• No results found

Efficiency comparisons for a system GMM estimator in dynamic panel data models

N/A
N/A
Protected

Academic year: 2021

Share "Efficiency comparisons for a system GMM estimator in dynamic panel data models"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

E ± c iency Com parisonsfor a System G M M

E stim ator inDynam ic P anelData M od els

Frank W ind m eijer

Institute f

or F iscalStud ies

7R id gm ount Street

Lond onW C1E 7AE

IF S W orkingP aper SeriesNo.W 9 8/1

A bstract

T hesystem G M M estimatorin dynamicpaneldatamodels combines mo-mentconditions forthe di®erenced equation with momo-mentconditions for themodelinlevels.A ninitialoptimalweightmatrixunderhomoscedastic-ity and non-serialcorrelation is notknown forthis estimation procedure. Itis common practice touse the inverse ofthe momentmatrix ofthe in-struments as the initialweightmatrix.T his paperassesses the potential e±ciencylossfrom theuseofthisweightmatrixusingthee±ciencybounds as derived byL iu and N eudecker(1 997).

1

In

trod uc tion

A stand ard prac tic e to estim ate the param etersind ynam ic paneld ata m od elsis to take ¯rst d i®erencesto elim inate the c orrelated ind ivid ualspec i¯c e®ec ts,and estim ate the d i®erenced m od elb y G eneralised M ethod ofM om ents(G M M ) us-ingappropriately lagged levelvariab lesasinstrum ents.Asthe inform ationofthe instrum entsfor the d i®erenced m od eld ec reasesasthe seriesb ec om e m ore per-sistent,Arellano and B over (199 5) and B lund elland B ond (199 7) have proposed use ofa system G M M estim ator that c omb inesthe d i®erenced equationw ith the levelequation. T he instrum entsfor the levelequationare lagged d i®erencesof

(2)

the variab les, w hic h are valid w henthese d i®erencesare uncorrelated w ith the ind ivid uale®ec ts. B lund elland B ond (19 9 7) show that the system estim ator hassuperior propertiesinterm sofsm allsam ple b iasand R M SE , espec ially for persistent series.

T he G M M estim ator is a tw o-step estim ator. Inthe ¯rst step, aninitial positive sem id e¯nite w eight m atrix isused to ob tainc onsistent estim atesofthe param eters.G iventhese c onsistent estim ates,a w eight m atrixc anb e c onstruc ted that isc onsistent for the e± c ient w eight m atrix, and thisw eight m atrix isused for the asym ptotic ally e± c ient tw o-step estim ates. It is w ellknow n, see e.g. Arellano and B ond (19 9 1), that the tw o-step estim ated stand ard errorshave a sm allsam ple d ow nw ard b iasinthisd ynam ic paneld ata setting, and one-step estim atesw ith rob ust stand ard errorsare oftenpreferred .Although ane± c ient w eight m atrix for the d i®erenced m od elw ith errorsthat are hom osced astic and that are not seriallyc orrelated iseasilyd erived ,thisisnot the c ase for the system estim ator,c omb iningd i®erencesand levelsinform ation.

It isc om m onprac tic e to use the inverse ofthe m om ent m atrixofthe instru-m entsasaninitialw eight instru-m atrix.Inthispaper the potentiale± c iency lossw ill b e c onsid ered ina m od elw ith hom ogeneousand non-serially c orrelated errors. T o d o this, upper b ound sfor the e± c iency lossw illb e c alculated asd erived b y Liuand Neud ec ker (19 97) b ased onthe K antorovic h Inequality(K I).T hese upper b ound sind ic ate that the e± c iency lossc ould potentially b e quite severe.W hen the variance ofthe ind ivid ualunob served heterogeneity issm all, e± c iency c an b e gained b y using a w eight m atrix that isoptim alund er the assum ptionthat the variance ofthe unob served heterogeneity isequalto z ero.

Insec tion2 ,anAR (1) d ynam ic paneld ata m od elisc onsid ered and a d escrip-tionofthe system G M M estim ator isgiven. Insec tion3 the upper b ound sof the e± c iency lossare c alculated for 3 and 4 tim e period srespec tively.Sec tion4 c onclud es.

(3)

2

M od elan

d System G M M

E stim ator

Consid er the AR (1) paneld ata spec i¯c ation

yit= ®0yit¡1+ ´i+ "it (1)

for i= 1;:::;N , t= 2 ;:::;T , w ith N large, and T ¯xed .T he error term sfollow the error c om ponentsstruc ture inw hic h

E (´i) = 0 ; E ("it) = 0 ; E³"2 it ´ = ¾2 " ; E ³ ´2 i ´ = ¾2 ´; E (´i"it) = 0 ; E ("it"is) = 0 ; t6= s:

T he yitseriesare assum ed stationary w ith anin¯nite tim e horiz onand therefore

the seriesc analternatively b e w rittenas yit= ´i 1¡®0 + 1 X j= 0 ®j0"it¡j: (2 )

T he O LS and w ithingroupsestim atorsof®0 inm od el(1) are b iased and

inconsistent. A c onsistent estim ator for ®0 isthe system G M M estim ator, as

proposed b y Arellano and B over (19 9 5) and B lund elland B ond (19 9 7),utilising the follow ing(T + 1)(T ¡2 )=2 moment c onditions1

E [(¢ yit¡®0¢ yit¡1)(yit¡2;:::;yi1)] = 0 (3)

E [(yit¡®0yit¡1)¢ yit¡1] = 0 ; (4 )

for t= 3;:::;T . M om ent c ond itions(3) are for the m od elin¯rst d i®erences, utilising appropriately lagged levelsinform ationasinstrum ents, w hereasc ond i-tions(4 ) are for the m od elinlevels, utilising lagged d i®erencesasinstrum ents. AsB lund elland B ond (19 97) show , the system estim ator isc onsid erab ly m ore

1U nderhomoscedasticity there are additionalmomentconditions available toimprove

(4)

e± c ient thanthe trad itionalG M M estim ator utilisingthe m om ent c ond itionsof the d i®erenced m od elonly.

De¯ne Z i= 2 6 6 6 66 6 6 6 6 66 6 6 4 yi1 0 0 ::: 0 ::: 0 0 0 ::: 0 0 yi1 yi2 ::: 0 ::: 0 0 0 ::: 0 0 0 0 ::: 0 ::: 0 0 0 ::: 0 0 0 0 ::: yi1 ::: yiT¡2 0 0 ::: 0 0 0 0 ::: 0 ::: 0 ¢ yi2 0 ::: 0 0 0 0 ::: 0 ::: 0 0 ¢ yi3 ::: 0 0 0 0 ::: 0 ::: 0 0 0 ::: 0 0 0 0 ::: 0 ::: 0 0 0 ::: ¢ yT¡1 3 7 7 7 77 7 7 7 7 77 7 7 5 vi= vi(®0) = 2 66 6 6 6 6 66 6 6 6 66 4 ¢ yi3¡®0¢ yi2 ¢ yi4 ¡®0¢ yi3 ::: ¢ yiT ¡®0¢ yiT¡1 yi3¡®0yi2 yi4 ¡®0yi3 ::: yiT ¡®0yiT¡1 3 77 7 7 7 7 77 7 7 7 77 5 ; and fi(®0) = Z i0vi:

M om ent c ond itions(3) and (4 ) im ply that E (fi(®0)) = 0 .T he G M M estim ator2

b ® for ®0 m inim ises " 1 N N X i= 1 fi(® ) #0 WN " 1 N N X i= 1 fi(® ) # ;

w ith respec t to ® ; w here WN is a positive sem id e¯nite w eight m atrix w hic h

satis¯esplimN! 1 WN = W , w ith W a positive d e¯nite m atrix.R egularity c

on-d itionsare inplac e suc h that limN ! 1 N1

PN

i= 1fi(® ) = E (f (® )) and p1N fi(®0)!

N (0 ;ª ):Let F (® ) = E (@fi(® )=@® ) and F0 ´F (®0),then

p

N (®b¡®0) hasa

lim itingnorm ald istrib ution,pN (®b¡®0)! N (0 ;VW),w here

VW = (F00W F0)¡1F00W ª W F0 (F00W F0)¡1: (5)

2SeeH ansen (1 982),O gaki (1 993).H ere,thesamenotation as inL iu andN eudecker(1 997)

(5)

3 E ± c ien

c y Com parison

s

Asisc lear from the expressionofthe asym ptotic variance m atrix VW, (5), the

e± c iency ofthe G M M estim ator isa®ec ted b y the c hoic e ofthe w eight m atrix WN .Anoptim alc hoic e isa w eight m atrixfor w hic h W = ª¡1.T he asym ptotic

variance m atrix is thengivenb y (F0

0ª¡1F0)¡1. For any other W the G M M

estim ator islesse± c ient as

³

F00ª¡1F0

´¡1

·(F00W F0)¡1F00W ª W F0 (F00W F0)¡1:

Inpaneld ata m od elsthe e± c ient estim ator isob tained ina tw o-step pro-c ed ure. T he one-step G M M estim ator ® isob tained using anarb itrary w eighte

m atrix WN 1.Let vei= vi(® ).T he e± c ient tw o-step estim ator isthenb ased one

the w eight m atrix WN 2 = à 1 N N X i= 1 Z i0veiveiZ i !¡1 ; plim WN 2 = ª¡1.

Although the e± c ient estim ator iseasily ob tained ,there isa seriousprob lem assoc iated w ith it as the estim ated stand ard errors ofthe tw o-step estim ator c anb e b iased d ow nw ard s quite severely for m od erate sam ple siz es N , as has b eend oc um ented b y Arellano and B ond (19 9 1) and B lund elland B ond (199 7), w ho perform ed M onte Carlo simulationsw ith sam ple siz esN = 2 0 0 .T herefore, inference b ased onthe tw o-step estim ator c anb e very unreliab le. Inc ontrast, the one-step estim ated stand ard errorsb ased onthe asym ptotic variance m atrix (5), using WN 2 asanestim ate for ª and sub stituting® fe or ®0, are found to b e

much lessb iased ,and inference,like W ald tests,muc h m ore reliab le.Inprac tic e therefore,one c anoftenonly rely oninference b ased onthe lesse± c ient one-step estim ator.

For the G M M estim ator that only utilisesthe m om ent c ond itions(3) for the d i®erenced m od el, anoptim alw eight m atrix is³N1 PNi= 1Di0H Di

´¡1

, w here Diis

(6)

m aind iagonal,-1'sonthe ¯rst sub d iagonalsand z eroselsew here.SettingWN 1 = ³ 1 N PN i= 1D 0 iH Di ´¡1

resultstherefore inane± c ient one-step estim ator. For the system G M M estim ator suc h ane± c ient one-step w eight m atrix isnot know n, and inprac tic e one usesasaninitialw eight m atrixWN 1 =

³ 1 N PN i= 1Z i0Z i ´¡1 .T o assessthe potentiallossine± c iency from using thisinitialw eight m atrix, the follow ing expressionfor the upper b ound ofthe e± c iency losshasb eend erived b y Liu and Neud ec ker (19 9 7, p.350 ) onthe b asisofthe K antorovic h Inequality (K I): (F00W F0)¡1F00W ª W F0 (F00W F0)¡1 · (¸1+ ¸p)2 4 ¸1¸p ³ F00ª¡1F0 ´¡1 (6) w here ¸1 ¸:::¸¸p are the eigenvaluesofthe m atrixª W .

For T = 3, there is one overid entifying m om ent c ond ition, as the system estim ator utilisesthe follow ingtw o m om ent c ond itions

E [(¢ yi3¡® ¢ yi2)yi1] = 0 E [(yi3¡® yi2)¢ yi2] = 0 ; and ª isgivenb y ª = plim 1 N N X i= 1 " y2 1(¢ "i3)2 yi1¢ yi2 (´i+ "i3)¢ "i3 yi1¢ yi2(´i+ "i3)¢ "i3 (¢ yi2)2 (´i+ "i3)2 # = ¾"2 " 2 ¾2 y ¡(1 ¡® )¾y2 ¡(1 ¡® )¾2 y 2 ¾2 ´+ ¾2" 1+ ® # w here ¾y2 = ¾ 2 ´ (1¡® )2 + ¾2 " 1¡®2: Further, W1 = Ã plim 1 N N X i= 1 Z i0Z i !¡1 = Ã plim 1 N N X i= 1 " y2 i1 0 0 (¢ yi2)2 # !¡1 = " ¾2 y 0 0 2 ¾2" 1+ ® #¡1

(7)

and the m atrixG = ª W1 isgivenb y G = " 2 ¾2 " ¡(1 ¡®2)¾y2=2 ¡(1 ¡® )¾2 " ¾2"+ ¾´2 # :

F igure 1 presentsthe plot ofthe functionbK I = (¸G 1+ ¸G p)2 =4 ¸G 1¸G p,w here

the ¸G'sare the eigenvaluesofG , for variousvaluesof®0 and ¾´2=¾2". W hen

¾2

´ = ¾2", bK I isc onstant for d i®erent valuesof® and equalto 4 /3, ind ic ating

that the asym ptotic variance ofthe one-step estim ator c ould potentially b e 33% larger thanthe e± c ient estim ator. W hen¾2

´=¾"2 < 1, bK I isd ec lining w ith ®0,

w hereasit isincreasingw ith ®0 w hen¾´2=¾"2 > 1.T he value ofbK I increasesw ith

¾2

´=¾"2 w hen¾´2=¾"2 > 1.

[F igure 1 ab out here]

W henT = 4 ,there are 4 overid entifyingm om ent c ond itions,and the m atric es ª and W1 are givenb y

ª = ¾2" 2 6 6 66 6 6 6 6 4 2 ¾2 y ¡¾y2 ¡± ¡(1 ¡® )¾2y 21¡®¡®¾ 2 ´ ¡¾2 y 2 ¾2y 2 ± ¾2 " 1+ ® ¡(1 ¡® )± ¡± 2 ± 2 ¾2 y ¡ ¾2 " 1+ ® ¡(1 ¡® )¾y2 ¡(1 ¡® )¾2 y ¾ 2 " 1+ ® ¡ ¾2 " 1+ ® 2 ¾2 ´+ ¾2" 1+ ® ¡1¡®1+ ®¾ 2 ´ 2¡® 1¡®¾2´ ¡(1 ¡® )± ¡(1 ¡® )¾2y ¡11+ ®¡®¾´2 2 ¾2 ´+ ¾2" 1+ ® 3 7 7 77 7 7 7 7 5 W1 = 2 6 6 6 6 6 66 4 ¾2 y 0 0 0 0 0 ¾2 y ± 0 0 0 ± ¾2 y 0 0 0 0 0 2 ¾2" 1+ ® 0 0 0 0 0 2 ¾2" 1+ ® 3 7 7 7 7 7 77 5 ; w here ± = ¾y2 ¡ ¾2 " 1 + ®:

F igure 2 presents the e± c iency b ound s for the one-step system estim ator w henT = 4 . T he valuesfor bK I are larger thanfor the T = 3 c ase. W hen

¾2

´=¾"2 = 1, bK I isno longer c onstant for d i®erent valuesof®0, and takesvalues

(8)

b e 3tim esthe variance ofthe e± c ient estim ator.Again,bK I increasesw ith ¾´2=¾"2

w hen¾2

´=¾"2 > 1,and bK I reac hesthe value 6 w hen¾´2=¾"2 = 2 :5.3

[F igure 2 ab out here]

3.

1

AnO ptim alW eight M atrixw hen¾

´2

= 0

Anoptim alw eight m atrix for the system G M M estim ator w hen¾2

´ = 0 isgiven b y WN ;¾2 ´= 0 = Ã 1 N N X i= 1 Z i0AZ i !¡1 ; w here A = " H C C0 I T¡2 #

w ith H asd e¯ned ab ove,IT¡2 isthe id entity m atrixoford er (T ¡2 ),and

C = 2 66 6 6 6 6 4 1 0 0 0 ¡1 1 0 0 0 ¡1 1 0 ::: ::: ::: ::: : 0 0 0 ::: 1 3 77 7 7 7 7 5 :

U sing thisw eight m atrix instead ofWN 1 =

³ 1 N PN i= 1Z i0Z i ´¡1 m ay im prove on e± c iency w hen¾2

´ issm all. F igures3 and 4 d isplay the valuesfor bK I w hen

WN ;¾2

´= 0 isused inthe one-step estim ator, for T = 3 and T = 4 respec tively.

Ind eed ,for sm allvaluesof¾2

´ the potentiallossine± c iency isseento b e sm aller

thanw henWN 1 isused .How ever, w hen¾´2=¾2" islarge, the potentiale± c iency

lossgetslarger for WN ;¾2

´= 0,w hic h isw hat one w ould expec t.

[F igures3 and 4 ab out here] O ne w ayto d etec t w hether use ofWN ;¾2

´= 0 c ould b e b ene¯c ial,w ithout ac tually

c alculatingthe variancesofthe c om ponents,isto c alculate the e± c iency b ound s

3T he value ofb

KIincreases with T as the numberofmomentrestrictions increases. For

examplewhen T = 6 and ¾2

(9)

bK I for the e± c iency d i®erence b etw eenthe one-step and tw o-step estim ators,

i.e.c alculate bK I from eigenvaluesofthe m atric esWN 2WN ;¾2

´= 0, and WN 2WN 1.

Ifthe form er are c loser to 1 thanthe latter,thisisanind ic ationthat there c ould b e ane± c iency gainfrom usingWN ;¾2

´= 0 instead ofWN 1.

4

Discussion

U pper b ound sfor the e± c iency lossofthe one-step system G M M estim ator for a d ynam ic AR (1) paneld ata m od elasc om pared to the e± c ient tw o-step estim ator, show that the e± c iencylossc ould b e quite severe w henthe w eight m atrixWN 1 =

³ 1 N PN i= 1Z i0Z i ´¡1

isused ,espec ially w henT getslarge.W henthe variance ofthe unob served ind ivid uale®ec ts, ¾2

´, issm all, ane± c iency gainc anb e m ad e b y

usinga w eight m atrixthat isoptim alund er the assum ptionthat ¾2 ´ = 0 .

T he upper b ound sw ere show nto b e quite large, for exam ple w henT = 4 , WN 1 = ³ 1 N PN i= 1Z i0Z i ´¡1 and ¾2

´=¾2" = 2 :5, the ratio ofthe asym ptotic variance

ofthe ine± c ient estim ator to that ofthe e± c ient estim ator c anb e aslarge as 6 for high valuesof®0. InM onte Carlo stud ieshow ever, suc h large d i®erences

ofthe variancesare not found , using norm aland non-norm ald ata generating proc esses.T hisc ould m eanthat the K Iupper b ound s, bK I, are too large to b e

inform ative for these c ases.W henthe bK I are c lose to one, there isevid ence of

ane± c ient one-step estim ator. T he opposite statem ent for large bK I m ay not

b e true.Further researc h isneed ed to assessw hether the bK I are inform ative to

rank d i®erent one-step estim atorsonthe b asisoftheir relative K I-values. Inem piric alsettings,one c aneasily c om pute bK I from the eigenvaluesofthe

m atrixWN 2WN 1,w here WN 2 isthe tw o-step e± c ient w eight m atrix.

Ac know led gm ents

Iw ould like to thank Steve B ond for helpfulc om m entsand for d raw ing my attentionto the use ofWN ;¾2

(10)

R ef

eren

c es

[1] Ahn,S.C.and P .Sc hm id t (19 95),E ± c ient E stim ationofM od elsfor Dynam ic P anelData,J ournalofE conometric s,68,5-2 8.

[2 ] Arellano,M .and S.B ond (19 91),Som e T estsofSpec i¯c ationfor P anelData: M onte Carlo E vid ence and anApplic ationto E m ploym ent E quations,R eview ofE conomic Stud ies,58,2 77-9 8.

[3] Arellano,M .and O .B over (199 5),Another Lookat the Instrum ental-Variab le E stim ationofE rror-Com ponentsM od els,J ournalofE conometric s,68,2 9 -51. [4 ] B lund ell,R .and S.B ond (19 97),InitialCond itionsand M om ent R estric tions

inDynam ic P anelData M od els,J ournalofE conom etric s,inpress.

[5] Hansen,L.P .(19 82 ) `Large Sam ple P ropertiesofG eneraliz ed M ethod ofM o-m entsE stio-m ators',E conoo-metrica,50 ,10 2 9-10 54 .

[6] Liu, S.and H.Neud ec ker (19 9 7), K antorovic h Inequalities and E ± c iency Com parisonsfor SeveralClassesofE stim atorsinLinear M od els, Statistica Neerlandica,51,34 5-355.

[7] O gaki, M .(199 3) `G eneraliz ed M ethod ofM om ents: E c onom etric Applic a-tions', in: M ad d ala, G .S., C.R .R ao, and H.D.Vinod (ed s.), `E c onom etric s', HandbookofStatistic s,11,North-Holland ,Am sterd am .

(11)

F igure 1: K IE ± c iency B ound s,T = 3;WN 1 = ³1 N P iZ i0Z i ´¡1

F igure 2 : K IE ± c iency B ound s,T = 4 ;WN 1 =

³ 1 N P iZ i0Z i ´¡1

(12)

F igure 3: K IE ± c iency B ound s,T = 3;WN 1= WN ;¾2 ´= 0

F igure 4 : K IE ± c iency B ound s,T = 4 ;WN 1= WN ;¾2 ´= 0

References

Related documents

Nonlocal differential equations are also called Kirichhoff-type equations because Kirichhoff (cf. 2 ) , have the following meanings: L is the length of the string, h is the area of

Quantification of CB2 (A) and MOR (F) immufluorescence-staining in the dorsal horn of the spinal cord (DHSC), ipsilateral to sham surgery or chronic constriction injury (CCI),

Model simulations using optimized parameter values do provide a better fit to the experimental data as compared to fits that could be obtained through adjustment

Besides proposing a new parcellation method used as a prestep of the JDE approach, we developed an fMRI study to explore specific patterns of brain activities in cue-induced

A copy of the mi111 ~tes of the Fourth Meeting of the Project Approval Board (PAB) of the National Mission on Education through Information ar,d Communication Technology

Tackling the Top-10 Issues Faced by License Managers  Page 3 LicenseMonitor provides several methods to identify idle software licenses.. First is its “Efficiency Statistics

In framing the teacher education course as its own SCDC, the goal was for the elementary PSTs to learn how to teach inquiry-based science activities using a wide vari- ety of

To understand the impact of this group of intermediaries in Mexico, it should be mentioned that in 2002 there were more than 630 such institutions that offered savings and