• No results found

On the properties of k-Fibonacci and k-Lucas numbers

N/A
N/A
Protected

Academic year: 2022

Share "On the properties of k-Fibonacci and k-Lucas numbers"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

Available online atwww.ijaamm.com

International Journal of Advances in Applied Mathematics and Mechanics

On the properties of k-Fibonacci and k-Lucas numbers

Research Article

A. D. Godase1,, M. B. Dhakne2

1Department of Mathematics, V. P. College,Vaijapur, India

2Department of Mathematics, Dr. B. A. M. University,Aurangabad, India

Received 07 July 2014; accepted (in revised version) 26 August 2014

Abstract: In this paper, some properties of k−Fibonacci and k −Lucas numbers are derived and proved by using matrices S=

 k

21 2

k2+4 k2 2



and M = 0 1

k2+ 4 0

‹

. The identities we proved are not encountered in the k−Fibonacci and k−Lucas numbers literature.

MSC: 11B39• 11B83

Keywords: k−Fibonacci numbers • k −Lucas numbers • Fibonacci Matrix 2014 IJAAMM all rights reserved.c

1. Introduction

This paper represents an interesting investigation about some special relations between matrices and k−Fibonacci numbers,k−Lucas numbers.This investigation is valuable to obtain new k −Fibonacci ,k −Lucas identities by differ- ent methods.This paper contributes to k−Fibonacci,k −Lucas numbers literature,and encourage many researchers to investigate the properties of such number sequences.

Definition 1.1.

The k−Fibonacci sequence {Fk ,n}n∈Nis defined as, Fk ,0= 0, Fk ,1= 1 and Fk ,n+1= k Fk ,n+ Fk ,n−1for n≥ 1 Definition 1.2.

The k−Lucas sequence {Lk ,n}n∈Nis defined as, Lk ,0= 2, Lk ,1= k and Lk ,n+1= k Lk ,n+ Lk ,n−1for n≥ 1

2. Main theorems

Lemma 2.1.

If X is a square matrix with X2= k X + I , then Xn= Fk ,nX+ Fk ,n−1I , for all n∈ Z Proof. If n= 0 then result is obivious,

If n= 1 then

(X )1= Fk ,1X+ Fk ,0I

= 1X + I

= X

Corresponding author.

E-mail address:ashokgodse2012@gmail.com

(2)

Hence result is true for n= 1 It can be shown by induction that,

Xn= Fk ,nX+ Fk ,n−1I ,for all n∈ Z

Assume that, Xn= Fk ,nX+ Fk ,n−1I , and prove that,Xn+1= Fk ,n+1X+ Fk ,nI , Consider,

Fk ,n+1X+ Fk ,nI= (Fk ,nX+ Fk ,n−1I)X + Fk ,nI

= (k X + I )Fk ,n+ X Fk ,n−1

= X2Fk ,n+ X Fk ,n−1= X (X Fk ,n+ Fk ,n−1)

= X (Xn)

= Xn+1 Hence, Xn+1= Fk ,n+1X+ Fk ,nI ,

By Induction, Xn= Fk ,nX+ Fk ,n−1I , for all n∈ Z

We now show that, X−(n)= Fk ,−nX+ Fk ,−n−1I , for all n∈ Z+ Let, Y = k I − X , then

Y2= (k I − X )2

= k2I− 2k X + X2

= k2I− 2k X + k X + I

= k2I− k X + I

= k(k I − X ) + X + I

= k Y + I Therefore, Y2= k Y + I , This shows that,

Yn= Fk ,nY + Fk ,n−1I ,

i .e . (−X−1)n = Fk ,n(k I − X ) + Fk ,n−1I(−1)nX−n

= −Fk ,nX+ Fk ,n+1I X−n = (−1)n+1Fk ,nX+ (−1)nFk ,n+1I

Since, Fk ,−n= (−1)n+1Fk ,n, Fk ,−n−1= (−1)nFk ,n+1, therefore X−n= Fk ,−nX+ Fk ,−n−1I ,gives X−(n)= Fk ,−nX+ Fk ,−n+1I , for all n∈ Z+.

Hence proof.

Corollary 2.1.

Let, M = k 1

1 0

‹

, then Mn= Fk ,n+1Fk ,n Fk ,nFk ,n−1

‹

Proof. Since,

M2= kM + I = Fk ,nM+ Fk ,n−1I Using Lemma2.1

= k Fk ,n Fk ,n

Fk ,n 0

‹

+ Fk ,n−1 0

0 Fk ,n−1

‹

= Fk ,n+1 Fk ,n

Fk ,n Fk ,n−1

‹ , for all n∈ Z

Hence proof.

Corollary 2.2.

Let, S=

 k

2 k2+4 k 2 2

k 2



, then Sn=

 L

k ,n 2

(k2+4)Fk ,n Fk ,n 2

2

Lk ,n 2



, for every n∈ Z

Lemma 2.2.

L2k ,n− (k2+ 4)Fk ,n2 = 4(−1)n,for all n∈ Z

101

(3)

Proof. Since, d e t(S) = −1, d e t (Sn) = [d e t (S)]n= (−1)n, Moreover since,

Sn=

 Lk ,n

Fk ,n2 2

(k2+4)Fk ,n L2k ,n

2

 , We get

d e t(Sn) =L2k ,n

4 −(k2+ 4)Fk ,n2

4 ,

Thus it follows that L2k ,n− (k2+ 4)Fk ,n2 = 4(−1)n,for all n∈ Z Hence proof.

Lemma 2.3.

2Lk ,n+m= Lk ,nLk ,m+ (k2+ 4)Fk ,nFk ,m and 2Fk ,n+m= Fk ,nLk ,m+ Lk ,nFk ,m for all n , m∈ Z

Proof. Since, Sn+m= Sn· Sm

=

 Lk ,n

Fk ,n2 2

(k2+4)Fk ,n L2k ,n

2

 .

 Lk ,m

Fk ,m2 2

(k2+4)Fk ,m Lk ,m2

2



=

‚ Lk ,nLk ,m+(k2+4)Fk ,nFk ,m Lk ,nFk ,m+F4 k ,nLk ,m

4

(k2+4)[Lk ,nFk ,m+Fk ,nLk ,m Lk ,nLk ,m+(k42+4)Fk ,nFk ,m

4

Œ

But,

Sn+m=

 Lk ,n+m

Fk ,n+m2 2

(k2+4)Fk ,n+m Lk ,n+m2

2

 , Gives,

2Lk ,n+m= Lk ,nLk ,m+ (k2+ 4)Fk ,nFk ,m and

2Fk ,n+m= Fk ,nLk ,m+ Lk ,nFk ,m for all n , m∈ Z

Hence proof.

Lemma 2.4.

2(−1)mLk ,n−m= Lk ,nLk ,m− (k2+ 4)Fk ,nFk ,m and

2(−1)mFk ,n−m= Fk ,nLk ,m− Lk ,nFk ,m for all n , m∈ Z .

Proof. Since, Sn−m= Sn· S−m

= Sn· [Sm]−1

= Sn· (−1)m

 Lk ,m

−F2k ,m 2

−(k2+4)Fk ,m Lk ,m2

2



= (−1)m

 Lk ,n

Fk ,n2 2

(k2+4)Fk ,n L2k ,n

2

 .

 Lk ,m

−F2k ,m 2

−(k2+4)Fk ,m Lk ,m2

2



=

‚ Lk ,nLk ,m−(k2+4)Fk ,nFk ,m Lk ,nFk ,m−F4 k ,nLk ,m

4

(k2+4)[Lk ,nFk ,m−Fk ,nLk ,m 4

Lk ,nLk ,m−(k2+4)Fk ,nFk ,m 4

Œ

(4)

But,

Sn−m=

 L

k ,n−m Fk ,n−m2 2

(k2+4)Fk ,n−m Lk ,n−m2

2

 ,

Gives,

2(−1)mLk ,n−m= Lk ,nLk ,m− (k2+ 4)Fk ,nFk ,m and

2(−1)mFk ,n−m= Fk ,nLk ,m− Lk ,nFk ,m for all n , m∈ Z .

Lemma 2.5.

(−1)mLk ,n−m+ Lk ,n+m= Lk ,nLk ,m and

(−1)mFk ,n−m+ Fk ,n+m= Fk ,nLk ,m for all n , m∈ Z .

Proof. By definition of the matrix Sn, it can be seen that

Sn+m+ (−1)mSn−m=

‚ L

k ,n+m+(−1)mLk ,n−m Fk ,n+m+(−1)2 mFk ,n−m

2

(k2+4)[Fk ,n+m+(−1)mFk ,n−m Lk ,n+m+(−1)2 mLk ,n−m

2

Œ

On the other hand,

Sn+m+ (−1)mSn−m= SnSm+ (−1)mSnS−m

= Sn[Sm+ (−1)mS−m]

=

 Lk ,n

Fk ,n2 2

(k2+4)Fk ,n Lk ,n2

2

 .

 Lk ,m

Fk ,m2 2

(k2+4)Fk ,m Lk ,m2

2

 + (−1)m

 Lk ,m

−F2k ,m 2

−(k2+4)Fk ,m Lk ,m2

2



=

 Lk ,n

Fk ,n2 2

(k2+4)Fk ,n L2k ,n

2

 . Lk ,m

0 0 Lk ,m

‹

=

 Lk ,mLk ,n

Fk ,n2Lk ,m 2

(k2+4)Fk ,nLk ,m Lk ,m2Lk ,n

2



Gives,

(−1)mLk ,n−m+ Lk ,n+m= Lk ,nLk ,m

and

(−1)mFk ,n−m+ Fk ,n+m= Fk ,nLk ,m for all n , m∈ Z .

Lemma 2.6.

8Fk ,x+y +z= Lk ,xLk ,yFk ,z+ Fk ,xLk ,yLk ,z+ Lk ,xFk ,yLk ,z+ (k2+ 4)Fk ,xFk ,yFk ,z and

8Lk ,x+y +z= Lk ,xLk ,yLk ,z+ (k2+ 4)[Lk ,xFk ,yFk ,z+ Fk ,xLk ,yFk ,z+ Fk ,xFk ,yLk ,z

for all x , y , z∈ Z .

103

(5)

Proof. By definition of the matrix Sn,it can be seen that

Sx+y +z=

‚ Lk ,x+y +z

Fk ,x+y +z2 2

(k2+4)Fk ,x+y +z Lk ,x+y +z2

2

Œ

On the other hand, Sx+y +z= Sx+ySz

=

‚ Lk ,x+y

Fk ,x+y2 2

(k2+4)Fk ,x+y Lk ,x+y2

2

Π.

 Lk ,z

F2k ,z 2

(k2+4)Fk ,z Lk ,z2

2



=

‚ L

k ,x+yLk ,z+(k2+4)Fk ,x+yFk ,z Lk ,zFk ,x+y+F4 k ,zLk ,x+y

4

(k2+4)[Lk ,x+yFk ,z+Fk ,x+yLk ,z Lk ,x+yLk ,z+(k42+4)Fk ,x+yFk ,z

4

Œ

Using,

2Lk ,x+y= Lk ,xLk ,y+ (k2+ 4)Fk ,xFk ,y 2Fk ,x+y= Lk ,yFk ,x+ (k2+ 4)Fk ,yLk ,x Gives,

8Fk ,x+y +z= Lk ,xLk ,yFk ,z+ Fk ,xLk ,yLk ,z+ Lk ,xFk ,yLk ,z+ (k2+ 4)Fk ,xFk ,yFk ,z

and

8Lk ,x+y +z= Lk ,xLk ,yLk ,z+ (k2+ 4)[Lk ,xFk ,yFk ,z+ Fk ,xLk ,yFk ,z+ Fk ,xFk ,yLk ,z for all x , y , z ∈ Z .

Theorem 2.1.

Lk ,x+y2 − (k2+ 4)(−1)x+y +1Fk ,z−xLk ,x+yFk ,y+z− (k2+ 4)(−1)x+zFk ,y+z2 = (−1)y+zLk ,z2 −x for all x , y , z∈ Z .

Proof. Consider matrix multiplication given below.

That is,

 Lk ,x

Fk ,z2 2

(k2+4)Fk ,x L2k ,z

2

 . Lk ,y

Fk ,y

‹

= Lk ,x+y Fk ,y+z

‹

Now,

d e t

 Lk ,x

Fk ,z2 2

(k2+4)Fk ,x L2k ,z

2



=Lk ,xLk ,z− (k2+ 4)Fk ,xFk ,z 4

=(−1)xLk ,z−x 2

= Q 6= 0 Therefore we can write

 Lk ,y Fk ,y

‹

=

 Lk ,x

Fk ,z2 2

(k2+4)Fk ,x L2k ,z

2

−1

· Lk ,x+y Fk ,y+z

‹

= 1 Q

 Lk ,z

−F2k ,z 2

−(k2+4)Fk ,x Lk ,x2

2



. Lk ,x+y Fk ,y+z

‹

Gives,

Lk ,y=(−1)x[Lk ,zLk ,x+y− (k2+ 4)Fk ,xFk ,y+z] Lk ,z−x

(6)

and

Fk ,y=(−1)x[Lk ,xFk ,z+y− Fk ,zLk ,y+x] Lk ,z−x

Since,

Lk ,y2 − (k2+ 4)Fk ,y2 = 4(−1)y We get,

[Lk ,zLk ,x+y− (k2+ 4)Fk ,xFk ,y+z]2− (k2+ 4)2[Lk ,xFk ,z+y− Fk ,zLk ,y+x]2= 4(−1)yL2k ,z−x Using Lemma2.4and Lemma2.6,

€Lk ,z2 L2k ,x+y− 2(k2+ 4)Lk ,zFk ,x+yFk ,y+z+ (k2+ 4)2Fk ,x2 Fk ,y+z2 Š

−(k2+ 4)(Lk ,x2 Fk ,y+z2 − 2Lk ,xFk ,zFk ,y+zLk ,x+y+ Fk ,z2 L2k ,x+y) = 4(−1)yLk ,z2 −x Gives,

Lk ,x+y2 − (k2+ 4)(−1)x+y +1Fk ,z−xLk ,x+yFk ,y+z− (k2+ 4)(−1)x+zFk ,y+z2 = (−1)y+zLk ,z2 −x for all x , y , z ∈ Z .

Theorem 2.2.

Lk ,x+y2 − (−1)x+zLk ,z−xLk ,x+yLk ,y+z+ (−1)x+zL2k ,y+z= (−1)y+z +1(k2+ 4)Fk ,z−x2 for all x , y , z∈ Z , x 6= z .

Proof. Consider matrix multiplication,

‚ L

k ,x L2k ,z 2

(k2+4)Fk ,x (k2+4)F2k ,z

2

Œ . Lk ,y

Fk ,y

‹

= Lk ,x+y Lk ,y+z

‹

Now, d e t

‚ L

k ,x L2k ,z 2

(k2+4)Fk ,x (k2+4)F2 k ,z

2

Œ

=(k2+ 4)(−1)xFk ,z−x 2

= P 6= 0, ( if x 6= z ) Therefore for x6= z , we can write

 Lk ,y Fk ,y

‹

=

‚ L

k ,x L2k ,z 2

(k2+4)Fk ,x (k2+4)F2 k ,z

2

Œ−1

. Lk ,x+y Lk ,y+z

‹

= 1 P

 (k2+4)Fk ,z

−L2k ,z 2

−(k2+4)Fk ,x L2k ,x

2



. Lk ,x+y Lk ,y+z

‹

Gives,

Lk ,y=(−1)x[Fk ,zLk ,x+y− Fk ,xLk ,y+z] Fk ,z−x

and

Fk ,y=(−1)x[Lk ,xLk ,z+y− Lk ,zLk ,y+x] (k2+ 4)Fk ,z−x

Since,

Lk ,y2 − (k2+ 4)Fk ,y2 = 4(−1)y We get,

(k2+ 4)[Fk ,zLk ,x+y− Fk ,xLk ,y+z]2− [Lk ,xLk ,z+y− Lk ,zLk ,y+x]2= 4(k2+ 4)(−1)yFk ,z−x2 Using Lemma2.4and Lemma2.6, We obtain

Lk ,x+y2 − (−1)x+zLk ,z−xLk ,x+yLk ,y+z+ (−1)x+zL2k ,y+z= (−1)y+z +1(k2+ 4)Fk ,z−x2 for all x , y , z ∈ Z , x 6= z .

105

(7)

Theorem 2.3.

Fk ,x+y2 − Lk ,x−zFk ,x+yFk ,y+z+ (−1)x+zFk ,y2 +z= (−1)y+zFk ,z−x2 for all x , y , z∈ Z , x 6= z .

Proof. Consider matrix multiplication,

 Fk ,x

Fk ,z2 2

Fk ,x L2k ,z 2

 . Lk ,y

Fk ,y

‹

= Fk ,x+y Fk ,y+z

‹

Now, d e t

 Fk ,x

F2k ,z 2

Fk ,x L2k ,z 2



=(−1)zFk ,x−z 2

= R 6= 0, ( if x 6= z ) Therefore for x6= z , we get,

 Lk ,y Fk ,y

‹

=

 Fk ,x

F2k ,z 2

Fk ,x L2k ,z 2

−1

. Fk ,x+y Fk ,y+z

‹

= 1 R

 Lk ,z

−F2k ,z 2

−Lk ,x Fk ,x2

2



. Fk ,x+y Fk ,y+z

‹

Gives,

Lk ,y=(−1)z[Lk ,zFk ,x+y− Lk ,xFk ,y+z] Fk ,x−z

and

Fk ,y=(−1)z[Fk ,xFk ,z+y− Fk ,zFk ,y+x] Fk ,x−z

Now consider,

[Lk ,zFk ,x+y− Lk ,xFk ,y+z]2− (k2+ 4)[Fk ,xFk ,z+y− Fk ,zFk ,y+x]2= 4(−1)yFk ,x−z2 Using Lemma2.4and Lemma2.6, We get

Fk ,x+y2 − Lk ,x−zFk ,x+yFk ,y+z+ (−1)x+zFk ,y2 +z= (−1)y+zFk ,z−x2 for all x , y , z ∈ Z , x 6= z .

3. Conclusions

The conclusions arising from the work are as follows:

Some new identities have been obtained for the k−Fibonacci and k −Lucas sequences.

ACKNOWLEDGEMENTS.

The authors wish to thank two anonymous referees for their suggestions,which led to substantial improvement of this paper.

References

[1] M.E. Waddill, Matrices and Generalized Fibonacci Sequences, The Fibonacci Quarterly 55(12.4) (1974) 381-86.

[2] T. Koshy, Fibonacci and Lucas numbers with applications, Wiley-Intersection Pub. 2001.

[3] S. Falcon, A. Plaza, On the k− Fibonacci numbers Chaos, Solitons Fractals 5(32) (2007) 1615-1624.

[4] A.F. Horadam, Basic Properties of a Certain Generalized Sequence of Numbers, The Fibonacci Quarterly 3(3) (1965) 161-176.

[5] P. Filipponi, A. F. Horadam, A Matrix Approach to Certain Identities, The Fibonacci Quarterly 26(2) (1988) 115- 126.

[6] H. W. Gould, A History of the Fibonacci g-Matrix and a Higher-Dimensional Problem, The Fibonacci Quarterly 19(3) (1981) 50-57.

[7] S. Vajda, Fibonacci and Lucas numbers, and the Golden Section:Theory and applications, Chichester:Ellis Hor- wood, 1989.

[8] A. F. Horadam, Jacobstal Representation of Polynomials, The Fibonacci Quarterly 35(2) (1997) 137-148.

[9] G. Strang,Introduction to Linear Algebra, Wellesley-Cambridge:Wellesley, MA Pub., 2003.

References

Related documents

Study, Country Demographic Sample S ize/Method Level of Knowledge/ Awareness o f HPV, CC and Vaccine A cceptability/Willingnes s Strategies for Vaccination/ Increasing Awareness

In order to prove our main result Theorem 1, we need to use several times a Baker type lower bound for a nonzero linear form in logarithms of algebraic numbers and such a bound,

According to data gathered from Iranian junior high school classes and based on validated criteria and careful analysis of Iranian high school English textbooks, Golpour (2012)

• ● As the ambulance is moving away you, you will hear a lower frequency because the waves are more spread apart, just like standing on the left of Bob. • ● If the ambulance

In contrast to LWPR the approach presented in this work provides higher flexibility by modelling the receptive fields using the Parzen method for distribution approximation [17]

Prueba de ello es que las sentencias se fundamentan en la dejadez no solo del Gobierno y del Parlamento de Canarias, sino también de los Cabildos Insulares de Fuerteventura y,

Technology can be made use of to provide the publication Unmasking Superfoods By Jennifer Sygo in only soft documents system that could be opened whenever you really want as well

The lack of increase of ACE activity in the serum, in spite of changes in blood pressure values, most likely shows the presence of alternative ACE independent pathway in- volved in