbach, kuasa dua tensor tak abelan, kumpulan polikitaran

© 2016 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

A Bieberbach group is a torsion free crystallographic group G with a point group P given by the short exact

sequence 1   L G P 1 , where L is the lattice

subgroup. The dimension of the Bieberbach group is the rank of the lattice subgroup.

Tan et al [1] found that there are 36 Bieberbach

(2)

(1) six. In this paper, our focus is on one of the groups with dimension four, denoted as B1(4), which has a consistent polycyclic presentation as in the following.

The nonabelian tensor square is an essential homological functor which is defined as in the following.

Definition 1.1 [2]

The nonabelian tensor square of a group G, GG, is a group generated by the symbols ghfor all g h, G, subject to relations

( h h)( )

gh k gk hk and ( )( k k)

ghkgk gh

for all g h k, , G where 1 .

h

gh gh

The study of the nonabelian tensor square was first started by Brown et al. [3]. Following that, many researchers started to study the properties of the nonabelian tensor square. The nonabelian tensor square of 2-generator Burnside group of exponent 4 [4] and of 2-Engel groups of order at most 16 [5], to name a few, were computed in the past. Since year 2009, someresearchers started to invest on the properties of the Bieberbach groups with certain point groups. The nonabelian tensor squares of Bieberbach groups with cyclic point groups [6] and of Bieberbach groups with dihedral point group [7, 8] were determined. In continuing the efforts in this field, the nonabelian tensor square of B1(4), denoted as B1(4)B1(4), is determined in this paper.

2.0 PRELIMINARIES

In this section, some basic results that are used throughout this paper are included. We start with the definition of the group ( ).G

Definition 2.1 [9]

Let G be a group with presentation G R and let G

be an isomorphic copy of G via the mapping

:g g

  for allgG. Then the group ( )G is defined

to be

x x x x

G G GR Rg hg h  g hx g h G

( ) , , , [ , ][ ,( ) ] [ , ],, ,  .

Theorem 2.1 [11]

Let G be any group whose abelianization is finitely

generated by the independent set x G ii  , 1,..., .n Let

K be the kernel of the epimorphism ( )G  (G G/ ), and let E G( ) be the subgroup of ( )G defined by

( ) [ ,i j] |1 [ , ( ) ].

E G   x x    i j n G G Then

( )G E G( ) K

   and ( ) ( )G E G [ ,G G].

Theorem 2.2 shows that the nonabelian tensor square of group Gis isomorphic to the normal subgroup of

( ).G

 Therefore, some of the computations can be done using the commutator calculus as listed in Proposition 2.1, Lemma 2.1, Lemma 2.2 and Corollary 2.1.

Theorem 2.2 [4]

Let G be a group. The map :G G [ ,G G] ( )G

defined by (gh)[ ,g h] for all g h, in G is an

isomorphism.

Theorem 2.3 [3]

There is a homomorphism of a group :G G G

such that 1

( ) h [ , ].

g h g g g h

Proposition 2.1 [9]

Let x, y and z be elements in a group G. Then for

right conjugation, 1

,

x

yx yx 1 1

[ , ]x yx y xy  and the

following applies

(i) [ , ] [ , ] [ , ]y [ , ] [[ , ], ] [ , ];

xy zx zy zx zx z yy z

(ii) [ ,x yz][ , ] [ , ]x zx yz[ , ] [ , ] [[ , ], ];x zx yx y z

(iii) 1 1 1 1

[ , ] [ , ]x [ ,[ , ]].[ , ] ;

xyx y  xx y x y

(iv) 1 1 1 1

[ , ] [ , ] y [ ,[ , ]].[ , ] .

x y  x y   yx y x y

Lemma 2.1 [9, 10]

Let x and y be elements of G such that [ , ] 1.x y

Then in ( ),G

(i) [ n, ] [ , ]n [ ,( ) ]n

x y  x y  x y for all integer n; (ii) [ ,x y] is central in ( ).G

Lemma 2.2 [9, 10]

Let G be a group. The following relations hold in ( ) :G

(i) [3,4] [3,4]

1 2 1 2

[ , ]g g [ , ]g g

g g   g g for all g g g g1, 2, 3, 4 in G; (ii) [ ,g g] is central in ( )G for all g in G;

(iii) [ ,g g1 2][g g2, 1] is central in ( )G for all g g1, 2 in G; (iv) [ ,g g] 1 for all g in G';

(v) [[ ,g g1 2],[ ,g g3 4] ] [[ ,  g g1 2],[ ,g g3 4]].

Corollary 2.1 [11]

Let G be a group. Then the following hold.

(i) If g1G' or g2G', then

1

1 2 2 1

[ ,g g] [g g, ]; (ii) [G Z G, ( ) ] 1. 

Lemma 2.3 [6]

Let G and H be groups and let gG. Suppose is a homomorphism from Gto H.If ( ) g has finite order

then| ( ) | g divides g. Otherwise the order ofg equals

the order of ( ). g

In [1], the polycyclicpresentation of B1(4)as in (1) has been shown to be consistent. The following lemmas and theorem, which are also obtained in [1], are some basic results related to B1(4).

Lemma 2.4 [1]

The derived subgroup of B1(4) is given by

2 2 1 2

1(4) , , ,2 4 2 1,1 2

B  b l l l l l l  while the abelianization of

1(4)

B is 1(4)ab 1(4) , 1(4)

B  aBbB  C0C2.

Lemma 2.5 [1]

Let B1(4) be a group which has a polycyclic presentation as in (1). Then, [ ,a a] has infinite order,

[ ,a b][ ,b a] has order 2 and [ ,b b] has order 4.

1

2 3 2 1

3 4 4

1 1 1

1 1 2 2 2 3 3 4 4

1 1

1 1 2 3 4

1 1 2 2 1 3 3 4 4

, ,

, , , ,

(4) , , , , ,

, , ,

, for

,

, 1 , ,

4

i i

a

a a a a

b b b b

l l

j j j j

a l b l b b l

l l l l l l l l l B a b l l l l

l l l l l l l l l

l l ll j i i j

  

 

      

(3)

by Proposition 2.1 (ii)

by Lemma 2.1 (i)

Theorem 2.4 [1]

The subgroup (B1(4)) is given as

1 0 4 2

(B(4)) [ ,a a],[ ,b b],[ ,a b][ ,b a] C C C.

      

3.0 MAIN RESULTS

In this section, the presentation of the nonabelian tensor square of B1(4), denoted as B1(4)B1(4) is constructed.

Theorem 3.1

The nonabelian tensor square of B1(4) is nonabelian and its presentation is given as follows:

1 1

4 2 2

1 2 8 2 3 4 6 7 7 8

1 1 2 1 2 2 4

5 6 6 8 7 4 5 7 6 8 7

1 2 1 1

5 8 6 7 4 6 8 4

(4) (4)

, [ , ] [ , ] 1,

[ , ] ,[ , ] ,

[ , ] ,[ , ] ,[ ,i j] 1

B B

g g g g g g g g g g

g g g g g g g g g g g g g g g g g g g g g

    

  

     

  

  

for 1 i 4,1 j 8 where

1 2 3 4 1 2

5 6 1 7 2 8 2

, , ( )( ), ,

, , and .

g a a g b b g a b b a g l l g a b g a l g a l g b l

                

Proof. By Theorem 2.2, the isomorphism  maps gh

onto [ ,g h] for all g h, G. Hence, the computation is done by using the commutators. By Lemma 2.4,

2 2 1 2

1(4) , , ,2 4 2 1,1 2

B   b l l l l l l  and 1(4)ab 1(4) , 1(4) .

B  aBbB  By

Theorem 2.1, E B( 1(4)) [ ,a b] [B1(4),B1(4)' ] where

1 1

2 2 2 2 2 2

1 2 3 4

2 2 1 2 2 2 3 2 4 2

2 2 2 2 2 2

2 2 1 2 2 2 3 2 4 2

2 2

4 4 1

[ (4), (4) ]

[ , ],[ , ],[ , ],[ , ],[ , ],[ , ],

[ , ],[ , ],[ , ],[ , ],[ , ],[ , ],

[ , ],[ , ],[ , ],[ , ],[ , ],[ , ],

[ , ],[ , ],[ ,

B B

a b b b l b l b l b l b

a l b l l l l l l l l l

a l b l l l l l l l l l

a l b l l

     

     

     

 

 2 2 2 2

4 2 4 3 4 4 4

1 2 1 2 1 2 1 2

2 1 2 1 1 2 1 2 2 1

1 2 1 2

3 2 1 4 2 1 1 2 1 2

1 1 2 2 1 2 3 1 2 4 1

],[ , ],[ , ],[ , ],

[ ,( ) ],[ ,( ) ],[ ,( ) ],[ ,( ) ],

[ ,( ) ],[ ,( ) ],[ ,( ) ],[ ,( ) ],

[ ,( ) ],[ ,( ) ],[ ,( ) ],[ ,(

l l l l l l l

a l l b l l l l l l l l

l l l l l l a l l b l l

l l l l l l l l l l l

   

   

   

  

   

 

2) ]

l  

. (2)

However, some of the generators in (2) are identities. Since l3Z B( 1(4)) and

2 2 1 2

2 4 2 1 1 2 1

, , , , (4) ,

b l l l l l l B

then by Corollary 2.1 (ii), 2

3 3 2

[ ,l b] [ , ] l l  2

3 2

[ ,l l] 2

3 4

[ ,l l] 1 2

3 2 1 3 1 2

[ , (l l l ) ] [ , (  l l l) ] 1.  Also, by Lemma 2.2 (iv), [ ,l l2 2] 1 since l2B1( ) .4 Then by Lemma 2.1 (i),

2 2

2 2 2 2

[ ,l l] [ , ] l l 1. By Lemma 2.2 (iv), [ ,l l1 1] 1 as

2 1 2 1

2 2 1 1 2 1 1

( ) (l l l )(l l)  l B(4) . Moreover, the generator

4 1 2

[ ,(l l l ) ] is an identity as shown below.

2

4 1 2

4 2 4 1

4 2 4 1

[ ,( ) ]

[ , ][ , ]

[ , ] [ , ]

l

b

l l l

l l l l

l l l l

 

 

 

[ ,l l4 1][ , ]l l4 1

[ , ] [ , ]4 1 1 4 1

1.

l l  l l

The generator 1 2

4 2 1

[ ,(l l l ) ] can also be shown to be an identity by using similar arguments.

In addition to that, some of the generators in (2) can be written as the products of other generators. By Lemma 2.1 (i), [ ,b b2][ ,b b] ,2 2 2

1 2 1 2

[ ,l l] [ , ] , l l 2

4 2

[ ,l l] 2

4 2

[ , ] ,l l 2 2

1 4 1 4

[ ,l l] [ , ] l l and 2 2

2 4 2 4

[ ,l l] [ l l,] . Also, by (1)

and Lemma 2.1 (i), we proved that 2

4 [ ,l b]

3 2 6

[ ,b b][ ,b b] , 2 3 2 6 4

[ ,b l] [ ,( ) ] [ , b b   b b] and 2

4 4

[ ,l l]

3 3 2 18

[ ,(b b) ] [ ,b b] . Besides, we also have

2

2 2

2 2

[ , ]

[ , ][ , ][[ , ], ]

[ , ] [ , ]

[ , ] [ , ].

a b

a b a b a b b

a b b b

a b b b

  

 

 

  

Using similar method, we have 2 6 30

4

[ ,a l] [ , a b][b b, ] ,

2 2

2 2

[ ,a l] [ , ] a l and 2 2

2 2 1 2

[ ,b l] [ , ] [ , ]. b ll l

Again by Proposition 2.1 (i), we have

1 2

2 1 1 2

2 1 2 2

2 1

[ ,( ) ]

[ , ][ , ][[ , ], ]

[ , ][ , ][ , ]

[ , ][ , ].

a l l

a l a l a l l

a l a l l l

a l a l

  

  

 

  

With the similar arguments, we show that

2 1 2 2 1 3

1 2 2 1 1 2 2 1 1 2 1 2

[ ,(b l l) ] [ , ][ , ][ , ] ,[ ,(  b lb ll la l l ) ] [ , ] [ , ] [ , ]  a la l  l l

and 1 2 2 1 4

2 1 1 2 1 2

[ ,(b l l ) ] [ , ] [ , ] [  b lb l  l l,] . Next, we have [ ,(l1 l l1 2) ]  2

1 2 1 1 1 2

[ , ][ , ]l [ , ].

l ll l  l l We

also have 1 2 1

1 2 1 1 2

[ ,(l l l ) ] [ ,  l l] , 1 2 2

2 2 1 1 2

[ ,(l l l ) ] [ , ]  l l  and

1

2 1 2 1 2

[ ,(l l l) ] [ , ] .  l l  Moreover,

2 1

2 1

1

1

1 1 1

1 1

1 1 1

1 2 1 1

1 2 1 1

1 1 2 1

1 2 1 1

1 2 1 1

1 1 2 1

1 2

[ , ]

[ , ]

([ , ][[ , ], ][ , ])

([ , ][ ,[ , ] ] [ , ])

([ , ][ ,( ) ] [ , ])

[ , ] [ ,( ) ][ , ]

[ , ] [ , ] [ , ] [ , ]

[ , ][ , ]

l b

b l

b l b l b b l

b l b b l b l

b l b l l b l

b l b l l b l

b l b l b l b l

b l b l

  

  

  

  

   

 

 

  

  

  

     

 1 1

1 [ ,b l]

 

By using the same method, we show that

2 1

2 1 2

[ ,l b] [ , ][ , ] b lb l  and 6

4 2 1 2

[ , ]l l [ , ]l l .

From the above computations, we can conclude that the subgroup [B1(4),B1(4) ] is generated by seven generators: [ ,b b], [ ,a b], [ ,a l1], [ ,a l2],

1

[ ,b l], [ , ]b l2

and [ ,l l1 2]. However, [ , ]b l1  2 2

2 2 1 1 2

[ , ] [ , ] [ , ][ , ].a l  b la ll l

Thus,[ (4),B1 B1(4) ]  [ ,b b],[ ,a b],[ , ],[ , ],[ , ],[ , ] .a l1a l2b l2 l l1 2 

By Theorem 2.1,

1 1

1 2 1 2 2

[ (4), (4) ]

[ , ],[ , ],[ , ][ , ],[ , ],[ , ],[ , ],[ , ],[ , ] .

B B

a a b b a b b a l l a b a l a l b l

        

  

Hence, by Theorem 2.2,

1 1

1 2 1 2 2

(4) (4)

, ,( )( ), , , , , .

B B

a a b b a b b a l l a b a l a l b l

         

by Proposition 2.1 (ii) by Lemma 2.1 (ii) by (1)

by Corollary 2.1 (i)

by Proposition 2.1 (ii)

(4)

by Lemma 2.2 (v)

by Proposition 2.1 (ii)

by Lemma 2.1 (i) by Corollary 2.1 (i) Next, the order of each generator in [ (4),B1 B1(4) ] is

determined. By Lemma 2.5, [ ,a a]has infinite order, [ ,b b]has order 4 and [ ,a b][ ,b a] has order 2. The order of the other five generators are determined as follows.

1 1 2

1 2

1 2 1 2

1

1 2 1 2

1 1

1 2 2 1 2

1 1

1 2 2 1 2

1 1

1 2 1 2

2 2

[ , ]

[ , ] [ , ]

[ ,( ) ][ , ]

[ , ][ , ]

[ , ] [ , ]

[ , ]

[ , ]

1.

a

a a

l

l l

l l l l

l l l l

l l l l l

l l l l l

l l l l

l l

 

 

 

 

 

   

   

  

      

This means that the order of [ , ]l l1 2 divides 2. Since

1 2

[ , ]l l cannot be trivial, then [ , ]l l1 2 has order 2.

By Theorem 2.3, we have :B1(4)B1(4)B1(4)' such that

2

1 1 2

2

2 2 2

2 2 1 2

([ , ]) [ , ] ,

([ , ]) [ , ] ,

([ , ]) [ , ] and

([ , ]) [ , ] .

a b a b b

a l a l l

a l a l l

b l b l l l

   

       

Since [ , ],[ , ],[ , ]a b a l1 a l2 and [ , ]b l2 are all in B1(4)' and all of them have infinite order, by Lemma 2.3, [ ,a b],

1

[ ,a l], [ , ]a l2 and [ , ]b l2 have infinite order.

The following example shows that not all generators inB1(4)B1(4) commute toeach other.

1 2

1 2

2 1 2

1

1 2

[ , ],[ , ]

[ , ],[ , ]

[ ,( ) ]

[ ,

1 ]

.

a l b l

a l b l

l l l

l l

 

 

 

 

 

   

 

Thus, we can conclude that B1(4)B1(4)is nonabelian.

Lastly, the presentation of B1(4)B1(4) is constructed. Let

1 ,

g  a a g2 b b, g3(ab b)( a), g4 l1 l2, g5 a b, g6 a l g1, 7 a l2and g8 b l2.

Since g2 has order 4 and both g3 and g4 have order

2, then 4 2 2

2 3 4 1.

ggg  Moreover, by Lemma 2.2 (ii)

and (iii), g g g1, 2, 3andg4are central in (B1(4)). Hence,

[ ,g gi j] 1 for 1 i 4,1 j 8. Then, the rest of the commutators that are not in the central of (B1(4))are

5 6

[g g, ], [g g5, 7],[g g5, 8],[g g6, 7],[g g6, 8]and [g g7, 8]. These commutators are computed as in the following.

6 7

1 2

1 2

2

2 2

2

2 2

[ , ]

[[ , ],[ , ]]

[[ , ],[ , ] ]

[ , ]

[ , ] 1,

g g

a l a l

a l a l

l l

l l

 

    

6 8

1 2

1 2

2 1 2

1

1 2

1 4 [ , ]

[[ , ],[ , ]]

[[ , ],[ , ] ]

[ , ( ) ]

, [ , ]

g g

a l b l

a l b l

l l l

l l

g

 

 

    

7 8

2 2

2 2

2

2 1 2

2

2 1 2

1 2

1 2

2

1 2

[ , ]

[[ , ],[ , ]]

[[ , ],[ , ] ]

[ ,( ) ]

[ ,( ) ]

([ , ] )

[ , ] 1,

g g

a l b l

a l b l

l l l

l l l

l l

l l

 

 

      

5 7

2

2

2 2

2

2 2 2

2 2 2 2

2 2 1 2 1

2 2 2 1 2

2 2 1 2 1

2 2 2 1 2

2 1 2 1 1 2

2 2 2 2 1

[ , ]

[[ , ],[ , ]]

[[ , ],[ , ] ]

[ , ]

[ , ][ , ][[ , ], ]

[ , ][ , ][( ) , ]

[ , ][ , ][ , ]

[ , ] [ , ] [ ,( ) ]

g g

a b a l

a b a l

b l

b l b l b l l

b l b l l l l

b l b l l l l

l b l b l l l

 

  

  

  

  

 

 

  

      

1 1 1 1 2

1 2 1 2 1 2

1 1

2 1 2 1

2 2 1

2 2 2 1 1 2 2

2 2 1

2 2 1 1 2

1 1

2 1 2 1

([ , ][ , ] ) ([ , ][ , ] ) [ , ]

[ , ][ , ] [ , ][ , ]

[ , ]([ , ] [ , ] [ , ][ , ]) [ , ]

([ , ] [ , ] [ , ][ , ])

[ , ][ , ] [ , ] [

b l b l b l b l l l

b l b l b l b l

b l a l b l a l l l b l

a l b l a l l l

b l l l a l b

    

   

     

   

  

    

 

 

 

 

  

 2 2

2 2 2

1 1 2 2

1 2 1 2 2

, ] [ , ] [ , ]

[ , ] [ , ] [ , ] [ , ]

l a l b l

l l a l b l a l

  

   

  

2 2

[ , ] 1 [ , ] 2 1 2

1 2 1 2

2 2

2 1 2

([ , ] ) ([ , ] ) [ , ] [ , ]

[ , ] [ , ]

b l b l

a l a l a l b l

a l l l

 

   

 

  

1 2 1 2 2

1 2 1 2 2

2 2 4

1 2 2

2 2 4

6 8 7

[ , ] [ , ] [ , ] [ , ] [ , ]

[ , ] [ , ] [ ]

, ,

a l a l a l b l a l

a l b l a l

g g g

    

  

  

 

 

  

by Lemma 2.2 (iii) by Lemma 2.1 (i) by (1)

by Lemma 2.2 (iii) by Proposition 2.1 (i) by Lemma 2.1 (i)

by Lemma 2.2 (v)

by Lemma 2.2 (v)

by Lemma 2.1 (i)

by Lemma 2.2 (v)

by Lemma 2.2 (v)

(5)

by Lemma 2.2 (v)

by Proposition 2.1 (ii)

by Corollary 2.1 (i)

by Lemma 2.2 (i)

by Proposition 2.1 (i)

by Lemma 2.1 (i)

5 8

2

2 2

1 2

1 2 1 2 1 2

3

1 2 1 1 2

3 1

1 2 1 1 2

2 3 3 1

2 1 1 2 1 1 2

[ , ]

[[ , ],[ , ]]

[[ , ],[ , ] ]

[ ,( ) ]

[ ,( ) ][[ , ], ][ ,( ) ]

[ ,( ) ][ , ][ ,( ) ]

[ ,( ) ][ , ] [ ,( ) ]

[ , ][ , ][ , ] ([ , ] [ , ] ) [

g g

a b b l

a b b l

b l l

b l l b l l b b l l

b l l l b b l l

b l l b l b l l

b l b l l l b l l l b

 

  

  

  

    

     

 2

2

1 1 2

, ]

[ , ][ , ]

l

b l l l

 

1

1

1 2 2 1

2 1

2 1 2 1 1 2

[ , ]

1 1

2 1 2 1 2

[ , ]

1 1

2 1 2 1 2

1 1

2 1 2 1 2

[ , ][ , ] [ , ][ , ][ , ]

[ , ][ , ] ([ , ] )[ , ]

[ , ][ , ] ([ , ] )[ , ]

[ , ][ , ] ([ , ] )[ , ]

b l

b l

l l

b l b l b l b l l l

b l b l b l l l

b l b l b l l l

b l b l b l l l

    

   

   

    

 

 

 

 

   

1 3 1

2 1 1 2 1 2

1 3 3

2 1 1 2 1 2

1

2 1 2

1 3 1

2 1 1 2 2 1 2

1 3 1

2 1 1 2 2 1 2

2 2

[ , ][ , ] [ , ][ , ]

[ , ][ , ] [ , ][[ , ], ]

[ , ][ , ]

[ , ][ , ] [ , ][ , ][ , ]

[ , ][ , ] [ , ] [ , ][ , ]

[ , ]([ ,

b l b l l b l l l

b l b l l l l l b

b l l l

b l b l l l b l l l

b l b l l l b l l l

b l a l

   

   

 

    

    

 

  

  

  

  

 

 

 2 2 1

2 1 1 2

2

] [ , ] [ , ][ , ])

[ , ]

b l a l l l

b l

  

 

1 1 2 2

2 1 2 1 2 2 2

1 1 1 2

2 1 2 2 2 2

1

1 2

[ , ][ , ] [ , ] [ , ] [ , ] [ , ]

[ , ][ , ] [ , ] [ , ] [ , ] [ , ]

[ , ]

b l l l a l b l a l b l

b l a l b l b l a l b l

l l

     

     

  

  

2 2

[ , ] 1 [ , ] 2 1

1 2 1 2

1 2 1

1 2 1 2

1 2 1

6 7 4

([ , ] ) ([ , ] ) [ , ]

[ , ] [ , ] [ ,

,

]

b l b l

a l a l l l

a l a l l l

g g g

 

  

  

 

 

 

  

2

5 6

1

1 2

2

2 1

2

1 1

1 2

2 2 1 1

2 2 1 1 2 2

1 1 2 2

2 1 2 1 2 2

[ , ] 1 1

1 2

[ , ]

[[ , ],[ , ]]

[[ , ],[ , ] ]

[

[ , ]

([ , ][ , ] )

([ , ] [ , ] [ , ][ , ][ , ] )

[ , ]

, ][ , ] [ , ] [ , ] [ , ]

([ , ]b l ) [ , ] [

g g

a b a l

a b a l

b l

l b

b l b l

a l b l a l l l b l

b l l l a l b l a l

a lb l

 

 

    

    

 

 

  

  

 

      

 2 1

2 1 2

1 1 2 1

1 2 2 1 2

1 1 2 1

6 8 7 4

,

.

] [ , ]

[ , ] [ , ] [ , ] [ , ]

a l l l

a l b l a l l l

g g g g

 

   

  

  

 

Hence, the presentation of B1(4)B1(4) is shown as follows:

1 1

4 2 2

2 3 4 6 7 7 8

1 1 2 1 2 2 4

1 2 8 5 6 6 8 7 4 5 7 6 8 7

1 2 1 1

5 8 6 7 4 6 8 4

(4) (4)

[ , ] [ , ] 1,

, [ , ] ,[ , ] , .

[ , ] ,[ , ] ,[ ,i j] 1

B B

g g g g g g g g g g g g g g g g g g g g g

g g g g g g g g g g

    

  

    

   

  

for 1 i 4,1 j 8.

4.0 CONCLUSION

In this paper, the nonabelian tensor square of a Bieberbach group of dimension four with symmetry point group of order six is computed and is shown to be nonabelian. This computation leads us to the construction of the presentation of the nonabelian tensor square of this group. This finding can be further applied to compute other homological functors such as the exterior square and the Schur multiplier of the group.

Acknowledgement

The researchers would like to acknowledge the Ministry of Education Malaysia (MOE) for the financial funding through RACE Grant Scheme, Vote no: 2012-0133-101-62 from Universiti Pendidikan Sultan Idris and Vote No. 00M04 from Universiti Teknologi Malaysia. The first author is also indebted to MOE for her MyPHD Scholarship.

References

[1] Tan, Y. T., Mohd Idrus, N., Masri, R., Wan Mohd Fauzi, W. N. F. and Sarmin, N. H. 2014. On the Torsion Free Crystallographic Group with Symmetric Point Group on Three Elements. Proceeding of 2nd International Science Postgraduate

Conference 2014 (ISPC2014). 692-708.

[2] Brown, R. and Loday, J. L. 1987. Van Kampen Theorems for Diagrams of Spaces. Topology. 26: 311-335.

[3] Brown, R., Johnson, D. L. and Robertson, E. F. 1987. Some Computations of Non-abelian Tensor Products of Groups.

Journal of Algebra. 111(1): 177-202.

[4] Ellis, G and Leonard, F. 1995. Computing Schur Multipliers and Tensor Products of Finite Groups. Proc. Roy. Irish Acad.

Sect. A. 95(2): 137-147.

[5] Mat Hassim, H. I., Sarmin, N. H., Mohd Ali, N. M. and Mohamad, M. S. 2011. On the Computations of some Homological Functors of 2-engel Groups of Order at Most

16. Journal of Quality Measurement and Analysis. 7(1):

153-159.

[6] Rohaidah Masri. 2009. The Nonabelian Tensor Squares of Certain Bieberbach Groups with Cyclic Point Group of Order Two. Ph.D. Thesis. Universiti Teknologi Malaysia. [7] Nor'ashiqin Mohd Idrus. 2011. Bieberbach Groups with Finite

Point Groups. Ph.D. Thesis. Universiti Teknologi Malaysia. [8] Wan Mohd Fauzi, W. N. F., Mohd Idrus, N., Masri, R. and

Sarmin, N. H. 2014. The Nonabelian Tensor Square of Bieberbach Group of Dimension Five with Dihedral Point Group of Order Eight. AIP Conference Proceedings. 1605: 611-616.

[9] Rocco, N. R. 1991. On a Construction Related to the Non-abelian Tensor Square of a Group. Bol. Soc. Brasil. Mat. (N. S.). 22(1): 63-79.

[10] Blyth, R. D. and Morse, R. F. 2009. Computing the Nonabelian Tensor Squares of Polycyclic Groups. Journal of

Algebra. 321(8): 2139-2148.

[11] Blyth, R. D., Fumagalli, F. and Morigi, M. 2010. Some Structural Results on the Non-abelian Tensor Square of Groups. Journal of Group Theory. 13(1): 83-94.

by Lemma 2.2 (v)

References

Related documents

For the first case, specifically for use in video understanding tasks, we have de- veloped a class agnostic, unsupervised spatio-temporal proposal system learned in a

more than four additional runs were required, they were needed for the 2 7-3 design, which is intuitive as this design has one more factor than the 2 6-2 design

Jutten, “Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability,” in IEEE Workshop on Hyperspectral Image and Signal Processing: Evo-

If the project is longer than 6 months, Progress Report on project activities together with financial data will be sent to GBAid every six month and the Completion Report together

The threshold into the stadium is through a series of layers which delaminate from the geometry of the field to the geometry of the city and creates zones of separation,

Goodman Matthew ENGR Materials Science and Engineering 02-1 2021 A VACANT ENGR Materials Science and Engineering 02-2 2020 Al-Qadi Imad L ENGR Civil and Environmental Engineering

During his evidence he told the court that Mr Knight did not inform him that he had been receiving chiropractic treatment since 2005, that he had a history of neck pain for 15

Many researchers have reported various pharmacological properties of the plant extract and its essential oil.. These reports have confirmed some of the traditional