• No results found

New Subclasses of Meromorphically Multivalent Functions Defined by a Differential Operator

N/A
N/A
Protected

Academic year: 2020

Share "New Subclasses of Meromorphically Multivalent Functions Defined by a Differential Operator"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

ISSN 2250-3153

www.ijsrp.org

New Subclasses of Meromorphically Multivalent

Functions Defined by a Differential Operator

Dr. S. M. Khairnar*, R. A. Sukne**

*Professor and Head

And Dean (R & D)

MIT’s Maharashtra Academy of Engineering, Alandi, Pune-412105

**Assistant Professor in MathematicsDilkap Research Institute of Engineering & Management Studies

.

Neral, Tal. Karjat, Dist. Raigad.

Abstract-In this paper authors introduced two new subclasses ∑𝜚𝜏𝜍𝜉 𝑚𝑝 𝛼, 𝛽, 𝜂 and ∑+𝜚𝜏𝜍𝜉 𝑚𝑝(𝛼, 𝛽, 𝜂)of meromorphically multivalent functions which aredefined by means of a new differential operator. By making use of the principle of differential subordination, authors investigate several inclusion relationships and properties of certain subclasses which are defined here by means of a differential operator. Some results connectedto subordination properties, coefficient estimates, convolutionproperties, integral representation, distortion theorems are obtained.We also extend the familiarconcept of (𝑛, 𝛿) −neighborhoods of analyticfunctions to these subclasses of meromorphicallymultivalentfunctions.

Index Terms-Analytic functions, meromorphic functions,multivalent functions, differential operator, subordination, neighborhoods.

I. INTRODUCTION

et 𝐴 be the class of analytic functions in the unit disk 𝑈 = 𝑧 ∈ 𝐶: 𝑧 < 1 .Consider𝛺 = 𝑛𝑤 ∈ ∶ 𝑤 0 = 0 𝑎𝑛𝑑 𝑤 𝑧 < 1, 𝑧 ∈ 𝑈(1.1)the class of Schwarz functions.For 0 ≤ 𝛼 < 1let𝑃 𝛼 = 𝑝 ∈ 𝐴 ∶ 𝑝 0 = 1 and 𝑅𝑒𝑝(𝑧) > 𝛼, 𝑧 ∈ 𝑈.(1.2)

Note that𝑃 = 𝑃(0) is the well-known Caratheodory class of functions. The classes of Schwarz and Caratheodory functions play an extremely important role in the theory of analytic functions and havebeen studied by many authors.It is easy to see that𝑝 ∈ 𝑃(𝛼)if and only if𝑝 𝑧 −∝

1−∝ ∈ 𝑃.(1.3)Using the properties of functions in the class P and the above condition, the following properties of the functions in the class P(α)can be obtained.

Lemma 1.1 Let 𝑝 ∈ 𝐴 . Then𝑝 ∈ 𝑃(𝛼) if and only if there exists𝑤 ∈ 𝛺such that𝑝 𝑧 =1− 4 1−𝜂 ∝−1 𝑤 (𝑧)

1−𝑤 (𝑧) (1.4) Lemma 1.2 (Herglotz formula) A function𝑝 ∈ 𝐴 belongs to the class𝑃(𝛼)if and only if there exists a probability

measure𝜇(𝑥) 𝑜𝑛 𝜕𝑈suchthat𝑝 𝑧 = ∫ 𝑥 1− 4 1−𝜂 ∝−1 𝑥 𝑧

1−𝑥 𝑧 𝑑𝜇 𝑥 (𝑧 ∈ 𝑈). (1.5)The correspondence between 𝑃(𝛼)and probability measure 𝜇(𝑥) on 𝜕𝑈, given by (1.5) is one-to-one.If𝑓and𝑔arein𝐴 .We say that f is subordinate to𝑔, written f ∈ g,if there exists a function 𝑤 ∈ 𝛺such that 𝑓(𝑧) = 𝑔(𝑤(𝑧))(𝑧 ∈ 𝑈).It is

known that if f ∈ g, then𝑓(0) = 𝑔(0) and 𝑓(𝑈) ⊂ 𝑔(𝑈). Inparticular, if 𝑔is univalent in U we have the following equivalence:𝑓(𝑧) ≺ 𝑔(𝑧) (z ∈U) if and only if 𝑓(0) = 𝑔(0) and 𝑓(𝑈) ⊂ 𝑔(𝑈).Let∑𝑝denote the class of all meromorphic functions f of the form𝑓 𝑧 = 𝑧−𝑝+

∑∞𝑘=1−𝑝𝑎𝑘𝑧𝑘(𝑎𝑘≥ 0, 𝑝 ∈ 𝑁) (1.6)which are analytic and p-valent in the punctured unit disk𝑈∗= 𝑈\ 0 .Denote by ∑𝑝+ the subclass of ∑𝑝consisting of functions of the

form𝑓 𝑧 = 𝑧−𝑝 + ∑ 𝑎

𝑘𝑧𝑘≥ 0 ∞

𝑘=1−𝑝 (𝑧 ∈ 𝑈∗)(1.7)A function 𝑓 ∈ ∑𝑝 is meromorphically multivalent starlike of orderα (0 ≤ α < 1) (see [2]) if−𝑅𝑒 1

𝑝 𝑧𝑓′(𝑧)

𝑓(𝑧) >∝ (𝑧 ∈ 𝑈). The class of all such functions is denoted by∑𝑝+(∝ ).If𝑓 ∈ ∑𝑝 is given by (1.6) and 𝑔 ∈ ∑𝑝is given by

𝑓 𝑧 = 𝑧−𝑝+ 𝑏 𝑘𝑧𝑘 ∞

𝑘=1−𝑝

then the Hadamard product (or convolution) of f and𝑔 is definedby 𝑓 ∗ 𝑔 𝑧 = 𝑧−𝑝+ ∑ 𝑎

𝑘𝑏𝑘𝑧𝑘≥ 0 ∞

𝑘=1−𝑝 𝑝 ∈

𝑁, 𝑧∈𝑈∗. For a function 𝑓∈𝛴𝑝, we define the

differential operator 𝐷𝜚𝜏𝜍 𝜉𝑝𝑚 inthe following way:𝐷𝜚𝜏𝜍 𝜉𝑝0 𝑓 𝑧 = 𝑓 𝑧

𝐷𝜚𝜏𝜍 𝜉𝑝1 𝑓 𝑧 = 𝐷

𝜚𝜏𝜍 𝜉𝑝𝑓 𝑧 = 𝜏 − 𝜉 𝜏 − 𝜍𝑧𝑝+1𝑓𝑧′′𝑧𝑝−1

+ 𝜏−𝜉 −𝜚2 𝜏−𝜍 𝜚

𝑧𝑝 +1𝑓 𝑧 ′ 𝑧𝑝 +

𝜚− 𝜏−𝜉 −𝜚2 𝜏−𝜍

𝜚 𝑓 𝑧 .(1.8) And

in general 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 =

𝐷𝜚𝜏𝜍𝜉𝑝 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 −1𝑓 𝑧 ,(1.9)

where, 0 < ϱ ≤ 1

2, 0 ≤ ξ < 1, τ ≥ 1, 0 ≤ ς < 1, 0 ≤ η < 1 0 ≤∝< 1, 0 < β ≤ 1 andm ∈ N . If the function𝑓 ∈ 𝛴𝑝is given by (1.6) then, from (1.8) and (1.9),we

obtain𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 = 𝑧−𝑝+

∑∞𝑘=1−𝑝𝛷𝑘 𝜚, 𝜏, 𝜍, 𝜉, 𝑚, 𝑝 𝑎𝑘𝑧𝑘(1.10) 𝑚 ∈ 𝑁 , 𝑝 ∈ 𝑁 , 𝑧 ∈ 𝑈∗,where𝛷𝑘𝜚,𝜏,𝜍,𝜉 ,𝑚,𝑝=

1 + 𝑘 + 𝑝

𝜏−𝜉 −𝜚2 𝜏−𝜍 𝜚

+(𝑘 + 𝑝 + 1) 𝜏 − 𝜉 (𝜏 − 𝜍)

𝑚

.(1.11)From

(2)

ISSN 2250-3153

www.ijsrp.org ofconvolution as𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 = 𝑓 ∗ 𝑕 (𝑧)(1.12)where𝑕 𝑧 =

𝑧−𝑝+ ∑ 𝛷

𝑘 𝜚, 𝜏, 𝜍, 𝜉, 𝑚, 𝑝 𝑧𝑘. ∞

𝑘=1−𝑝 (1.13)Note that, the case𝜉 =1

2 and 𝜏 = 𝜍 of the differential operator𝐷𝜚𝜏𝜍𝜉 ,𝑝 𝑚 was

introduced by Srivastava and Patel [18]. Making use of the differential operator𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 for p = 1 was considered in [16].For differential operator𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 , we define a new subclassof the function class ∑𝑝as follows.

Definition 1.1

A function 𝑓 ∈ ∑𝑝is said to be in the

class∑𝜚𝜏𝜍𝜉 𝑚𝑝 𝛼, 𝛽, 𝜂 if it satisfies

thecondition

𝑧 𝐷 𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 ′

𝐷 𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 +2𝑝 1−𝜂

𝑧 𝐷 𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 ′

𝐷 𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 +8𝑝 1−𝜂

2𝛼 −2𝑝 1−𝜂

< 𝛽for some

z ∈ U∗.(1.14)

And 0 < 𝜚 ≤ 1

2, 0 ≤ 𝜉 < 1, 𝜏 ≥ 1, 0 ≤ 𝜍 ≤ 1,

0 ≤ 𝜂 < 1, 0 ≤∝< 1, 0 < 𝛽 ≤ 1and𝑚 ∈ 𝑁 .Note that a special case of the class∑𝜚𝜏𝜍𝜉𝑚𝑝 ∝, 𝛽, 𝜂 for p = 1 and m = 0is the class of meromorphically starlike functions of order ∝ and type𝛽introduced earlier by Mogra et al. [12]. It is easy to check that form = 0 and β = 1, the class∑𝜚𝜏𝜍𝜉𝑚𝑝 ∝ ,𝛽,𝜂reduces to the class 𝑝∗∝.We consider another subclass of∑𝑝given by∑+𝜚𝜏𝜍𝜉𝑚𝑝 ∝, 𝛽, 𝜂

= ∑+ ∝, 𝛽 ∩

𝜚𝜏𝜍𝜉𝑚𝑝 ∑𝜚𝜏𝜍𝜉𝑚𝑝(∝, 𝛽, 𝜂).(1.15)The main object of this paper is to present a systematic investigationof the classes∑𝜚𝜏𝜍𝜉𝑚𝑝(∝, 𝛽, 𝜂)and∑ ∝, 𝛽, 𝜂 .∗𝑝

II. MAIN RESULTS

2Properties of the class ∑𝜚𝜏𝜍𝜉𝑚𝑝 ∝, 𝛽, 𝜂 We begin this section with a necessary and sufficient condition, interms of

subordination, for a function to be in the class ∑𝜚𝜏𝜍𝜉𝑚𝑝 ∝ ,𝛽,𝜂.

Theorem 2.1: A function𝑓 ∈ ∑𝑝 is in the class∑𝜚𝜏𝜍𝜉𝑚𝑝(∝

, 𝛽, 𝜂) if andonly if𝑧 𝐷𝜚𝜏𝜍𝜉𝑝 𝑚 𝑓(𝑧)

𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧) ≺

𝑝 4 1−𝜂 ∝−1 𝛽𝑧 −𝑝

1−𝛽𝑧 𝑧 ∈

𝑈.(2.1)

Proof: Let𝑓 ∈ 𝛴𝜚𝜏𝜍𝜉𝑚𝑝 ∝, 𝛽, 𝜂 . Then, from (1.6), we

have

−𝑧 𝐷 𝜚𝜏𝜍𝜉𝑝 𝑚 𝑓 𝑧

𝐷 𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 +2𝑝 𝜂 −1

−𝑧 𝐷 𝜚𝜏𝜍𝜉𝑝 𝑚 𝑓 𝑧

𝐷 𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 +4𝑝 1−𝜂 +2𝑝 𝜂 −1 4 1−𝜂 ∝−1

2

< 𝛽2or

1−𝛽2

− 4 1−𝜂 ∝−1 2−1

𝑧 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 ′

𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 + 2𝑝 𝜂 − 1 2

2 1+𝛽2 − 4 1−𝜂 ∝−1 − 4 1−𝜂 ∝−1 2−1 𝑅𝑒 −

1 2𝑝 1−𝜂 ∙

𝑧 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 ′ 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 < 𝛽

2Ifβ ≠

1,

wehave −𝑧 𝐷𝜚𝜏𝜍𝜉𝑝 𝑚 𝑓 𝑧

𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 − 2𝑝 1 − 𝜂 2

21+𝛽2 4 𝜂 −1 ∝+1 1−𝛽2 𝑅𝑒 −

1 2𝑝(1−𝜂 )∙

𝑧 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧) ′ 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧)

+ 1+𝛽2 4 𝜂 −1 ∝+1 ) 1−𝛽2

2

<−1−𝛽2 4 𝜂 −1 ∝+1 1−𝛽2 + 1+𝛽2 4 𝜂−1 ∝+1

1−𝛽2 2

That

is

−𝑧 𝐷 𝜚𝜏𝜍𝜉𝑝 𝑚 𝑓 𝑧

𝐷 𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 +2𝑝 𝜂 −1

1+𝛽 2 4 𝜂 −1 ∝+1 1−𝛽 2 𝛽 1+ 4 𝜂 −1 ∝+1

1−𝛽 2

< 1 (2.2)The above

inequality shows that the values region of 𝐹 𝑧 = − 1 2𝑝(1−𝜂 )∙ 𝑧 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧) ′

𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧) is contained in the disk centered

at1+𝛽2 4 𝜂 −1 ∝+1

1−𝛽2 and radius

𝛽 1+ 4 𝜂−1 ∝+1

1−𝛽2 .Itis easyto check that the function𝐺 𝑧 =1− 4 1−𝜂 ∝−1 𝛽𝑧

1−𝛽𝑧 maps the unitdiskU

onto the disk

w−1+β2 4 η−1 ∝+1 1−β2

β 1+ 4 η −1 ∝+1 1−β 2

< 1. Since G is univalent

and 𝐹(0) = 𝐺(0), 𝐹(𝑈) ⊂ 𝐺(𝑈),

we obtain that𝐹(𝑧) ≺ 𝐺(𝑧),that is−𝑧 𝐷𝜚𝜏 𝜍𝜉𝑝 𝑚 𝑓(𝑧)

𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) ≺

2𝑝 1 − 𝜂 1− 4 1−𝜂 ∝−1 𝛽𝑧

1−𝛽𝑧 or 𝑧 𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) ′

𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) ≺

−2𝑝(1−𝜂 )+2𝑝(1−𝜂 ) 4 1−𝜂 ∝−1 𝛽𝑧

1−𝛽𝑧𝛽𝑧 .Conversely,

suppose that subordination𝑧 𝐷𝜚𝜏𝜍𝜉𝑝 𝑚 𝑓(𝑧)

𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧) ≺

𝑝 4 1−𝜂 ∝−1 𝛽𝑧 −𝑝 1−𝛽𝑧 holds. Then

−𝑧 𝐷𝜚𝜏 𝜍𝜉𝑝 𝑚 𝑓(𝑧)

𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) = 2𝑝 1 − 𝜂

1− 4 1−𝜂 ∝−1 𝛽𝑤 (𝑧)𝛽𝑧

1−𝛽𝑤 (𝑧)𝛽𝑧 ,(2.3) where𝑤 ∈ 𝛺. After simple calculations, from (2.3), we

obtain

𝑧 𝐷 𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) ′

𝐷 𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) +2𝑝 1−𝜂

𝑧 𝐷 𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) ′

𝐷 𝜚𝜍𝜏𝜉𝑝𝑚 𝑓(𝑧) +2𝑝 1−𝜂 4 1−𝜂 ∝−1

< 𝛽which proves that

𝑓 ∈ ∑𝜚𝜏 𝜍𝜉𝑚𝑝(∝, 𝛽, 𝜂).If β = 1, inequality (1.14)

becomes

−𝑧 𝐷 𝜚𝜏 𝜍𝜉𝑝 𝑚 𝑓(𝑧)

𝐷 𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) +2𝑝 𝜂 −1

−𝑧 𝐷 𝜚𝜏 𝜍𝜉𝑝 𝑚 𝑓(𝑧)

𝐷 𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) +2𝑝 1−𝜂 4 1−𝜂 ∝−1

< 𝛽(2.4)

From above we can easily obtain−𝑧 𝐷𝜚𝜏 𝜍𝜉𝑝 𝑚 𝑓(𝑧)

𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) ≺

2𝑝 1 − 𝜂 1− 4 1−𝜂 ∝−1 𝑧𝛽𝑧

1−𝑧 or 𝑧 𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) ′

𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) ≺

−2𝑝(1−𝜂 )+2𝑝(1−𝜂 ) 4 1−𝜂 ∝−1 2𝑝 1−𝜂 𝑧

1−𝑧𝛽𝑧 .

(2.5)Where, 0 < 𝜚 ≤1

2, 0 ≤ξ< 1, 𝜏 ≥ 1, 0 ≤ ς ≤ 1,

0 ≤η< 1, 0 ≤∝< 1, 0 < 𝛽 ≤ 1 and m ∈ N .Hence the proof. Remark 2.1 Since𝑅𝑒1− 4 1−𝜂 ∝−1 𝛽𝑧

1−𝛽𝑧 >∝ it follows

that−𝑅𝑒 1 2𝑝(1−𝜂 )∙

𝑧 𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) ′

𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) >∝.Hence𝐷𝜚𝜏 𝜍𝜉𝑝 𝑚 𝑓(𝑧) ∈

∑ (𝛼)∗

𝑝 . Structural formula for the class∑𝜚𝜏 𝜍𝜉𝑚𝑝(∝ ,1, 𝜂)

(3)

ISSN 2250-3153

www.ijsrp.org class∑ϱτςξmp(∝ ,1,η) ifand only if there exists a probability

measure μ(x) on ∂U such

that𝑓 𝑧 = 𝑧−𝑝+ ∑ 𝑧𝑘 𝛷𝑘 𝜚,𝜏𝜍,,𝜉,𝑚 ,𝑝 ∞

𝑘=1−𝑝 ∗ 𝑧−𝑝 ∙ 𝑒𝑥𝑝∫ 𝑥 2𝑝(1 − 𝜂) 1 + 4 𝜂 − 1 ∝ +1 × 𝑙𝑜𝑔 1 −

𝑥𝑧 𝑑𝜇(𝑥) Where (𝑧 ∈ 𝑈∗).(2.6)The correspondence between ∑𝜚𝜏 𝜍𝜉𝑚𝑝(∝ ,1, 𝜂)and the probabilitymeasureμ(x) is one-to-one. Proof: In view of the subordination condition (2.5), we have

that 𝑓 ∈ ∫𝜚𝜏𝜉𝑚𝑝 ∝ ,1, 𝜂 if and only if− 1 2𝑝 1−𝜂 ∙

𝑧 𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓 𝑧 𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓 𝑧 ∈

𝑃 𝛼 .From Lemma 1.2, we have−𝑧 𝐷𝜚𝜏 𝜍𝜉𝑝 𝑚 𝑓 𝑧 𝐷𝜚 𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 =

2𝑝 1 − 𝜂 ∫ 𝑥 1− 4 1−𝜂 ∝−1 𝑥𝑧

1−𝑥𝑧 𝑑𝜇 𝑥

Which is equivalent to

𝑧 𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓 𝑧 𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓 𝑧 =

𝑥 −2𝑝 1−𝜂 +2𝑝 1−𝜂 4 1−𝜂 ∝−1 𝑥𝑧

1−𝑥𝑧 𝑑𝜇 𝑥 Integrating this equality, we obtain 𝑧𝑝𝐷

𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓 𝑧 = 𝑒𝑥𝑝∫ 𝑥 2𝑝 1 − 𝜂 1 +

4𝜂−1∝+1𝑙𝑜𝑔1𝑥𝑧𝑑𝜇𝑥or 𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓 𝑧 = 𝑧−𝑝∙ 𝑒𝑥𝑝∫ 𝑥 2𝑝 1 − 𝜂 1 + 4 𝜂 − 1 ∝ +1

× 𝑙𝑜𝑔 1 − 𝑥𝑧 𝑑𝜇(𝑥) (2.7)

𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 = 𝑓 ∗ 𝑕 𝑧 . Where

𝑕 𝑧 = 𝑧−𝑝+ ∑ 𝛷

𝑘(𝜚, 𝜏, 𝜍, 𝜉, 𝑚, 𝑝)𝑧𝑘 ∞

𝑘=1−𝑝

Using (2.10) and above two equations we obtained following

result 𝑓 𝑧 = 𝑧−𝑝+ 𝑘=1−𝑝∞𝑧𝑘𝛷𝑘𝜚,𝜏,𝜍,𝜉,𝑚,𝑝∗

𝑧−𝑝∙𝑒𝑥𝑝∫𝑥2𝑝1−𝜂1+4𝜂−1∝+1×𝑙𝑜𝑔1−𝑥𝑧𝑑𝜇(𝑥).

Where (𝑧 ∈ 𝑈∗).

Theorem 2.3 Let f ∈ ∑𝜚𝜏 𝜍𝜉𝑚𝑝(∝ ,1, 𝜂)Then 𝑧𝑝𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓 𝑧 ≺ (1 − 𝑧)2𝑝 1−𝜂 1+ 4 𝜂−1 ∝+1 𝑧 ∈ 𝑈 .Proof: Let

𝑓 ∈ ∑𝜚𝜏 𝜍𝜉𝑚𝑝(∝ ,1, 𝜂)Then by (2.5) we have

𝑧 𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) 𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) ≺ −2𝑝(1−𝜂 )+2𝑝(1−𝜂 ) 4 1−𝜂 ∝−1 𝑧

1−𝑧 Since the function−2𝑝(1−𝜂 )+2𝑝(1−𝜂 ) 2 1−𝜂 ∝−1 𝑧

1−𝑧 is univalent and convex in

U, inview of Goluzin’s result, we obtain∫ 𝑧 𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝜁 )

𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝜁) 𝑧

0 𝑑𝜁 ≺

∫ −2𝑝(1−𝜂 )+2𝑝(1−𝜂 ) 4 1−𝜂 ∝−1 𝜁 𝜁 (1−𝜁)

𝑧

0 𝑑𝜁Or 𝑙𝑜𝑔𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) ≺

𝑙𝑜𝑔 1−𝑧 2𝑝 1−𝜂 1+ 4 𝜂 −1 ∝+1

(𝑧)𝑝 Thus, there exists a function𝑤 ∈ 𝛺 such that𝑙𝑜𝑔𝐷𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓(𝑧) ≺

𝑙𝑜𝑔 1−𝑤 (𝑧) 2𝑝 1−𝜂 1+ 4 𝜂 −1 ∝+1

𝑤 (𝑧)𝑝 ,which is equivalent to𝑧𝑝𝐷

𝜚𝜏 𝜍𝜉𝑝𝑚 𝑓 𝑧 ≺ 1 − 𝑧 2𝑝 1−𝜂 1+ 4 𝜂 −1 ∝+1 .. Structural formula for the class∑𝜚𝜏 𝜍𝜉𝑚𝑝(∝, 𝛽, 𝜂)

Theorem 2.4 Let 𝑓 ∈ ∑𝜚𝜏 𝜍𝜉𝑚𝑝 ∝, 𝛽, 𝜂 .Then𝑓 𝑧 =

𝑧−𝑝+ ∑ 𝑧𝑘 𝛷𝑘 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝

𝑘=1−𝑝 ∗ 𝑧−𝑝𝑒𝑥𝑝 2𝑝 1 − 𝜂 𝛽 +

4 𝜂 − 1 𝛽 ∝ +𝛽 ∫0𝑧 1−𝛽𝑤 (𝜁) 𝑤 (𝜁) 𝑑𝜁 . (2.8)Where(𝑧 ∈ 𝑈∗) and 𝑤 ∈ 𝛺 .

Proof: Let𝑓 ∈ ∑𝜚𝜏𝜍𝜉𝑚𝑝(∝, 𝛽, 𝜂) and since we have obtained

𝑧 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧) ′ 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧) ≺

𝑝 4 1−𝜂 ∝−1 𝛽𝑧 −𝑝

1−𝛽𝑧 𝑧 ∈ 𝑈 , ∴

𝑧 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧) ′ 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧) = 𝑝 4 1−𝜂 ∝−1 𝛽𝑤 (𝑧)−2𝑝 1−𝜂

1−𝛽𝑤 (𝑧) (𝑧 ∈ 𝑈)(2.9)From above equation, we

have𝑧 𝐷𝜚𝜏𝜍𝜉𝑝 𝑚 𝑓(𝑧)

𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧) + 2𝑝(1−𝜂)

𝑧 =

2𝑝(1−𝜂) 4 1−𝜂 ∝−1 𝛽𝑤 (𝑧)−2𝑝 1−𝜂 1−𝛽𝑤 (𝑧) z ∈ U

.Integrating above

implies that 𝑙𝑜𝑔 𝑧 𝑝𝐷

𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧)

2𝑝 1−𝜂 1+ 4 𝜂 −1 ∝+1 = 𝛽 ∫ 𝑤 𝜁 1−𝛽𝑤 𝜁 𝑑𝜁 𝑧

0 . (2.10)

𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 = 𝑓 ∗ 𝑕 𝑧 ,where𝑕 𝑧 = 𝑧−𝑝+ ∑ 𝛷

𝑘(𝜚, 𝜏, 𝜍, 𝜉, 𝑚, 𝑝)𝑧𝑘 ∞

𝑘=1−𝑝 .

Using (2.10) and above two equations we obtained following result

𝑓 𝑧 = 𝑧−𝑝+ ∑ 𝑧𝑘 𝛷𝑘 𝜚,𝜏,𝜍,𝜉 ,𝑚 ,𝑝

𝑘=1−𝑝 ∗

𝑧−𝑝𝑒𝑥𝑝 2𝑝 1 − 𝜂 1

+ 4 𝜂 − 1 ∝ +1 𝛽 𝑤(𝜁) 1 − 𝛽𝑤(𝜁) 𝑑𝜁 𝑧

0

.

Theorem 2.5 If 𝑓 ∈ 𝛴𝑝belongs to𝛴𝜚𝜏𝜍𝜉𝑚𝑝 ∝, 𝛽, 𝜂 , then𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 ∗

−2𝑝 1−𝜂 𝑧−𝑝+ 𝑝+1 𝑧1−𝑝

1−𝑧 2 1 − 𝛽𝑒 𝑖𝜃

+ 𝑧−𝑝

1−𝑧 2𝑝 1 − 𝜂 − 2𝑝 1 − 𝜂 4 1 − 𝜂 ∝ −1 𝛽𝑒 𝑖𝜃

≠ 0 (2.11)for (𝑧 ∈ 𝑈∗) and𝜃 ∈ (0, 2𝜋). Proof: Let𝑓 ∈ ∑𝜚𝜏𝜍𝜉𝑚𝑝(∝, 𝛽, 𝜂). Then, from (2.1) it

follows−𝑧 𝐷𝜚𝜏𝜍𝜉𝑝 𝑚 𝑓(𝑧)

𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧) ≠

−2𝑝 1−𝜂 4 1−𝜂 ∝−1 𝛽 𝑒𝑖𝜃+𝑝 1−𝛽 𝑒𝑖𝜃

𝑧 ∈ 𝑈 , 𝜃 ∈ (0, 2𝜋)

(2.12)It is easy to see that the condition (2.12) can be

written as follows 1 − 𝛽𝑒𝑖𝜃 𝑧 𝐷

𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧) 𝑟𝑒𝑖𝜃

𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧) ≠ 0 (2.13)Note that𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 = 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 ∗

𝑧−𝑝+ 𝑧1−𝑝+∙∙∙∙ +1 𝑧+ 1 +

𝑧

1−𝑧 = 𝐷𝜚𝜏𝜍𝜉𝑝

𝑚 𝑓 𝑧 ∗𝑧−𝑝 1−𝑧

(2.14) And

𝑧 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧) ′

= 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 ∗ −𝑝𝑧−𝑝+ 1 − 𝑝 𝑧1−𝑝−∙∙∙∙

−1𝑧+𝑧 1−𝑧)2=𝐷𝜚𝜏𝜍𝜉𝑝𝑚𝑓𝑧∗−𝑝𝑧−𝑝+1+𝑝𝑧1−𝑝 1−𝑧)2

(2.15) Where, 0 < 𝜚 ≤1

2, 0 ≤ 𝜉 < 1, 𝜏 ≥ 1, 0 ≤ 𝜍 ≤ 1,

0 ≤ 𝜂 < 1, 0 ≤∝< 1, 0 < 𝛽 ≤ 1 𝑎𝑛𝑑 𝑚 ∈ 𝑁 . By using (2.13), (2.14) and (2.15), we

obtained−𝑧 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧) ′

𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓(𝑧) ≠

−2𝑝 1−𝜂 4 1−𝜂 ∝−1 𝛽 𝑒𝑖𝜃+𝑝 1−𝛽 𝑒𝑖𝜃

𝑧 ∈ 𝑈 , 𝜃 ∈ (0, 2𝜋)

Coefficient estimates:

(4)

ISSN 2250-3153

www.ijsrp.org 𝜂 𝑎𝑛 (𝑛+𝑝)𝛷𝑛 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝

2𝑝 1−𝜂 1+ 4 𝜂 −1 ∝+1 ≤ 𝛽(2.16) Where Φn ϱ, τ, ξ, m, p is

given by (1.11) Proof: To prove the coefficient estimates (2.16) we

use the method ofClunie and Koegh [4].Let𝑓 ∈ ∑𝜚𝜏𝜍𝜉𝑚𝑝 ∝ ,𝛽,𝜂.We

have

𝑧 𝐷 𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 ′

𝐷 𝜚𝜍𝜏𝜉𝑝𝑚 𝑓 𝑧 +2𝑝 1−𝜂

𝑧 𝐷 𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 ′

𝐷 𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 +2𝑝 1−𝜂 4 1−𝜂 ∝−1

= 𝑧𝑤 𝑧 where w is

analytic in U and 𝑤 𝑧 ≤ 𝛽for z ∈ U. Then𝑧 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧

+ 𝑝𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 =

𝑧𝑤 𝑧 𝑧 𝐷𝜚𝜏 𝜍𝜉𝑝 𝑚 𝑓 𝑧

+2𝑝 1 − 𝜂 4 1 − 𝜂 ∝ −1 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 .

(2.17)𝑧𝑤 𝑧 = ∑∞𝑘=1𝑤𝑘𝑧𝑘,making use of (1.10) and (2.17), we obtain ∑∞𝑘=1−𝑝 𝑘 + 𝑝 𝛷𝑘 𝜚, 𝜏, 𝜍, 𝜉, 𝑚, 𝑝 𝑎𝑘𝑧𝑘+𝑝 =

−𝑝 1+ 4 𝜂 −1 ∝+1 1

∑∞𝑘=1−𝑝 𝑘+𝑝 4 1−𝜂 ∝−1 𝛷 𝑘 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝 𝑎𝑘𝑧𝑘+𝑝

∑∞𝑘=1𝑤𝑘𝑧𝑘. (2.18)

Equating the coefficients in (2.18), we have𝑛𝛷𝑛−𝑝 𝜚, 𝜏, 𝜍, 𝜉, 𝑚, 𝑝 𝑎𝑛−𝑝

= −2𝑝 1 − 𝜂 1 + 4 𝜂 − 1 ∝ +1 𝑤𝑛,

for n = 1,2And𝑛𝛷𝑛−𝑝 𝜚, 𝜏, 𝜍, 𝜉, 𝑚, 𝑝 𝑎𝑛 −𝑝= −2𝑝 1 − 𝜂 1 + 4 𝜂 − 1 ∝ +1 𝑤𝑛+ ∑ 𝑘 +

𝑛−1−𝑝 𝑘=1−𝑝

2𝑝1−𝜂21−𝜂∝−1𝛷𝑘𝑎𝑘𝑤𝑛−𝑝−𝑘 (2.19)forn ≥ 3.

From (2.19), we

obtain −4𝑝 1 − 𝜂 1 − 𝛼 +

𝑘 + 2𝑝 1 − 𝜂 4 1 − 𝜂 ∝ −1 𝛷𝑘 𝑎𝑘𝑧𝑘+𝑝 𝑛−1−𝑝

𝑘=1−𝑝

× ∑∞𝑘=1𝑤𝑘𝑧𝑘 = ∑ 𝑘 + 𝑝 𝛷𝑘 𝜚, 𝜏, 𝜍, 𝜉, 𝑚, 𝑝 𝑎𝑘𝑧𝑘+𝑝 𝑛−𝑝

𝑘=1−𝑝 +

∑𝑛−1−𝑝𝑘=1−𝑝𝑐𝑘𝑧𝑘+𝑝 (2.20)It is known that, if 𝑕 𝑧 = ∑𝑛−1−𝑝𝑘=1−𝑝𝑕𝑛𝑧𝑛 is analytic in U, then for 0 < 𝑟 <

1 ∑∞𝑛=0 𝑕𝑛 2𝑟2𝑛 = 1

2𝜋∫ 𝑕 𝑟𝑒

𝑖𝑖𝜃 2𝑑𝜃. 2𝜋

0 (2.21) Since ∑∞𝑘=1𝑤𝑘𝑧𝑘 < 𝛽 𝑧 < 𝛽, Making use of (2.20) and (2.21), we

have∑𝑛 −𝑝𝑘=1−𝑝 𝑘 +

2𝑝1−𝜂2𝛷𝑘𝜚,𝜏,𝜍,𝜉,𝑚,𝑝2𝑎𝑘2𝑟2𝑘+𝑝 + ∑∞ 𝑐𝑘 2𝑟2 𝑘+𝑝

𝑘=𝑛 +1−𝑝 ≤

𝛽2×

𝑝2 1 + 4 𝜂 − 1 ∝ +1 2+

∑ 𝑘 + 2𝑝 1 − 𝜂 4 1 − 𝜂 ∝ −1 2

× 𝛷𝑘 𝜚, 𝜏, 𝜍, 𝜉, 𝑚, 𝑝 2

𝑎𝑘 2𝑟2 𝑘+𝑝 𝑛−1−𝑝

𝑘=1−𝑝

.

Letting 𝑟 → 1, we obtain ∑ 𝑘 + 2𝑝 1 − 𝜂 2 𝛷

𝑘 𝜚, 𝜏, 𝜍, 𝜉, 𝑚, 𝑝 2

𝑎𝑘 2 𝑛−1−𝑝

𝑘=1−𝑝 ≤

4 1 − 𝜂 2𝑝2𝛽2 1 + 4 𝜂 − 1 ∝ +1 2+ ∑𝑛−1−𝑝 𝑘 + 𝑘=1−𝑝 2𝑝 1 − 𝜂 4 1 − 𝜂 ∝ −1 2 𝛷

𝑘 𝜚, 𝜏, 𝜍, 𝜉, 𝑚, 𝑝 2

𝑎𝑘 2.The above inequality implies𝑛2𝛷

𝑛−𝑝 𝜚, 𝜏, 𝜍, 𝜉, 𝑚, 𝑝 2 𝑎𝑛−𝑝 2

≤ 4 1 − 𝜂 2𝑝2𝛽2 1 + 4 𝜂 − 1 ∝ +1 2+ ∑𝑛−1−𝑝 𝑘 +

𝑘=1−𝑝 2𝑝 1 − 𝜂 2 𝛷

𝑘 𝜚, 𝜏, 𝜍, 𝜉, 𝑚, 𝑝 2

𝑎𝑘 2Finally, replacing n −

p by n, we have 𝑎𝑛 ≤

4𝑝 1−𝜂 𝛽 1+ 4 𝜂 −1 ∝+1 2

(𝑛+2𝑝 1−𝜂 )𝛷𝑘 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝 , Where,

0 < 𝜚 ≤1

2, 0 ≤ 𝜉 < 1, 𝜏 ≥ 1, 0 ≤ 𝜍 ≤ 1,

0 ≤ 𝜂 < 1, 0 ≤∝< 1, 0 < 𝛽 ≤ 1 𝑎𝑛𝑑 𝑚 ∈ 𝑁 .Thus, the proof of our theorem is completed.Theorem 2.6 enables us to

obtain a distortion result for the class∑𝜚𝜏𝜍𝜉𝑚𝑝(∝, 𝛽, 𝜂). Corollary 2.1: If 𝑓 ∈ ∑𝜚𝜏𝜍𝜉𝑚𝑝 ∝, 𝛽, 𝜂 is given by (1.6), then

for0 < 𝑧 = 𝑟 < 1 𝑓 𝑧 ≤ 1

𝑟𝑝+ 𝑝𝛽 1 + 4 𝜂 − 1 ∝ +1

× 𝑟1−𝑝 1

𝑘 + 𝑝 𝛷𝑘 𝜚, 𝜏𝜍, 𝜉, 𝑚, 𝑝 . ∞

𝑘=1−𝑝

𝑓 𝑧

≥ 1

𝑟𝑝+ 2𝑝 1 − 𝜂 𝛽 1 + 4 𝜂 − 1 ∝ +1

× 𝑟1−𝑝 1

(𝑘+2𝑝 1−𝜂 )𝛷𝑘 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝 ∞

𝑘=1−𝑝 .And 𝑓′ 𝑧 ≥

2𝑝 1−𝜂

𝑟𝑝+1 − 2𝑝 1 − 𝜂 𝛽 1 + 4 𝜂 − 1 ∝ +1 ×

𝑟2−𝑝∑ 1

𝑘+2𝑝 1−𝜂 𝛷𝑘 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝 ∞

𝑘=1−𝑝 . 𝑓′ 𝑧 ≤

2𝑝 1−𝜂 𝑟𝑝 +1 + 4𝑝 1 − 𝜂 2𝛽 1 + 4 𝜂 − 1 ∝ +1 ×

𝑟2−𝑝 1

(𝑘+2𝑝 1−𝜂 )𝛷𝑘 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝 ∞

𝑘=1−𝑝 .In the sequence we give a sufficient condition for a function tobelong to the class∑𝜚𝜏𝜍𝜉𝑚𝑝(∝, 𝛽, 𝜂).

Theorem 2.7 Let 𝑓 ∈ ∑𝑝be given by (1.6). If for 0 ≤ 𝛼 < 1and0 < 𝛽 ≤ 1 ∑∞ 𝑘 𝛽 + 1 + 2𝑝 1 − 𝜂 1 +

𝑘=1−𝑝

𝛽41−𝜂∝−1×𝛷𝑘𝜚,𝜏,𝜉,𝑚,𝑝𝑎𝑘≤𝑝1−𝜂𝛽1+4𝜂−1∝+1(2.22)𝑓∈

∑𝜚𝜏𝜍𝜉𝑚𝑝 ∝,𝛽,𝜂).

Proof: Assume that𝑓 𝑧 = 𝑧−𝑝 + ∑ 𝑎 𝑘𝑧𝑘 ∞

𝑘=1−𝑝 . We have𝑀 = 𝑧 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 + 2𝑝 1 − 𝜂 𝐷

𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 −

𝛽 𝑧 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 ′+ 2𝑝 1 − 𝜂 4 1 − 𝜂 ∝ −1 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 = ∑∞𝑘=1−𝑝 𝑘 + 2𝑝 1 − 𝜂 𝛷𝑘 𝜚, 𝜏, 𝜍, 𝜉, 𝑚, 𝑝 𝑎𝑘𝑧𝑘 −

𝛽 −2𝑝 1−𝜂 1+ 4 𝜂 −1 ∝+1

𝑧𝑝 + ∑ 𝑘 + 2𝑝 1 − ∞

𝑘=1−𝑝

𝜂41−𝜂∝−1𝛷𝑘𝜚,𝜏,𝜍,𝜉,𝑚,𝑝𝑎𝑘𝑧𝑘 For0 < 𝑧 = 𝑟 < 1, we obtain𝑟𝑝𝑀 ≤ ∑ 𝑘 +

𝑘=1−𝑝 𝑝𝛷𝑘𝜚,𝜏,𝜍,𝜉,𝑚,𝑝𝑎𝑘𝑟𝑘+𝑝–

𝛽 2𝑝 𝜂 − 1 4 𝜂 − 1 ∝ +1 + 1

− ∑∞𝑘=1−𝑝 𝑘 + 2𝑝 1 − 𝜂 4 1 − 𝜂 ∝ −1 𝛷𝑘𝑎𝑘𝑟𝑘 +𝑝 . Or

𝑟𝑝𝑀

≤ ∑∞ k β + 1 + 2p 1 − η 1 + β 4 1 − η ∝ −1

k=1−p ×

Φkakrk+p−2p1−ηβ1+4η−1∝+1.Since the above inequality holds for all 𝑟 0 < 𝑟 < 1 , letting r → 1,we have𝑀 ≤ ∑ 𝑘 𝛽 + 1 + 2𝑝 1 − 𝜂

× 1 + 𝛽 4 1 − 𝜂 ∝ −1 ∞

𝑘=1−𝑝 × 𝛷𝑘 𝑎𝑘 −

2𝑝 1 − 𝜂 𝛽 1 + 4 𝜂 − 1 ∝ +1 .Making use of (2.22), we

obtain M ≤ 0,that is 𝑧 𝐷𝜚𝜏𝜍𝜉 𝑝𝑚 𝑓 𝑧 ′

𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 + 2𝑝 1 − 𝜂

< 𝛽 𝑧 𝐷𝜚𝜏𝜍𝜉𝑝 𝑚 𝑓 𝑧

𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 + 2𝑝 1 − 𝜂 4 1 − 𝜂 ∝

−1.Consequently,𝑓∈∑𝜚𝜏𝜍𝜉𝑚𝑝 ∝,𝛽,𝜂).Where, 0 < 𝜚 ≤1

2, 0 ≤ 𝜉 < 1, 𝜏 ≥ 1, 0 ≤ 𝜍 ≤ 1, 0 ≤ 𝜂 < 1, 0 ≤∝< 1, 0 < 𝛽 ≤ 1 𝑎𝑛𝑑 𝑚 ∈ 𝑁 .

3

Properties of the class∑+ ∝, 𝛽, 𝜂 𝜚𝜏𝜍𝜉𝑚𝑝

(5)

ISSN 2250-3153

www.ijsrp.org Theorem 3.1 Let𝑓 ∈ ∑𝑝+. Then f belongs to the class

∑+ ∝, 𝛽, 𝜂

𝜚𝜏𝜍𝜉𝑚𝑝 if and only if∑∞𝑘=1−𝑝 𝑘 𝛽 + 1 +

2𝑝1−𝜂1+𝛽21−𝜂∝−1×𝛷𝑘𝜚,𝜏,𝜍,𝜉,𝑚,𝑝𝑎𝑘≤2𝑝1−𝜂𝛽1+4𝜂−1 ∝+1.

Proof: In view of Theorem 2.7, we have to prove “only if” part. Assume that 𝑓 𝑧 = 𝑧−𝑝+ ∑ 𝑎

𝑘𝑧𝑘 ∞

𝑘=1−𝑝 𝑎𝑘≥ 0, 𝑝∈𝑁is in the

class∑+ ∝, 𝛽, 𝜂 𝜚𝜏𝜍𝜉𝑚𝑝 .Then

𝑧 𝐷 𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 ′

𝐷 𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 +2𝑝 1−𝜂

𝑧 𝐷 𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 ′

𝐷 𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 +2𝑝 1−𝜂 4 1−𝜂 ∝−1 =

∑∞𝑘=1−𝑝 𝑘+2𝑝 1−𝜂 𝛷𝑘 𝜚,𝜏,𝜍,𝜉 ,𝑚 ,𝑝 𝑎𝑘𝑟𝑘+𝑝 2𝑝 1−𝜂 1+ 4 𝜂 −1 ∝+1

𝑧𝑝 −∑ 𝑘+2𝑝 1−𝜂 4 1−𝜂 ∝−1 𝛷𝑘𝑎𝑘𝑧𝑘 ∞

𝑘=1−𝑝

< 𝛽for all z ∈ U. Since Re z ≤ z for all z, it follows that

Re ∑ k+2p 1−η Φk ϱ,τ,ς,ξ,m,p akr k +p ∞

k =1−p 2p 1−η 1+ 4 η −1 ∝+1

z p −∑ k+2p 1−η 4 1−η ∝−1 Φkakzk ∞

k =1−p

<

𝛽. (3.1)We choose the values of z on the real axis such

that 1 2𝑝 1−𝜂 ∙

𝑧 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 ′

𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 is real. Upon clearing the

denominator in (3.1) and letting z → 1through positive values, we obtain∑∞𝑘=1−𝑝 𝑘 + 2𝑝 1 − 𝜂 𝛷𝑘 𝜚, 𝜏, 𝜍, 𝜉, 𝑚, 𝑝 𝑎𝑘 ≤ 2𝑝 1 − 𝜂 𝛽 1 + 4 𝜂 − 1 ∝ +1 − ∑∞𝑘=1−𝑝𝛽 𝑘 +

2𝑝1−𝜂41−𝜂∝−1𝛷𝑘𝜚,𝜏,𝜍,𝜉,𝑚,𝑝𝑎𝑘 Or

∑∞ 𝑘 𝛽 + 1 + 2𝑝 1 − 𝜂 1 + 𝛽 4 1 − 𝜂 ∝ 𝑘=1−𝑝

−1)𝛷𝑘𝜚,𝜏,𝜍,𝜉,𝑚,𝑝𝑎𝑘≤𝑝𝛽1+4𝜂−1∝+1. Where,

0 < 𝜚 ≤1

2, 0 ≤ 𝜉 < 1, 𝜏 ≥ 1, 0 ≤ 𝜍 ≤ 1,

0 ≤ 𝜂 < 1, 0 ≤∝< 1, 0 < 𝛽 ≤ 1 𝑎𝑛𝑑 𝑚 ∈ 𝑁 .Hence, the result follows.

Corollary 3.1: Iff ∈ ∑p+ given by (1.7) is in the class ∑+𝜚𝜏𝜍𝜉𝑚𝑝(∝, 𝛽, 𝜂)thenan≤

2p 1−η β 1+ 4 η−1 ∝+1

n β+1 +2p 1−η 1+β 4 1−η ∝−1 Φk ϱ,τ,ς,ξ,m,p , n ≥ 1 − 2p 1 − η . (3.2)with equality for the functions of the

form𝑓𝑛 𝑧 = 1

𝑧𝑝−

2𝑝 1−𝜂 𝛽 1+ 4 𝜂 −1 ∝+1

𝑛 𝛽 +1 +2𝑝 1−𝜂 1+𝛽 4 1−𝜂 ∝−1 𝛷𝑘 𝜚 ,𝜏,𝜍,𝜉 ,𝑚 ,𝑝 𝑧

𝑛Coefficient

estimates obtained in Corollary 3.1 enables us to givea distortion result for the class∑+𝜚𝜏𝜍𝜉𝑚𝑝(∝, 𝛽, 𝜂).

Theorem 3.2 If 𝑓 ∈ ∑+ ∝, 𝛽, 𝜂 ,

𝜚𝜏𝜍𝜉𝑚𝑝 then for 0 < |𝑧| = 𝑟 < 1 𝑓(𝑧) ≥

1 𝑧𝑝−

2𝑝 1−𝜂 𝛽 1+ 4 𝜂 −1 ∝+1

𝛽 1−2𝑝 1−𝜂 + 4 1−𝜂 ∝−1 2𝑝 1−𝜂 +1 𝛷1−𝑝 𝜚 ,𝜏,𝜍,𝜉,𝑚 ,𝑝 𝑟 1−𝑝And

𝑓(𝑧) ≥ 1 𝑧𝑝+

2𝑝 1−𝜂 𝛽 1+ 4 𝜂 −1 ∝+1

𝛽 1−2𝑝 1−𝜂 + 4 1−𝜂 ∝−1 2𝑝 1−𝜂 +1 𝛷1−𝑝 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝 𝑟 1−𝑝

where equality holds for the function𝑓𝑝 𝑧 = 1 𝑧𝑝+ 2𝑝 1−𝜂 𝛽 1+ 4 𝜂 −1 ∝+1

𝛽 1−2𝑝 1−𝜂 + 4 1−𝜂 ∝−1 2𝑝 1−𝜂 +1 𝛷1−𝑝 𝜚 ,𝜏,𝜍,𝜉,𝑚 ,𝑝 𝑧 1−𝑝at

𝑧 = 𝑖𝑟, 𝑟.

Proof: Suppose 𝑓 ∈ ∑+ ∝, 𝛽, 𝜂 ,

𝜚𝜏𝜍𝜉𝑚𝑝 Making use of inequality∑∞𝑘=1−𝑝𝑎𝑘 ≤

2𝑝 1−𝜂 𝛽 1+ 4 𝜂 −1 ∝+1

𝛽 1−2𝑝 1−𝜂 + 4 1−𝜂 ∝−1 2𝑝 1−𝜂 +1 𝛷1−𝑝 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝

(3.3) which follows easily from Theorem 3.1, the proof is trivial.Now, we prove that the class∑+ ∝

ϱτςξ mp , β, η is closed under convolution.

Theorem 3.3 Let 𝑕 𝑧 = 𝑧−𝑝 + ∑ 𝑐 𝑘𝑧𝑘 ∞

𝑘=1−𝑝 be analytic in 𝑈∗ and0 ≤ 𝑐𝑘 ≤ 1. If f given by (1.7) is in the class ∑+ϱτςξ mp ∝ ,β,η then f ∗ his also in the class𝜚𝜏𝜍𝜉𝑚𝑝+∝,𝛽,𝜂.

Proof: Sincef ∈ ∑+ ∝, β, η ,

ϱτξmp then by Theorem 3.1, we have∑∞ 𝑘 𝛽 + 1 +

𝑘=1−𝑝

2𝑝1−𝜂1+𝛽41−𝜂∝−1𝛷𝑘𝜚,𝜏,𝜍,𝜉,𝑚,𝑝𝑎𝑘≤2𝑝1−𝜂𝛽1+4𝜂−1∝ +1.In view of the above inequality and the fact

that 𝑓 ∗ 𝑕 𝑧 = 𝑧−𝑝+ ∑ 𝑎 𝑘𝑐𝑘𝑧𝑘 ∞

𝑘=1−𝑝 we

obtain∑∞ 𝑘 𝛽 + 1 + 2𝑝 1 − 𝜂 1 + 𝛽 4 1 − 𝜂 ∝ 𝑘=1−𝑝

−1𝛷𝑘𝜚,𝜏,𝜍,𝜉,𝑚,𝑝𝑎𝑘𝑐𝑘≤𝑘=1−𝑝∞𝑘𝛽+1+2𝑝1−𝜂1+𝛽41−𝜂∝

−1𝛷𝑘𝜚,𝜏,𝜍,𝜉,𝑚,𝑝𝑎𝑘≤2𝑝1−𝜂𝛽1+4𝜂−1∝+1.Therefore, by

Theorem 3.1, the result follows.The next result involves an integral operator which was investigatedin many papers [2], [6], [20].

Theorem 3.4 If 𝑓 ∈ ∑+ ∝, 𝛽, 𝜂 ,

𝜚𝜏𝜍𝜉𝑚𝑝 then the integral operator

𝐹𝑐,𝑝 𝑧 = 𝑐 𝑧𝑝 +𝑐∫ 𝑡

𝑐+2𝑝 1−𝜂 +1 𝑧

0 𝑓(𝑡)𝑑𝑡 , 𝑐 > 0. It is also in the class∑+ ∝, 𝛽, 𝜂 .

𝜚𝜏𝜍𝜉𝑚𝑝 Proof: It is easy to check that

𝐹𝑐,𝑝 𝑧 = 𝑓 𝑧 ∗ 𝑧−𝑝+

𝑐

𝑐 + 2𝑝 1 − 𝜂 + 𝑘𝑧 𝑘 ∞

𝑘=1−𝑝

.

Since 0 < 𝑐

𝑐+2𝑝 1−𝜂 +𝑘≤ 1,by Theorem 3.3, the proof is

trivial.Where, 0 < 𝜚 ≤1

2, 0 ≤ 𝜉 < 1, 0 ≤ 𝜍 ≤ 1, 𝜏 ≥ 1, 0 ≤ 𝜂 < 1, 0 ≤∝< 1, 0 < 𝛽 ≤ 1 𝑎𝑛𝑑 𝑚 ∈ 𝑁 . 4 Neighborhoods and partial sums

Following earlier investigations on the familiar concept of neighborhoodsof analytic functions by Goodman [7], Ruschweyh [17] and morerecently by Liu and Srivastava [9], [10], Liu [11], Altinta¸s et al. [1],Orhan and Kamali [14], Srivastava and Orhan [19], Orhan [15], Denizand Orhan [5] and Aouf [3], we define the (n, δ)− neighborhood of afunction 𝑓 ∈ ∑𝑝of the form (1.6) as follows.

Definition 4.1 For 𝛿 = 2 𝜏−𝜉 2+1

𝜚 𝜏−𝜉 (1−𝜚2) 1+2 𝜏−𝜉 2+1

𝜚 𝜏−𝜉 (1−𝜚2)

> 0 and

nonegative sequence S = sk k=1−p∞ Where 𝑠𝑘= 𝛽 1−2𝑝 1−𝜂 + 4 1−𝜂 ∝−1 2𝑝 1−𝜂 +1 𝛷1−𝑝 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝

2𝑝 1−𝜂 𝛽 1+ 4 𝜂 −1 ∝+1

(4.1) 𝑘 ≥ 1 − 𝑝, 𝑝 ∈ 𝑁, 0 ≤ 𝛼 < 1, 0<𝛽≤1.The (𝑛, 𝛿 −neighborhood of a function 𝑓∈∑𝑝 of the form (1.6) isdefined

by𝑁𝛿 𝑓 =

𝑔 ∈ ∑𝑝: 𝑔 𝑧 = 𝑧−𝑝+ ∑∞𝑘=1−𝑝 𝑏𝑘𝑧𝑘 𝑎𝑛𝑑 ∑∞𝑘=1−𝑝𝑠𝑘 𝑏𝑘− 𝑎𝑘 ≤ 𝛿

.

(6)

ISSN 2250-3153

www.ijsrp.org Theorem 4.1 Let 𝑓 ∈ ∑𝜚𝜏𝜍𝜉𝑚𝑝(∝, 𝛽, 𝜂) be given by (1.6). If f

satisfies 𝑓 𝑧 + 𝜀𝑧𝑝 (1 + 𝜀)−1∈ ∑

𝜚𝜏𝜍𝜉𝑚𝑝(∝, 𝛽, 𝜂) (4.3)(𝜀 ∈ 𝐶, 𝜀 < 𝛿, 𝛿 ≥ 0)

then𝑁𝛿 𝑓 ⊂ ∑𝜚𝜏𝜍𝜉𝑚𝑝(∝, 𝛽, 𝜂) (4.4)

Proof: It is not difficult to see that a function𝑓 ∈ ∑𝜚𝜏𝜍𝜉𝑚𝑝(∝ , 𝛽, 𝜂)if and only

if 𝑧 𝐷𝜚𝜏𝜍𝜉𝑝

𝑚 𝑓 𝑧 +2𝑝 1−𝜂 𝐷 𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧

𝛽𝑧 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 ′+𝛽 4 1−𝜂 ∝−1 2𝑝 1−𝜂 𝐷𝜚𝜏𝜍𝜉𝑝𝑚 𝑓 𝑧 ≠ 𝜎(4.5) (𝑧 ∈ 𝑈, σ ∈ C, σ = 1) which is equivalent to 𝑓∗𝑕 (𝑧)

𝑧−𝑝 ≠ 0 𝑧 ∈ 𝑈 . (4.6)Where for convenience,𝑕 𝑧 = 𝑧−𝑝+ ∑∞𝑘=1−𝑝 𝑐𝑘𝑧𝑘= 𝑧−𝑝+ ∑∞

𝑘=1−𝑝

𝛽𝜎 𝑘+ 4 1−𝜂 ∝−1 2𝑝 1−𝜂 −(𝑘+2𝑝 1−𝜂 ) 𝛷𝑘 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝 2𝑝 1−𝜂 𝛽 1+ 4 𝜂 −1 ∝+1 𝜎 𝑧

𝑘

(4.7)From (4.7) it follows that 𝑐𝑘 =

𝛽𝜎 𝑘+ 4 1−𝜂 ∝−1 2𝑝 1−𝜂 −(𝑘+2𝑝 1−𝜂 ) 𝛷𝑘 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝 2𝑝 1−𝜂 𝛽 1+ 4 𝜂−1 ∝+1 𝜎 ≤ 𝛽𝜎 𝑘+ 4 1−𝜂 ∝−1 2𝑝 1−𝜂 +(𝑘+2𝑝 1−𝜂 ) 𝛷𝑘 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝

2𝑝 1−𝜂 𝛽 1+ 4 𝜂 −1 ∝+1 𝜎 𝑘 ≥ 1 − 𝑝,

𝑝∈𝑁. (4.8)Furthermore, under the hypotheses

(4.3), using (4.6) we obtain thefollowing

assertions: 𝑓 𝑧 +𝜀𝑧𝑝 (1+𝜀)−1∗𝑕(𝑧) 𝑧−𝑝 ≠ 0.Or

𝑓∗𝑕 (𝑧) 𝑧−𝑝 ≠ 𝜀 𝑧 ∈ 𝑈 .which is equivalent 𝑓∗𝑕 (𝑧)

𝑧−𝑝 ≥ 𝛿(4.9)Now, if we let𝑔 𝑧 = 𝑧−𝑝+ ∑

𝑘=1−𝑝 𝑏𝑘𝑧𝑘∈ 𝑁𝛿 𝑓 ,then we have 𝑓 𝑧 −𝑔(𝑧) ∗(𝑧)

𝑧−𝑝 = ∑ ( ∞

𝑘=1−𝑝 𝑎𝑘− 𝑏𝑘)𝑧𝑝+𝑘 ≤ ∑ 𝛽 𝑘+ 4 1−𝜂 ∝−1 2𝑝 1−𝜂 +(𝑘+2𝑝 1−𝜂 ) 𝛷𝑘 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝

2𝑝 1−𝜂 𝛽 1+ 4 𝜂 −1 ∝+1 ∞

𝑘=1−𝑝 𝑎𝑘−

𝑏𝑘𝑧𝑘+𝑝<𝛿𝑧∈𝑈, 𝑘≥1−𝑝, 𝑝∈𝑁, 𝛿>0. Where,

0 < 𝜚 ≤1

2, 0 ≤ 𝜉 < 1,0 ≤ 𝜍 ≤ 1

, 𝜏 ≥ 1, 0 ≤ 𝜂 < 1, 0 ≤∝< 1, 0 < 𝛽 ≤ 1 𝑎𝑛𝑑 𝑚 ∈ 𝑁 .Thus, for any complex number σ with |σ| = 1, we have 𝑔∗𝑕 (𝑧)

𝑧−𝑝 ≠ 0 (𝑧 ∈ 𝑈)which implies𝑔 ∈ ∑𝜚𝜏𝜍𝜉𝑚𝑝(∝, 𝛽, 𝜂). The proof of the theorem is completed.In the sequence we give the definition of (𝑛, 𝛿) −neighborhood of afunction 𝑓 ∈ ∑𝑝+ of the form (1.7).

Definition 4.2 For δ > 0 and a non-negative sequence𝑆 = 𝑠𝑘 𝑘=1−𝑝∞ where𝑠𝑘 =

𝑘 𝛽 +1 +2𝑝 1−𝜂 1+𝛽 4 1−𝜂 ∝−1 𝛷𝑘 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝

2𝑝 1−𝜂 𝛽 1+ 4 𝜂−1 ∝+1 𝑘 ≥ 1 − 𝑝, 𝑝 ∈ 𝑁, 0≤∝<1, 0<𝛽≤1The (𝑛, 𝛿 −neighborhood of a function f ∈ ∑p+ of the form (1.7) isdefined

by𝑁𝛿 𝑓 =

𝑔 ∈ ∑𝑝+: 𝑔 𝑧 = 𝑧−𝑝+ ∑∞𝑘=1−𝑝 𝑏𝑘𝑧𝑘 𝑎𝑛𝑑 ∑∞𝑘=1−𝑝𝑠𝑘 𝑏𝑘− 𝑎𝑘 ≤ 𝛿

(4.10)We have the

following result on (𝑛, 𝛿) −neighborhood of the class∑+ α, β, η .

ϱτςξ mp

Theorem 4.2 If the function f given by (1.7) is in the class ∑+ 𝛼, 𝛽, 𝜂 ,

𝜚𝜏𝜍𝜉𝑚𝑝 Then𝑁𝛿(𝑓) ⊂ ∑+𝜚𝜏𝜍𝜉𝑚𝑝 𝛼, 𝛽, 𝜂 ,

(4.11)Where𝛿 = 2 𝜏−𝜉 𝜏−𝜍 +

𝜏−𝜉 −𝜚 2(𝜏−𝜍 ) 𝜚 1+2 𝜏−𝜉 𝜏−𝜍 + 𝜏−𝜉 −𝜚 2(𝜏−𝜍 )

𝜚

.

The result is the best possible in the sense that δ cannot be increased.

Proof: For a function f ∈ ∑+ α, β, η

ϱτςξ mp of the form (1.7), Theorem 3.1immediately

yields

∑ 𝑘 𝛽 +1 +2𝑝 1−𝜂 1+𝛽 4 1−𝜂 ∝−1 𝛷𝑘 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝 2𝑝 1−𝜂 𝛽 1+ 4 𝜂 −1 ∝+1 𝑎𝑘 ∞

𝑘=1−𝑝 ≤

1

𝛷1−𝑝 𝜚,𝜏,𝜍,𝜉,1,𝑝 (4.12) Let 𝑔 𝑧 = 𝑧−𝑝+ ∑

𝑘=1−𝑝 𝑏𝑘𝑧𝑘∈ 𝑁𝛿 𝑓

with

𝛿 = 2 𝜏−𝜉 𝜏−𝜍 +

𝜏−𝜉 −𝜚 2(𝜏−𝜍 ) 𝜚 1+2 𝜏−𝜉 𝜏−𝜍 + 𝜏−𝜉 −𝜚 2(𝜏−𝜍 )

𝜚

> 0.From the condition (4.10)

we find that∑∞𝑘=1−𝑝𝑠𝑘 𝑏𝑘− 𝑎𝑘 ≤ 𝛿 (4.13)Using (4.12) and (4.13), we

obtain∑∞𝑘=1−𝑝𝑠𝑘𝑏𝑘≤ ∑∞𝑘=1−𝑝𝑠𝑘𝑎𝑘+ ∑∞𝑘=1−𝑝𝑠𝑘 𝑏𝑘− 𝑎𝑘 ≤ 1

𝛷1−𝑝 𝜚,𝜏,𝜍,𝜉,1,𝑝 + 𝛿 = 1Thus, in view of Theorem 3.1, we get 𝑔 ∈ ∑+ 𝛼, 𝛽, 𝜂

𝜚𝜏𝜍𝜉𝑚𝑝 .To prove the sharpness of the assertion of the theorem, we considerthe functions f ∈ ∑+ α, β, η

ϱτςξ mp and f ∈ ∑p+given

by𝑓 𝑧 =

𝑧−𝑝+ 2𝑝 1−𝜂 𝛽 1+ 4 𝜂 −1 ∝+1

𝛽 1−2𝑝 1−𝜂 + 4 1−𝜂 ∝−1 2𝑝 1−𝜂 +1 𝛷1−𝑝 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝 𝑧 1−𝑝

(4.14)And𝑓 𝑧 = 𝑧−𝑝+

2𝑝 1−𝜂 𝛽 1+ 4 𝜂 −1 ∝+1

𝛽 1−2𝑝 1−𝜂 + 4 1−𝜂 ∝−1 2𝑝 1−𝜂 +1 𝛷1−𝑝 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝

+ 2𝑝 1−𝜂 𝛽 1+ 4 𝜂 −1 ∝+1

𝛽 1−2𝑝 1−𝜂 + 4 1−𝜂 ∝−1 2𝑝 1−𝜂 +1 𝛷1−𝑝 𝜚,𝜏,𝜍,𝜉 ,𝑚 ,𝑝 𝑧1−𝑝

(4.15)Where, 0 < 𝜚 ≤1

2, 0 ≤ 𝜍 ≤ 1, 0 ≤ 𝜉 < 1, 𝜏 ≥ 1,

0 ≤ 𝜂 < 1, 0 ≤∝< 1, 0 < 𝛽 ≤ 1 𝑎𝑛𝑑 𝑚 ∈ 𝑁 .Hence the function 𝑔 ∈ 𝑁𝛿(𝑓)but according to Theorem 3.1,𝑔 ∈ ∑+ 𝛼, 𝛽, 𝜂

𝜚𝜏𝜍𝜉𝑚𝑝 .Consequently, the proof of our theorem iscompleted.Next, we investigate the ratio of real parts of functions of the form(1.6) and their sequences of partial sums defined

by𝑘𝑚(𝑧) =

𝑧−𝑝, 𝑚 = 1,2,∙∙∙∙, −𝑝 𝑧−𝑝+ ∑𝑚 −1

𝑘 =1−𝑝 𝑎𝑘𝑧𝑘 𝑚 = 1 − 𝑝, 2 − 𝑝,∙∙∙∙ (4.16)We also determine sharp lower bounds for 𝑅𝑒 𝑓(𝑧)

𝑘𝑚(𝑧) and 𝑅𝑒 𝑘𝑚(𝑧)

𝑓(𝑧) .

Theorem 4.3 Let 𝑓 ∈ ∑𝑝 be given by (1.6) and let𝑘𝑚(𝑧) be given by(4.16). Suppose that∑∞

𝑘=1−𝑝 𝜃𝑘 𝑎𝑘 ≤ 1 (4.17)Where𝜃𝑘 =

𝑘 𝛽 +1 +2𝑝 1−𝜂 1+𝛽 4 1−𝜂 ∝−1 𝛷𝑘 𝜚,𝜏,𝜍,𝜉,𝑚 ,𝑝

2𝑝 1−𝜂 𝛽 1+ 4 𝜂−1 ∝+1 Then, for 𝑚 ≥ 1 − 𝑝, we have𝑅𝑒 𝑓(𝑧)

𝑘𝑚(𝑧) > 1 − 1 𝜃𝑚 (4.18)And𝑅𝑒 𝑘𝑚(𝑧)

𝑓(𝑧) > 𝜃𝑚 1+𝜃𝑚

(4.19)The results are sharp for each m ≥ 1 − p with the extremal functiongiven by𝑓 𝑧 = 𝑧−𝑝 1

𝜃𝑚𝑧 𝑚

(4.20)

Proof: Under the hypotheses of the theorem, we can see from (4.17) that𝜃𝑘+1> 𝜃𝑘> 1 𝑘 > 1 − 𝑝 .Therefore, by using hypotheses (4.17) again, we have∑𝑚 −1

(7)

ISSN 2250-3153

www.ijsrp.org 𝜃𝑚∑∞𝑘=𝑚 𝑎𝑘 ≤ ∑∞𝑘=1−𝑝 𝜃𝑘 𝑎𝑘 ≤ 1.

(4.21)Let𝑤 𝑧 = 𝜃𝑚 𝑓 𝑧

𝑘𝑚 𝑧 − 1 − 1 𝜃𝑚 = 1 + 𝜃𝑚∑∞𝑘 =𝑚𝑎𝑘𝑧𝑘+𝑝

1+∑𝑚 −1𝑘=1−𝑝𝑎𝑘𝑧𝑘+𝑝

(4.22)Applying

(4.21) and (4.22), we

find 𝑤 𝑧 −1 𝑤 𝑧 +1 =

𝜃𝑚∑∞𝑘=𝑚𝑎𝑘𝑧𝑘+𝑝 2+2 ∑ 𝑎𝑘𝑧𝑘+𝑝+𝜃

𝑚∑∞𝑘 =𝑚𝑎𝑘𝑧𝑘+𝑝 𝑚 −1

𝑘=1−𝑝

𝜃𝑚∑𝑚 −1𝑘=1−𝑝 𝑎𝑘

2−2 ∑𝑚 −1𝑘=1−𝑝 𝑎𝑘−𝜃𝑚∑𝑚 −1𝑘 =1−𝑝 𝑎𝑘 ≤ 1 𝑧 ∈ 𝑈 (4.23)From above it is clear that Re w z > 0, (z ∈ U).From (4.22), we immediatelyobtain (4.18).To prove that the function f defined by (4.20) gives sharp result,we can see that for 𝑧 → 1 −

𝑓 𝑧 𝑘𝑚 𝑧 = 1 −

1 𝜃𝑚𝑧

𝑚 → 1 − 1

𝜃𝑚which shows that the bound in (4.18) is the best possible.Similarly, if we let𝛷𝑧=

1 + 𝜃𝑚 𝑘𝑚 𝑧

𝑓 𝑧 − 𝜃𝑚 1+𝜃𝑚 = 1 − 1+𝜃𝑚 ∑∞𝑘=𝑚𝑎𝑘𝑧𝑘+𝑝

1+∑∞𝑘=1−𝑝𝑎𝑘𝑧𝑘+𝑝

(4.24)and making use of (4.21), we

find that 𝛷 𝑧 −1 𝛷 𝑧 +1 =

−(1+𝜃𝑚) ∑∞𝑘=𝑚𝑎𝑘𝑧𝑘+𝑝 2+2 ∑ 𝑎𝑘𝑧𝑘+𝑝−(1+𝜃𝑚) ∑ 𝑎

𝑘𝑧𝑘+𝑝 ∞

𝑘 =𝑚 ∞

𝑘=1−𝑝

(1+𝜃𝑚) ∑∞𝑘=𝑚 𝑎𝑘

2−2 ∑∞𝑘=1−𝑝 𝑎𝑘 +(1+𝜃𝑚) ∑∞𝑘=𝑚 𝑎𝑘 ≤ 1

(4.25)

Where, 0 < 𝜚 ≤1

2, 0 ≤ 𝜍 ≤ 1, 0 ≤ 𝜉 < 1, 𝜏 ≥ 1,

0 ≤ 𝜂 < 1,0 ≤∝< 1, 0 < 𝛽 ≤ 1 𝑎𝑛𝑑 𝑚 ∈ 𝑁 .which leads immediately to the assertion (4.19) of the theorem.The bound in (4.19) is sharp for each m ≥ 1−p, with the extremalfunction f given by (4.20). The proof of the theorem is now completed.

REFERENCES

[1] O. Altinta¸s, O. Ozkan, H. M. Srivastava, “Neighbohoods of acertain family of multivalent functions with negative coefficients”,Comput. Math. Appl., 47(2004),1667-1672.

[2] M. K. Aouf, H. M. Hossen, “New criteria for meromorphic p-valentstarlike functions”, Tsukuba J. Math., 17(1993), 481-486.

[3] M. K. Aouf, “Certain subclasses of meromorphically multivalentfunctions associated with generalized hypergeometric function”,Comput. Math. Appl., 55(2008), 494-550.

[4] J. Clunie, F. R. Keogh, “on starlike and Schlitz functions”, J. London.Math. Soc., 35(1960), 229-233.

[5] E. Deniz, H. Orhan, “Some properties of certain subclasses ofanalytic functions with negative coefficients by using generalized Ruscheweyh derivative operator”, Czechoslovak Math. J.,60(3)(2010), 699-713.

[6] Y. Dinggong, “on a class of meromorphic starlike multivalentfunctions”, Bull. Institute Math. Acad. Sinica, 24(1996), 151-157.

[7] A. W. Goodman, “Univalent functions and nonanalytic curve”,Proc. Amer. Math. Soc., 8(1957), 598-601.

[8] G. M. Goluzin, “on the majorization principle in function theory”,Dokl. Akad. Nauk. SSSR, 42(1935), 647-650.21

[9] J. -L. Liu, H. M. Srivastava, “A linear operator and associatedfamilies of meromorphically multivalent functions”, J. Math. AnalAppl., 259(2001), 566-581.

[10] J. L. Liu, H. M. Srivastava, “Classes of meromorphically multivalent functions associated with the generalized hypergeometricfunction”, Math. Comput. Modelling, 39(2004), 21-34.

[11] J. L. Liu, “Properties of some families of meromorphic p-valentfunctions”, Math. Japon, 52(3) (2000), 425-434.

[12] M. L. Mogra, T. R. Reddy, O. P. Juneja, “Meromorphic univalent functions with positive coefficients”, Bull. Austral. Math. Soc.,32(1985), 161-176. [13] Ch. Pommerenke, “Univalent functions”, Vandenhoeck andRuprecht,

Gottingen, 1975.

[14] H. Orhan, M. Kamali, “Neighborhoods of a class of analyticfunctions with negative coefficients”, Acta Math. Acad. Paed.Ny´iregyh´aziensis, 21(2005), 55-61.

[15] H. Orhan, “Neighborhoods of a certain class of p-valent functionswith negative coefficients defined by using a differential operator”,Math. Ineq. Appl., 12(2) (2009), 335-349.

[16] D. Raducanu, H. Orhan, E. Deniz, “on a subclass of meromorphicfunctions defined by a differential operator”, Submitted.

[17] St. Ruscheweyh, “Neighborhoods of univalent functions”, Proc.Amer. Math. Soc., 81(1981), 521-527.

[18] H. M. Srivastava, J. Patel, “Applications of differential subordination to a certain subclasses of meromorphically multivalent functions”, J. Inequal. Pure and Appl. Math., 6(3) Art. 88(2005).

[19] H. M. Srivastava, H. Orhan, “Coefficient inequalities and inclusionrelation for some families of analytic and multivalent functions”,Appl. Math. Letters, 20(2007), 686-691.

[20] B. A. Uralegaddi, C. Somanatha, “New criteria for meromorphicstarlike univalent functions”, Bull. Austral. Math. Soc., 43(1991),137-140.

[21] Halit Orhan, Dorina Raducanu and Erhan Deniz, “Subclasses of meromorphically multivalent functions defined by a differential operator”, arXiv: 1008.4691v1 [math.CV] 2010.

AUTHORS

First Author-Dr. S. M. Khairnar Professor and Head and Dean (R & D), MIT’s Maharashtra Academy of Engineering, Alandi, Pune-412105.

Smkhairnar2007@gmail.com

Second Author- R. A. Sukne Assistant Professor in Mathematics, Dilkap Research Institute of Engineering & Management Studies. Neral, Tal. Karjat, Dist. Raigad.

References

Related documents

As compared to other studies conducted ac- cording to the same methodology, it was demonstrated that tansy aqueous extracts are characteristic for a high deterrent activity in

this end on the matters of rehabilitation, general amnesty and other related is- sues and activities. 1) An agreement as signed between the government and the tribal refugee

As none of the countries of South Asia is party to the international refugee instruments nor have any of them adopted a national refugee law or procedure, the activities of

For normal lattices we look at consequences of normality in terms of properties of their measures and closely allied set functions.For separation and semi-separation of two

The study is crucial in unearthing psychosocial effects faced by War Victims among Freedom Fighters (MAU MAU) Those experiences are of great interest to the

Here, using a combination of experiments and computational modeling, we examine the plausibility of a new hypothesis for this complex process consisting of three phases: (1)

Recommendations designed to overcome other environ- mental barriers could include the promotion and funding of developmental screening tools suited to the time constraints of

Traffic performance measured as mean speed over the whole stretch is lower for the SPECIALIST algorithm compared to the base case, except in the most congested period.. This