• No results found

Fault identification in electrical power distribution system using combined discrete wavelet transform and fuzzy logic

N/A
N/A
Protected

Academic year: 2021

Share "Fault identification in electrical power distribution system using combined discrete wavelet transform and fuzzy logic"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

DepartmentofElectricalEngineering,FacultyofEngineeringandTechnology,JamiaMilliaIslamia,NewDelhi110025,India

Received5October2014;receivedinrevisedform1March2015;accepted4March2015 Availableonline21September2015

Abstract

Inthisproposedworkafuzzylogicbasedalgorithmusingdiscretewavelettransformisdevelopedforidentifyingthevarious faultsintheelectrical distributionsystem foranunbalanceddistributionelectrical powersystem.Thistechniqueiscapableto identifythetendifferenttypesoffaultswithnegligibleeffectofvariationinfaultinceptionangle,loadingandotherparameters ofthepowerdistributionsystem.TheproposedmethodistestedonIEEE13buselectricaldistributionsystemandonanIndian scenarioofdistributionsystem.Thecurrentofrespectivethreephasesisusedasinputsignalforfaultidentificationandtheresults obtainedfromtheproposedmethodaremorethansatisfactory.

©2015TheAuthors.ProductionandhostingbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Faultidentification;Fuzzylogic;Discretewavelettransform;Faultinceptionangle

1. Introduction

Nowadays,distributionsystemscarryalargeamountofpowerascomparedtoearliererabecauseofincreasein per capitalconsumption ofelectricity.Any, change isnot predictedinthe presenttrendinnearfuture anditwill sustainfordecadesatleastinIndiaandinotherdevelopingcountries.So,anydisturbanceinthepowersupplymay leadtodiscontinuationofpowersupplyanddegradationinthepowerquality.Distributionsystemisthemostvital componentintermsofitseffectonreliability,qualityofservice,costofelectricityandaestheticimpactonsociety.In anyindustrializedcountry,thedistributionsystemdeliverselectricityliterallyeverywheretakingpowerfromdifferent generatingstationtotheendusers.Twoforemostthingswhicharerequiredforquickrestorationofthefaultypartare faultlocationandtypeoffault.Similarly,indigitaldistanceprotectionsystemtheappropriateoperationofprotective deviceandaccurateclassificationofthefaultarenecessary(GraingerandStevenson,1994).

Correspondingauthor.Tel.:+919911314742.

E-mailaddresses:majidjamil@hotmail.com(M.Jamil),rajeevdit@rediffmail.com(R.Singh),sanjeev.eck@gmail.com(S.K.Sharma). PeerreviewundertheresponsibilityofElectronicsResearchInstitute(ERI).

http://dx.doi.org/10.1016/j.jesit.2015.03.015

2314-7172/© 2015TheAuthors.Productionand hostingbyElsevierB.V.This isanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Byseeingtheabovementionedbenefitsoffaulttypeidentificationalotofresearchworkiscarriedout(Aggrawal

etal.,1999;Linetal.,2001;Ferreroetal.,1995;WangandKeerthipala,1998;GirgisandJohns,1989;Protopapas

etal.,1991;Togamietal.,1995;Chenetal.,2000;Adu,2002).Previously,alargeamountofresearchworkhasbeen

doneintheelectricaltransmissionsystemastheycarrylargeamountofpowerandanydisturbanceonthetransmission systemwillaffectthewholepowersystem.Nowadays,distributionsystemisalsocarryingalargeamountofpower duetoincreaseinurbanizationandindustrializationindevelopingcountrylikeIndia.Moreovertheuseofunderground cablealsoincreasesthecomplexityinfaultidentification.So,distributionsystemfaulttypeidentificationisbecoming muchmoreimportant.

Although,alargenumberoftechniquesareavailableforfaultidentificationandclassification.Someofthemare baseduponcontinuousmonitoringof(1)Voltage,(2)Current,(3)Impedance,etc.Allthesetechniqueshavetheirown advantagesanddisadvantages(Alanzietal.,2014).

Someintelligenttechniques,(generallyknownasknowledgebasedtechniques)ofthefaultclassificationin trans-missionlinearebaseduponNeuralNetwork(Aggrawaletal.,1999;Linetal.,2001);FuzzyLogicandFuzzyNeural Network(Ferreroetal.,1995;WangandKeerthipala,1998);andknowledgesystembasedapproach(GirgisandJohns,

1989;Protopapasetal.,1991).Allthesetechniquessufferfromamajordrawbackthatapropertrainingisrequiredfor

neuralnetworkandthesearenotsusceptibletohighimpedancefaults.Mostoftheresearchworkhasbeendonefor identifyingthevarioustypesoffaulti.e.whetherthefaultislinetoground,doublelinetoground,doublelinefault orthreephasefault.Recently,thephaseangleclassificationandfuzzylogicbasedschemes(Das,2006)havebeen publishedintheresearchpapers.Amajordrawbackoftheanglebasedmethodisthatitsaccuracyisonlyabout60%. Othertechniquessuchastheunder-impedanceandtorquetechniqueutilizethepositiveandzerosequenceimpedances oftheelectricaltransmissionline.Butthezerosequenceimpedanceofthe transmissionlinecannotbedetermined preciselyandare therefore,suitable fordistance relayswherethereach of the relaysisdefined.Afault recorder, however,isabletomonitoralltransmissionlinesemanatingfromastationandpossiblymostoftheadjoininglines. Furthermore,theunder-impedanceandtorquealgorithmsaresensitivetoclose-infaultswithstrongsourcesbehind them.It ispossiblethatfor suchfaultconditions morethanonemeasuringunit wouldestimateeitherthepositive sequencefaultimpedanceortheeffectiveoperatingtorqueisclosetothedesiredvalue.Thesetechniques,therefore, cannotbereliablydependedupontodeterminethefaultedphasesunderallfaultconditions.

Ananglebasedfaultclassificationapproach(Das,2006)possessesabetterbenefitasthedifferenceofloadcurrent andthefaultcurrent.Moreovertheuseoffuzzylogicprovidesgreaterflexibilityforfaultclassification,butremoving thedecayingfaultcurrentcomponentfromtheloadcurrentisverydifficultandgenerallyfuzzymembershipfunction overlappingprovidespoorresults.MultiResolutionWaveletTransformalgorithm(Gayatrietal.,2007)isveryfast andaccurateinclassificationoffault,butthemaindrawbackisthatitonlyidentifiesthetypeoffaulti.e.LG,LL,LLG andthreephasefault.

Theproposedschemeoffaultclassificationismoreaccurateasitcaneasilyclassifythetendifferenttypesoffault

i.e.threetypesoflinetogroundfault,threetypesofdoublelinetogroundfault,threelinetolinefaultandathree phasesymmetricalfault.Themainbenefitofproposedschemeisthatonlythreephaselinecurrentmeasurementis neededandnootherparameterorinformatione.g.circuitbreaker(CB)positionandisolatorisrequired.Thedeveloped methodistestedonIEEE13busdistributionsystemandonIndianpowerdistributionutility.Allthesignalanalysis, distributionsystemmodelsimulationandfuzzylogicsystemaredesignedinMATLAB®/SIMULINKenvironment.

2. Faultidentificationstrategy

Faultidentification strategy is achievedby implementing the discrete wavelet transform. The discrete wavelet transformis used tocalculate the change inenergy of aparticular energy level of measured current signals. The energiescalculatedfromdiscretewavelettransformarethenusesasinputsintothefuzzylogicsystem.

2.1. Discretewavelettransform

Thewavelettransformisatestedtoolforanalyzingandstudyingthesignalseffectively(Rizwanetal.,2013).The wavelettransformresolvesthemeasureddistortedsignalintodifferenttime–frequencydomains(Jamiletal.,2014). Wavelettransformusestheexpansionandcontractionofbasisfunctionstodetectvariousfrequencycomponentsin themeasuredsignal.Wavelettransformdecomposesthesignalintodifferentbandoffrequencies.Thebasisfunction

(3)

Fig.1.Multi-leveldecompositionofsignalX[n].

ismotherwavelet,whichusesthedilationandtranslationproperty.Here,largewindowsareusedtoobtainthelow frequencycomponentofthesignal,whilesmallwindowreflectdiscontinuities.

Wf(m,n)=2(−m/2) 

f(t)Φ(2−mtn)dt (1)

wheremisfrequencyandnistime.Inpracticewaveletseriesisgivenby

f(t)= k=∞ k=−∞ ckΦ(tk)+  k=−∞ ∞  k=−∞ dikΦ(2itk) (2) Φ(x)=√2 n h0Φ(2xn) (3)

whereΦ(x)isscalefunctionandh0isthelowpassfiltercoefficient. Φ(x)=√2

n

h1Φ(2xn) (4)

whereΦ(x)iswaveletfunctionandh1ishighpassfiltercoefficient.InFig.1variousdecompositionlevelsofwavelet

treeareshown,whereX[n]isthediscretesignal.

Thedecompositionlevelscanbeclassifiedintodetailandapproximatecoefficients.Thevariousdetailsand approx-imatecoefficientcontaindifferentenergiesatdifferentlevelofdecomposedsignal.Theseenergiescanbecalculated easilyandonthebasisoftheseenergiesfaultscanbeclassifiedeasily.

Theenergycontentofanydecomposedsignalisgivenbythefollowingformula:

E=|x|2 (5)

wherexisthewaveletcoefficientsatdecompositionlevel.

TheproposeddiscretewavelettransformisperformedonIEEE13busshowninFig.2(Kirsting,1991).

Letusconsiderthefaultonbusnumber633,thevariouscurrentsandvoltageswaveformsofthefaultedsystemat thesubstationareshowninFig.3.Thewaveletcoefficientandhencethevariousenergiesassociatedwiththesignals arecalculatedandresultsobtainedduringthefaultareshowninTables1and2.

2.2. Fuzzylogic

ItcanbeobservedfromTable2,thattheenergiesobtainedarefuzzyinnature.Therefore,fuzzylogicisusedfor faultidentificationtodifferentiatethetypeoffault.Fuzzylogicsystempossessescertainbenefitsoverneuralnetwork. Thefuzzylogicsystemworksonbysimplydefiningcertainrulesandresultscanbeobtained,butinneuralnetworka rigoroustrainingisrequired.Besidesthereisconvergenceofthealgorithmisalsoaproblem.

(4)

Fig.2.IEEE13bussystem. Table1

Typicalvalueofthedifferentenergies.

Typeoffault EnergyA(×1011) EnergyB(×1011) EnergyC(×1011) EnergyG(×1011)

A-G 1.342 0.0014 0.0019 0.1091 B-G 0.0028 1.3278 0.0018 0.1097 C-G 0.0025 0.0016 1.3425 0.1142 A-B 1.9717 1.8868 0.0015 0 B-C 0.0021 1.9774 1.9014 0 C-A 1.9183 0.0012 2.0119 0 A-B-G 2.1714 2.0964 0.002 0.0688 B-C-G 0.0028 2.1633 2.1246 0.0663 C-A-G 2.1382 0.0016 2.194 0.0673 A-B-C 2.5991 2.5649 2.6127 0 Table2

Typicalvalueofnormalizedenergy(fuzzyinputs).

Typeoffault EnergyA EnergyB EnergyC EnergyG

A-G 1 0.0010 0.0014 0.0905 B-G 0.0021 1 0.0013 0.0913 C-G 0.0019 0.0012 1 0.0934 A-B 0.9252 1 0.0010 0.0073 B-C 0.0151 1 0.9535 0.0013 C-A 0.9502 0.0006 1 0 A-B-G 1 0.9710 0.0009 0.0345 B-C-G 0.0013 1 0.9739 0.0339 C-A-G 0.9774 0.0007 1 0.0344 A-B-C 0.9991 0.9941 1 0

Intheproposedmethodthe approximationsare involved,the differentinputsortheantecedentsarerepresented byanappropriatecorrespondingfuzzyvariable.Astheantecedentpartsarevariableswhicharefuzzyinnature,the othervariablesintheremainingresultantpartsshouldbefuzzyinnature.Theaboveapproximaterulebasesystemis actuallya“FuzzyRuleBaseSystem.”Thetriangularmembershipfunctionhasbeenusedtorepresentallthesefuzzy variables(inbothantecedentandconsequentpartsofthefuzzyrules),inthisproposedwork.Thisfaultclassification modelusesthetriangularmembershipfunction,asshowninFig.4.Allthefourinputsarefedthroughbyusingfour triangularmembershipfunctions.

(5)

Fig.3.Currentandvoltagewaveformduringfaultatbus633.

Thevaluesofthreeedgesoftriangleforalltentypesoffaulthavebeentakeninsuchamannerthatthetriangular membershipfunctioncorrespondstoanyparticulartypeoffault,andissymmetricaboutthetakendecimalnumber. ThiscanbeconfirmedfromTable3.Thus,thedifferentthreeedgeswhichhavebeenassignedtorepresentthefuzzy faulttypesareshowninTable4.

InTable3,B3representsphase-A,B2representsphase-B,B1representsphase-CandB0representstheground.

Theappropriatethreeedgesarecalculatedforshowingthefuzzyvariablesfordeclaringthedifferenttypesoffault. Themethodforselectingthethreeedgesisasfollows.Inthebeginning,inordertorepresentthetypeoffaultcorrectly, abinarylogicsystemisdeveloped.Inthiscodingsystem,afourdigitbinarynumber(B3B2B1B0)isgeneratedto representthetypesoffault.Thecompletechartcontainingthebinarynumberswithrespecttoeachtypeoffaultand theircorrespondingequivalentdecimalnumbersareshowninTable3.Theserulesareusedinoutputoffuzzysystem.

ThefuzzylogicdevelopedasschemeshowninFig.5isusedforapplyingtheproposedmethod.

ThecrispinputsarefourinnumberwhicharethenormalizedenergiesofthemeasuredcurrentsofphaseA,phase B,phaseCandzerosequencecurrentrespectively.Theyarecalculatedfromthesampledvaluesoftheduring-fault

(6)

Table3 Faultcodetable.

Faulttype B3 B2 B1 B0 Equivalentdecimalnumber

A-G 1 0 0 1 9 B-G 0 1 0 1 5 C-G 0 0 1 0 3 A-B 1 1 0 0 12 B-C 0 1 1 0 6 C-A 1 0 1 0 10 A-B-G 1 1 0 1 13 B-C-G 0 1 1 1 7 C-A-G 1 0 1 1 11 A-B-C 1 1 1 1 15 Table4

Fuzzyvariableforrepresentationofdifferenttypesoffault. Faulttypes Triplets

A B C A-G 8.5 9 9.5 B-G 4.5 5 5.5 C-G 2.5 3 3.5 A-B 11.5 12 12.5 B-C 5.5 6 6.5 C-A 9.5 10 10.5 A-B-G 12.5 13 13.5 B-C-G 6.5 7 7.5 C-A-G 10.5 11 11.5 A-B-C 14.5 15 15.5

Fig.4.Triangularmembershipfunction.

currentsof respectivethreephasesi.e.phaseA,phaseBandphaseC.Because,thevaluesarecrispinnature; they arethenneededtobeconvertedintotheircorrespondingfuzzyvariables.Inthispaperthesingletonfuzzifier(Mendel, 1995)hasbeenadoptedforthefuzzificationoftheassignedvalues.

Afterfuzzification,thefuzzifiedinputsareusedtodetectthefaultandusedasinputstotheFuzzyInferenceSystem (FIS).TheFISbasedupontheproposedfuzzyrules,classifiestheappropriatetypesoffaultasitsoutput.Theoutput

(7)

Fig.6.TypicalFISEditorofFuzzyLogicToolBoxinMATLAB®.

Fig.7.SimulinkmodelofFISinMATLAB®.

oftheinferencesystemisalsofuzzyinnature.Thesefuzzyoutputsdirectlycannotbeusedtodeclarethefault,but firstneededtobedefuzzifiedtodetermineactualtypeofthefaultcorrectly.TheCentroidDefuzzificationfunctionhas beenimplementedfordevelopingthepurposedFIS.ThesimulationoftheFLSmethodhasbeencarriedoutinthe FuzzyLogicToolboxoftheMATLAB®/Simulinksoftware(asshowninFig.6)(Matlab,2015).Thesimulinkmodel ofdevelopedFISsysteminMATLAB®isshowninFig.7.

Therulesforthegivenfourinputscorrespondingtotheenergylevelsoffourcurrentstoobtaintheresultareas follows:

1. IfEnergyAis“nearabout1”andEnergyBis“nearabout0”andEnergyCis“nearabout0”andEnergyGis “nearabout1”thenthefaulttypeis“A-G”.

2. IfEnergyAis“nearabout1”andEnergyBis“nearabout1”andEnergyCis“nearabout0”andEnergyGis “nearabout0”thenthefaulttypeis“A-B”.

3. IfEnergyAis“nearabout1”andEnergyBis“nearabout1”andEnergyCis“nearabout0”andEnergyGis “nearabout1”thenthefaulttypeis“A-B-G”.

(8)

Table5

FLSoutputfordifferentfaultatbus633.

Typeoffaultatbus633 Fuzzyoutput

A-G 9.52 B-G 5.52 C-G 3.44 A-B 12.5 B-C 6.5 C-A 10.5 A-B-G 13.5 B-C-G 7.44 C-A-G 11.4 A-B-C 15.5 Table6

FLSoutputforfaultatdifferentbusIEEE13bussystem. Busno. Typesoffault

A-G B-G C-G A-B B-C C-A A-B-G B-C-G C-A-G Threephasefault

671 9.52 5.52 3.44 12.5 6.5 10.5 13.5 7.44 11.4 15.5

634 9.5225 5.5265 3.412 12.5 6.5 10.5 13.5 7.44 11.4 15.5

4. IfEnergyAis“nearabout1”andEnergyBis“nearabout1”andEnergy Cis“nearabout1”andEnergy Gis “nearabout1”thenthefaulttypeis“symmetrical”.

ThedifferenttentypesoffaultsarebeingsimulatedbyusingdifferentvaluesofRfandFaultInceptionAngle(FIA). TheresultsusingdifferentvaluesofRfandFaultInceptionAngle(FIA)obtainedarealmostsimilar,asonlythechange inenergyismeasured.Hence,itisindependentfordifferentvaluesofFIA.Thetypicaloutputof FLSfordifferent faultsatIEEE13busradialdistributionsystematbus633isshowninTable5.

3. Resultsanddiscussion

Theproposedalgorithmistestedusingthesimulatedaswellasrealtimedata.Thedifferentsourcesforthetestdata are

1) MATLABgenerateddata.

2) IEEE13busradialdistributionfeeder.

3) FaultdataofdistributionsystemofJanpur(M.P.,India)providedbyMIPOWERCompany(showninFig.8).

ForafaultatbusP27thevariousresultsareshowninTable6andthecorrespondingvalueofthefuzzyoutputis alsoshowninTable7.

Afaultdetectionsystembasedonfuzzylogicanddiscretewavelettransformhasbeendesignedinthiswork.This designisvalidatedonIEEE13busradialdistributionsystemandradialpowerdistributionnetworkusingrealtime

Table7

FLSoutputforfaultatdifferentbus:distributionsystem,Janpur(M.P.,India). Busno. Typeoffault

A-G B-G C-G A-B B-C C-A A-B-G B-C-G C-A-G Threephasefault

P25 9.02 5.18 3.30 11.87 6.5 10.45 12.85 7.12 11.38 15.45

(9)

Fig.8.SLDofdistributionsystem,Janpur(M.P.,India).

dataandMATLAB®/Simulinksoftware.ThevaluesofenergiesfordifferenttypesoffaultsareshowninTable8.The finalresultsofFLSareverypreciseandshowninTable9.Itisabletodetectallthetentypesoffaultsi.e.A-G,B-G, C-G,A-B,B-C,C-A,A-B-G,B-C-G,C-A-Gandthreephasesymmetricalfault.Ithasbeenfoundthatfaultscould occurinradialdistributionsystemswithallpossiblecombinations;hencetheimportanceofthefuzzymembership functionsindeclaringthevarioustypesoffaultisproved.Thesimplicityofthedesignbasedonthefuzzylogic,means adrasticreduction inloadloss andenergylossondistributionsystemsduetoprolongedoutagesleadingtolonger feederdowntimeduringfaultedconditions.Thevariousconclusionsandresultsdrawnfromthestudyare:

Table8

Typicalvaluesofnormalizedenergy:Janpur(M.P.,India).

Typeoffault EnergyA EnergyB EnergyC EnergyG

A-G 1 0.1174 0.0911 0.0724 B-G 0.0955 1 0.1234 0.079 C-G 0.121 0.0922 1 0.077 A-B 1 0.6007 0.2670 0 B-C 0.2738 1 0.6127 0 C-A 0.6196 0.2634 1 0 A-B-G 0.8536 1 0.0176 0.2172 B-C-G 0.0178 0.8306 1 0.2136 C-A-G 1 0.0171 0.8174 0.2150 A-B-C 1 0.9753 0.9811 0

(10)

Table9

FLSoutputfordifferentfaultatbusP27.

TypeoffaultatbusP27 Fuzzyoutput

A-G 9.52 B-G 5.52 C-G 3.44 A-B 12.5 B-C 6.5 C-A 10.5 A-B-G 13.5 B-C-G 7.44 C-A-G 11.4 A-B-C 15.5

1) The proposedmethodhasaccuracy of around 95%for the lightlyunbalanced system(i.e.for less unbalanced system).

2) TheproposedmethodprovidesgoodresultsfordifferentvaluesofFIAanditindependentofFIAvariations. 3) Forsakeofaccuracythe8levelsymletmotherwaveletisused.

4) Theproposedalgorithmhasfuzzymembershipfunctionwhichadaptaccordingtotheexperimentalresultsobtained.

4. Conclusion

Theoperatingconditionsandelectricalparametersinanelectricalpowerdistributionsystemvaryoverawiderange becauseof dynamic nature of thepower systemanddiversenatureof load. The structureof any electricalpower distributionsystemoftenchangesbecauseofthechangingofloadpatterns,switchingofpowersystemequipments, suddenbreakdownofgeneratingunits,etc.Thefaultresistance,faultinceptionangleanddifferentloadingconditions ofelectricalpowerdistributionsystemalsoaffecttheperformanceofanyfaultdetectionandclassificationmethod.

Theproposedmethodisfoundtobequitesatisfactoryinclassificationoffaulttypesforboththedistributionsystems

i.e.forIEEE13bussystemandforutilitydistributionsystemJanpur,MadhyaPradesh(India).Butthespaceconstraint forcedustoshowtheresultsofthefaultthatoccuratthebus633.Theproposedmethodisfullyeffectiveinclassifying alltentypesoffaultsandforanypossiblecombinationofdifferentpowersystemparameters.Thefaultinceptionangle consideredfortheproposedresearchis0.90andthevalueoffaultresistanceis0.Theresultsoftheproposedmethod arenotaffectedbydifferentvaluesofFIAs,faultresistanceandotherdistributionparameters.Theobservationofthe results(asshowninTable2)showsthatthevaluesofthenormalizedenergiesofrespectivethreephasesarecrispin natureandusuallyvariesfrom0to1.TheoutputoftheFISdependsuponthetypeoffaultandhencethedefuzzified outputvariesfrom1to15(asshowninTable3).

Thetestingoftheproposedmethodundervariousoperatingconditions,differentfaultresistanceandfaultinception anglesandcorrespondinglyresultobtainedshowsthattheresultsaresatisfactory.

References

Adu,T.,2002.Anaccuratefaultclassificationtechniqueforpowersystemmonitoringdevices.IEEETrans.PowerDeliv.17(July(3)),684–690. Aggrawal,R.K.,Xuan,Q.Y.,Dunn,R.W.,Bennett,A.,1999.Anovelfaultclassificationtechniquefordouble-circuitlinebasedonacombined

unsupervised/supervisedneuralnetwork.IEEETrans.PowerDeliv.14(October(4)),1250–1256.

Alanzi,E.A.,Younis,M.A.,Ariffin,A.M.,2014.Detectionoffaultedphasetypeindistributionsystemsbasedononeendvoltagemeasurement. Electr.PowerEnergySyst.54,288–292.

Chen,W.H.,Liu,C.W.,Tsai,M.S.,2000.Onlinefaultdiagnosisofdistributionsubstationsusinghybridcauseeffectnetworkandfuzzyrulebased method.IEEETrans.PowerDeliv.15(April(2)),710–717.

Das,B.,2006.Fuzzylogic-basedfault-typeidentificationinunbalancedradialpowerdistributionsystem.IEEETrans.PowerDeliv.21(January (1)),278–285.

Ferrero,A.,Sangiovanni,S.,Zapitelli,E.,1995.Afuzzysetapproachtofaulttypeidentificationindigitalrelaying.IEEETrans.PowerDeliv.10 (January(1)),169–175.

Gayatri,K.,Kumarappan,N.,Devi,C.,2007.AnaptmethodforfaultidentificationandclassificationonEHVlinesusingdiscretewavelettransform. In:InternationalIEEEPowerEngineeringConference,Singapore,pp.217–222.

(11)

Togami,M.,Abe,N.,Kitahashi,T.,Ogawa,H.,1995.Ontheapplicationofamachinelearningtechniquetofaultdiagnosisofpowerdistribution lines.IEEETrans.PowerDeliv.10(October(4)),1927–1936.

Wang,H.,Keerthipala,W.W.L.,1998.Fuzzyneuroapproachtofaultclassificationfortransmissionlineprotection.IEEETrans.PowerDeliv.13 (October(4)),1093–1104.

References

Related documents

There is a difference whether, for example, the user demand is based on an 80% share of voice service and a 20% share of data, or vice versa; not only in the size of the cells

DDQT molecules primarily adsorbed in the fcc regions, with the quaterthiophene backbones aligned along one of three directions of the Au(111) surface, perpendicular to

2, when the drug response is high, we found that the top two T4 cell counts and the lowest two infected monocyte/macrophage counts occurred at the fourth level (480 days) and

The human performance modeling framework as depict in Figure 3 developed theoretically for manufacturing system designs by Baines et al.(2005)[1]. During the process of

Educational and developmental psychologists are involved in the following settings: community programs for young children, adolescents, or the elderly; family-life education;

It was decided that with the presence of such significant red flag signs that she should undergo advanced imaging, in this case an MRI, that revealed an underlying malignancy, which

This way, and since the Grand Tour was inspired by and produced different forms of literature, such as journals or guidebooks, it is possible to see how

Direct atomic recombination and three particle recombination are also negligible at the electron densities in the expanding plasma.. We first give an overview of the