• No results found

Evaluation of agronomic traits and spectral reflectance in Pacific Northwest winter wheat under rain-fed and irrigated conditions

N/A
N/A
Protected

Academic year: 2021

Share "Evaluation of agronomic traits and spectral reflectance in Pacific Northwest winter wheat under rain-fed and irrigated conditions"

Copied!
12
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Field

Crops

Research

j o ur na l h o me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / f c r

Evaluation

of

agronomic

traits

and

spectral

reflectance

in

Pacific

Northwest

winter

wheat

under

rain-fed

and

irrigated

conditions

Shiferaw

A.

Gizaw

a

,

Kimberly

Garland-Campbell

b

,

Arron

H.

Carter

a,∗

aDepartmentofCropandSoilSciences,WashingtonStateUniversityPullman,WA99164-6420,USA

bUSDepartmentofAgriculture,AgriculturalResearchService,WheatGenetics,Quality,PhysiologyandDiseaseResearchUnitPullman,WA99164-6420,

USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received23February2016

Receivedinrevisedform20June2016 Accepted22June2016

Availableonline6July2016

Keywords:

Spectralreflectanceindices PacificNorthwest Winterwheat Droughttolerance

a

b

s

t

r

a

c

t

TheUSPacificNorthwest(PNW)ischaracterizedbyhighlatitudeandMediterraneanclimatewhere wheatproductionispredominantlyrain-fedandoftensubjecttolowsoilmoisture.Asaresult,selection fordrought-adaptivetraitsinmoderncultivarshasbeenanintegralcomponentoftheregionalbreeding programs.Thegoalofthisresearchwastoevaluatephenotypicassociationsofmorpho-physiological traitsandtheirresponsetosoilmoisturevariationinwinterwheatgermplasmadaptedtothePNW.A panelof402winterwheataccessions(87hardand315soft)wasevaluatedforspectralreflectanceindices (SRIs),canopytemperature(CT),plantstature,phenology,grainyield,andyieldcomponentsunder rain-fedandirrigatedconditionsin2012–2014.Variationinsoilmoistureandtemperaturecumulatively explained86%oftotalyieldvariationacrossyearsandlocations.Thephenotypicassociationsofyield withphenology,plantheight,andCTwereenvironmentdependent.VariousSRIsrelatedtobiomass,stay green,pigmentcomposition,andhydrationstatusshowedconsistentpatternsofresponsetodrought andstrongcorrelationswithyield(p<0.001).Thecompensatoryinteractionofgrainnumberandweight wasindicatedinthenegativecorrelationbetweenthousandkernelweightandgrainnumberperspike acrossmoistureregimes.Areaundervegetationindexcurve(AUVIC)explained53–88%ofthetotal vari-ationinstaygreenestimatedfromvisualscoreofflagleafsenescence(p<0.001).Principalcomponent analysisrevealedthreemajorclustersthatexplainedmorethan76%ofinterrelationsamongtraits.The marketclasseswithinthestudypopulationshoweddifferentiationwithrespecttothesetraits.Thisstudy highlightsthepotentialuseofspectralradiometryinfieldscreeningofwinterwheatforgrainyieldand droughtadaptationinMediterranean-likeenvironments.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

WinterwheatproductionintheUSPacificNorthwest(PNW)is characterizedbyhighlatitude,relativelycooltemperature,anda Mediterranean-likeclimatewithmostannualprecipitation occur-ringinthewinter(Mote,2003).Annualprecipitationrangesfrom lessthan200mmtomorethan500mm(SchillingerandPapendick, 2008).Inadditiontosoilmoisturedeficitsinsemiaridareas, sea-sonalprecipitationfluctuationbetweenAprilandJuneisamajor constraintofwheatproductionintheentireregion(Lopezetal., 2003).Soildepthrangesfromlessthan1mtoover7m,causing spatialheterogeneityinwaterholdingcapacityandstress sever-ityintheregion(ShillingerandPapendick,2008).Directselection

∗Correspondingauthor.

E-mailaddresses:ahcarter@wsu.edu,shif.abets@gmail.com(A.H.Carter).

for grainyieldhas beensuccessfully practiced formore than a centurytoimproveyieldacrosstheprecipitationzones.However, thegeneticgain fromthis approachisgenerally lowinthe dri-estfarmsbecauseofhighgenotype-environmentinteractionand unaccountedspatialheterogeneity(Blum,2006).

Highergeneticprogressinyieldcanbeachievedbyselecting secondarytraitsotherthanyieldperse.Grainyieldisdetermined bynumberof spikesperarea, numberof kernelsper spikeand kernelweightwhichareinterrelatedtoeachotherandinfluenced bymorpho-physiologicaltraitssuchasearlyvigor,plantstature, floweringtime,andphysiologicalmaturity(Alexanderetal.,1984; McNealet al.,1978;El-Mohsenetal.,2012; Mohammadietal., 2012;Wuetal.,2012).Theinfluenceofenvironmentonthese sec-ondarytraitsisrelativelylowandpredictableresultinginhigher geneticprogresscomparedtoyieldbasedselection(Fischeretal., 2012;Wuetal.,2012).Recentreportssuggestthatsomeofthe com-ponenttraitsaregeneticallyindependentsuggestingthepossibility

http://dx.doi.org/10.1016/j.fcr.2016.06.018

0378-4290/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4. 0/).

(2)

ofcombiningmultipletraitsinmodernwheatcultivars(Dhungana etal.,2007).

The compensatoryinteractions and relative contributions of grainweight,grainnumberperspike,andspikenumberperarea towardsoverallyieldareaffectedbydevelopmental characteris-ticsandenvironmentalfactors(Cutforthetal.,1988;Duguidand Brule-Babel,1994;Santraetal.,2009).Semi-dwarfstature(shorter and stifferthanstandard height), earlygrowthvigor, and early maturity are adaptive features for environments withterminal heatanddroughtstresses(Baietal.,2004;vanGinkeletal.,1998; Morgan,1995;Álvaroetal.,2008;Kirkegaardetal.,2001).Onthe otherhand,dwarfstatureandlonggrain-filldurationhaveyield advantageinoptimumconditions(Baietal.,2004;Blum,1996; Gomezetal.,2014).Asa result,indirectselectionisananalytic approach that involvesunderstandinginterrelationships among variousattributes,theiryieldadvantages,andresponsesto envi-ronmentalvariation(McNealetal.,1978;El-Mohsenetal.,2012).

Somephysiologicalattributescontributetograinyieldandyield componentslike kernel weightby maintaininghigher rateand duration of grain filling (Duguid and Brule-Babel, 1994).These physiologicalattributesincluderadiationuseandphotosynthetic efficiency,transpiration efficiency,water availability and reten-tioncapacity,biomasscapacity,andassimilatetranslocationtothe grain(El-Mohsenet al.,2012; Reynolds et al.,2012).However, directmeasurementsofthesephysiologicalattributesarelaborand resource-intensivewhichlimitstheirapplicationtocharacterize largesetsofgermplasm.

Spectralradiometryandotherindirectsensingmethodsbecame high-throughputphenotypingalternativesthatenableevaluation oflargegermplasmcollectionsovermultipletargetenvironments (FioraniandSchurr,2013).Spectralreflectanceindices(SRIs)are calculated in the visible (VIS) and near infrared (NIR) ranges (␭=400–700and␭>700nmrespectively).Threemaincategories oftraitscanbeestimatedusingtheseindices:(1)biomass, pig-mentabundance,andareaofphotosyntheticcanopy(Wiegandand Richardson,1990;Haboudaneetal.,2004;Naumannetal.,2009; Reynoldsetal.,2012);(2)wateravailabilityandplanthydration status(TuckerandSellers,1986;Zarate-Valdezetal.,2012);and(3) compositionofphoto-andthermo-protectantmolecules(Pe ˜nuelas etal.,1995;Ollinger,2011).

A combinationof both visible and infraredspectra areused toderivethevegetationindicesofsimpleratio(SR),normalized differencevegetationindex(NDVI),andgreennormalized vege-tationindex(GNDVI)todiscernminutedifferencesinvegetative greenness,rateofsenescence,andstaygreenduration(Gitelson etal.,1996;Stenbergetal.,2004;Babaretal.,2006;Edaeetal., 2014;LopezandReynolds,2012;Liuetal.,2015).Theanthocyanin reflectanceindex(ARI)is derivedfromwavelengthsinboththe VISandNIRregionsasa surrogateforanthocyanincomposition (Gitelsonetal.,2002).Photochemicalreflectanceindex(PRI), nor-malizedchlorophyll-pigmentratioindex(NCPI),andXanthophyll pigmentepoxidationstate(XES)arederived fromreflectanceat theVISlight rangetoestimatethecompositionand abundance of plantpigments(Pe ˜nuelas et al., 1993;Pe ˜nuelas etal., 1995; Ollinger,2011),whereasnormalizedwaterindex(NWI)isderived fromreflectanceatNIRrangetoestimateplanthydrationstatus (Babaretal.,2006).

CharacterizingtheinterrelationsofSRIs,developmentaltraits, andyieldwithrespecttotargetenvironmentsiscrucialtofacilitate anintegrateduseofremotely-sensedandagronomicinformationin adaptationbreeding(Edmeadesetal.,1997;Farshadfaretal.,2013).

Rigorousinvestigationshavebeencarriedouttofullyaccountfor theresponsesofSRIsinirrigated,warm,andlowlatitudespring wheatenvironments.Effectsofenvironmentandgrowthstageson SRIswerereportedtobesignificant(Aparicioetal.,2002;Babar et al., 2006; Lopez and Reynolds, 2012). Aparicio et al. (2000)

reportedthatassociationofSRIswithgrainyield,biomasscapacity, andleafareaindex(LAI)washigherinrain-fedthanirrigated con-dition.Thesereportssuggesttheneedtocarefullydeterminewhich growthstageandselectionenvironmentismostinformative.

However,littleornopreviousassessmenthasbeendoneonthe propertiesandpotentialuseofcanopyspectralreflectanceinthe environmentswithahighlatitude,cooltocoldwinterseason,and strongphotoperiodrequirement.Themaingoalofthis research wastoevaluatevariousspectralreflectanceindicesassociatedwith grainyieldunderdry,moist-cool,andirrigatedconditionsin win-terwheatgenotypesadaptedtothePNWenvironment.Specific objectiveswere: (i) toevaluatephenotypicassociations of SRIs withgrainyieldandmorpho-physiologicaltraits;(ii)todetermine theinteractionofthesetraits withenvironmentalvariablesand developmentaltraits suchasear emergence,and (iii) to exam-inethetrendsofphenotypicassociationsacrossmultiplegrowth stagesinthecrop’slifecycle.Understandingtheinterrelationship and drought-responsesof these developmental traits, morpho-physiologicalcomponents,andagronomicperformancewillhelp incombiningtheyieldadvantageofmultipleattributesthrough focusedidentificationandintrogressionoftraitsthathave syner-geticeffectsonyield.

2. Materialsandmethods

2.1. Studypopulation

ThestudywasconductedontwoPNWwinterwheat subpopu-lations:hardwinter(n=87),andsoftwinter(n=315).Thewinter wheatgermplasmintheregionhasbeencontinuouslysubjected to selection for yield,yield stability, end-usequalities, farming preferences, and disease resistance(Barrettand Kidwell,1998; Chen,2005;SchillingerandPapendick,2008).Donaldson(1996) indicatedthatwheatcultivarsadaptedtotheregioncontain signif-icantvariationsforemergence,earlycanopyestablishment,root growth and development,winter survival, osmoticadjustment, optimum maturity, and plant architecture. Barret and Kidwell (1998)attributedthebroadandstratifiedgeneticbasisforthese agronomictraitstothebreedingeffortinregionthathasbeenin placeformorethanacentury.Similarly,thestudypopulationis knowntohaveageneticstratificationthatalignwithmarketclass andbreedinghistory.Inparticular,populationstructureanalysis differentiatedhardwintergenotypesfromclubwintergenotypes withonlyaslightoverlap(Naruokaetal.,2015).

Genotypeswereselectedfrommappingpopulations,advanced breedinglines,and cultivars fromPNWbreedingprograms tar-getedtoOregon,Washington,andIdaho.Thehardredwinterwheat cultivar‘Norwest553’(PI655030)andthesoftwhitewinter cul-tivar‘Madsen’(PI511673)wereincludedaslocalchecks.Madsen isknownforitswideadaptationanddiseaseresistanceandhas beengrowninthePNWforover20years,whereasNorwest553 hashighyieldpotential,gooddiseaseresistance,andwasthemost commonlygrownhardredcultivarinthePNWwhenthetrialwas initiated.Becausebothaccessionshavesemi-dwarfplantheight andphotoperiodsensitivity,thevariationacrossyearsand loca-tionsisexpectedtohaveloweffectontheirperformancemaking themideallysuitedtoaccountforspatialvariationswithineach trial.

2.2. Experimentalconditionsandfielddesign

The studypopulationwas grownin three moisture regimes atthefollowingWashingtonStateUniversityagronomyresearch farms:CentralFerry(46◦4N;117◦8W),Pullman(46◦4N;117◦ 5W),andOthello(46◦5N;119◦2W)(Table1).CentralFerryhasa

(3)

Table1

Geographicallocation,soiltype,precipitation,andgrowingdegreedaysofthethreeexperimentalsites.

Variable CentralFerry Pullman Othello

Geographicposition(Lat,Long) 46.4;117.8 46.4;117.5 46.5;119.2

Altitude(masl) 206 717 323

Precipitation(mm)a 317 533 214

Growingdegreedays(GDD,◦C)b 3408 2138 2774

Soiltype Chardsiltloam Palousesiltloam Shanosiltloam

YearsofexperimentRain-fed 2012–2014(3) 2012–2014(3) 2013(1)

Irrigated 2013–2014(2) 2013(1)

aCumulativeprecipitationinthegrowingseasonsinmillimeters.

b Calculatedforgrowingseasonsofthestudyperiodsusing0Casbasetemperature.

well-drainedandmoderatelypermeableChardsiltloamsoilwith waterholdingcapacityrangingfrom220–280mm.Othellohasa well-drainedandmoderatelypermeableShanosiltloamsoilwith 170–220mmwaterholdingcapacity.ThePalousesiltloamsoilin Pullmanisthemostfertileandhighlycultivated soilwithdeep profile,moderatepermeability,andhighwaterholdingcapacity. Plantingofwinterwheatinthestudyareaisusuallybetweenlate Septemberandmid-October.Theannualrainfallishighestin Pull-manfollowedbyCentral FerryandOthello(Table1).In Central FerryandOthello,thepopulationwasplantedintwotreatments,a rain-fedplantingrepresentingthedroughtconditionandirrigated treatmentrepresentingthewateroptimumcondition.InPullman, thepopulationwasplantedonlyinarain-fedcondition represent-ingthemoist-coolcondition.Theirrigatedtrialswereconducted usingsolid-setsprinklersystemsfor4–8h,oneortwotimesaweek dependingontheweather.Overheadsprinklerirrigationsystemis recommendedintheregiontominimizerunoff.Thissystem deliv-eredapproximately600mm of waterover thegrowingseason. Irrigationstartedonbooting(Feekes9),beforethesoilmoisture depletesandanysignofstresswasdetected,andcontinueduntil theonsetofphysiologicalmaturity.

In all trials, a modified augmented design (Federer and Raghavarao, 1975; Lin and Poushinsky, 1983) was used with 16–20%oftheplotsassignedtothereplicatedlocalchecks, Nor-west553andMadsen.PlantingwasdoneusingaWintersteigerplot seeder(WintersteigerAG,Austria).Theseedingrateswere5.4g/m2

fordroughtand10.8g/m2forbothirrigatedandmoist-cool

rain-fedtreatmentsin4.65m2plots.Pre-plantseedtreatmentwasdone

with Sedaxane+Difenoconazole+Mefenoxam+Thiamethoxam (Cruisermaxx Vibrance®, EPA Reg. No. 100-1383, at 0.06% by

weight of the product; Syngenta Crop Protection, Greensboro NC) for healthy root growth. Fungicide (Quilt®, 140g/ha) and

herbicides (HuskieTM—840g/ha, Starene®—7m00g/ha, and

PowerFlex®—140g/ha)wereappliedatFeekesstages4–6

follow-inglabelinstructions.Thiswasdonetoeliminatetheconfounding effects ofstripe rustresistanceand herbaceous weedsonyield potential.

2.3. Measurementandcalculationoftraits

Headingdatewasrecordedasthenumberofdaysfrom sow-inguntilfullexposureofspikesin50%oftheplot.Plantheight (PHT)wasmeasuredbetweenthebaseoftheplantstandandthe tipoffullyemergedspikeexcludingawns.Peduncleextrusion(PE) wasmeasuredastheportionofpedunclethatemergedoutofits sheath.Degreeofflagleafgreennesswasvisuallyscoredona1–10 scale(1=fullysenescedand10=fullygreen)threetimesbetween headingdateandphysiologicalmaturity.Canopyreflectancewas measuredusingahandheldCROPSCANmultispectralradiometer (CROPSCAN,Inc.Rochester,USA)installedwithfiltersthat selec-tively measure incident and reflected radiation at 16 different wavelengthsbetween 430and 970nm. Threeto five measure-mentsweretakenperplotatonetotwoweekintervalsbetween

headingandlategrain-fill.Whiletheup-wellingsensormeasures theincomingradiation,thedown-wellingsensorpositioned40cm abovethecanopymeasurethereflectionfromplantsurface.All reflectancemeasurement wasdonebetween10a.m.and 2a.m. avoidingshadow,cloud,andstrongwind.Ahandheldinfrared ther-mometer(SixthSenseLT300,TotalTemperatureInstrumentation, Inc.,Burlington,VT)wasusedtomeasurecanopytemperature(CT) duringthegrainfillstages(Feekes10–11).Plotswereharvested withaWintersteigerNurseryMastersmallplotcombine (Winter-steigerAG,Austria)afterripening(Feekes11).Grainyield(t/ha) wascalculatedfromthegrainweightperplot.Thousandkernel weight(g)andtest weight(kg/hl)wereprocessedfromsample grainwhereasgrainnumberperspike (count)wasobtainedby hand-threshingandcountinggrainnumbersinfivespikes sam-pledfromtheplots.In2014,spectralreflectancevalueswerenot collectedonallplotentries,andthusthesedataonlyrepresent2012 and2013measurements.

Genotypicstaygreen(SG)wascalculatedfrommultiplescores offlagleafgreennessasareaundergreennesscurvebyslightly modifyingthemethodtoestimatetheareaunderSPADdecline curve(AUSDC)inRosyaraetal.(2007):

SG=n−1 i=1

G(i)+G(i+1) 2

∗[D(i+1)−D(i)]

whereG(i)andG(i+1)areconsecutivescoresofflagleaf green-ness,andD(i)andD(i+1)aredaysaftersowingfor(Gi)andG(i+1) measurements,respectively.

Reflectancevalueswereusedtoderivesevenvegetationindices thatarepresentedinTable2.Threedifferentparametersderived fromNDVIhavebeenpreviouslyreportedtobeeffectiveestimators ofthedegreeofgreenness(pigmentabundance),rateof senes-cence, and stay green duration:NDVIat specificgrowth stages (Babaretal.,2006;Edaeetal.,2014;Liuetal.,2015),slopeofNDVI over growthstages (Lopes andReynolds, 2012), andarithmetic meanofNDVIovergrowthstages(Babaretal.,2006).Wetested theseapproachesalongwithtwonewparameters:areaunder veg-etationindexcurve(AUVIC)modifiedfromRosyaraetal.(2007) andweightedmean,whichusesthepopulationmeanofeach mea-surementasaweightingfactor.Wecalculatedtheseparameters forallstudiedvegetationindicesandtestedtheirphenotypic asso-ciationswithgrainyield.Staygreenestimatesbasedonflagleaf senescencewerealsocomparedwithgrowth-specificreflectance indicesandthederivedparameters.

2.4. Dataanalysis

Traitvalueswereadjustedforspatialvariationwithineachfield experiment(calledtrialhereafter)usingtheMIXEDprocedure(SAS, Cary,NC)whichaccountsforthefixedeffectofun-replicated geno-types and random effect of blocks in a mixed linear model as follows:

(4)

Table2

Vegetationindicesevaluatedasproxiesforstaygreen,grainyield,anddroughttoleranceinPacificNorthwestwinterwheat.

VegetationIndex Formulab References

Normalizeddifferencevegetationindex(NDVI) (R800−R680)/(R800+R680) Rouseetal.,1973

Simpleratio(SR) R800/R680 Stenbergetal.,2004

Green-NDVI(GNDVI) (R780−R550)/(R780+R550) Gitelsonetal.,1996

Photochemicalreflectanceindex(PRI) (R530−R570)/(R530+R570) Pe ˜nuelasetal.,1993

Normalizedchlorophyllpigmentratioindex(NCPI) (R680−R430)/(R680+R430) Pe ˜nuelasetal.,1993

Anthocyaninreflectanceindex(ARI) R800(1/R550−1/R700) Gitelsonetal.,2002

Normalizedwaterbandindex(NWI)a (R

900−R970)/(R900+R970) Babaretal.,2006

Xanthophyllpigmentepoxidationstate(XES) R531 Pe ˜nuelasetal.,1995

aTheformulaforNWIisslightlymodifiedsothatithassimilardimensiontohydrationstatus. bTheletter“R”followedbythreedigitnumberstandsforwavelengthofrespectivereflectance.

where␮istheoveralltraitmean,␶ijisthecalculatedestimatorused

toadjustmeanofgenotypeiwithintheblockj,bjistheeffectof

blockj,andeijismodelresidualcalculatedfromreplicatedchecks.

Adjustedtraitvalueisobtainedbyadding␮and␶ij.

Analysisofvariancewasperformedusingthefollowing equa-tion to determine if there was significant effect of genotype, environment(years,locationsandmoistureregimes),and geno-type×environmentinteractiononthetraits:

Yijkl= ␮+Ei+Bji+Gk+GEik+eijkl

whereYijklisthemeasurementofgenotypekonplotlinblockj,and

triali;␮istheoverallmeanofallplotsinalltrials;Eiistheeffectof

triali;Bjiistheeffectofblockjwithintrialiusingreplicatedcheck;

Gkistheeffectofgenotypek;GEikistheinteractionofgenotypei

withtrialk;eijklistheplotresidual.

Stressintensityofeachmoistureregimewascalculated accord-ingtoFischerandMaurer(1978):

SI=1−

¯ i ¯ p

where−Yi ismeanyieldunderstressand

Ypismeanyieldunder

optimumcondition.Cumulatedgrowingdegreedays(GDD)was calculatedfromthemaximumdayandnighttemperatureusing 0◦Casbaselineinawheatthermalmodel(modifiedfromSaiyed etal.,2009).

The phenotypic correlation coefficients (r) between the LS-means of spectral reflectance and grain yield were calculated overallpopulationand withinnarrowphenology groups(lower 25percentile—early;25–75percentile—intermediate;andtop25 percentile—late ear emergence) using multivariate CORR func-tion(SAS,Cary,NC).Principalcomponentanalysiswasperformed amongtraitsusing genotypictraitvaluesin ordertoinfer pop-ulationdifferentiation,covariance among traits,and reducethe numberofyieldpredictivevariables.

3. Results

3.1. Environmentalconditionsandgermplasmresponses

Moisturedeficitindroughttreatmentstartedatbootingstage (Feekes9)andprogressivelyincreasedthroughmaturity.Pullman receivedthehighestprecipitationandlowesttemperaturewhereas Othelloreceivedlowest precipitationand intermediate temper-atureand CentralFerryreceivedintermediate precipitationand highesttemperature(Fig.1).TheirrigatedtrialsinCentralFerry and Othello differedin theirmaximum temperatureas wellas respectiveaccumulatedgrowingdegreedays.Themoistureand temperaturegradientobservedinthisstudyrepresentdistinctive growingconditionswithconsiderableyielddifferences.The pres-enceofpopulationstratificationhadsignificanteffectonalltraits (p<0.05),thehighesteffectbeingongrainnumberperspike(38%).

3.2. Responseingrainyieldandyieldcomponents

Thehighestyieldwasrecordedin moist-coolrain-fed condi-tion followed by irrigated and drought conditions, respectively (Table3).Stressintensity(SI)inthedroughtcondition,calculated asreductionofgrainyieldinreferencetomoist-cooltreatment, was52%forhardwinterand55%forsoftwinterwheat.Thisresult suggeststhatdroughtintensityandyieldresponseofwinterwheat germplasmwasaffectedbythecombinationofhightemperature andsoilmoisturedeficit(Fig.1).Thetwoclasses ofwheat(soft andhard)respondedsimilarlytothewatertreatments.The irri-gatedconditionshowed36 and 30%SI in hard andsoft winter subpopulations,respectively.Theyieldvariationacrossyearsand locationswassignificantinalltreatments(p<0.001,Fig.2a).The yieldincreaseinresponsetoirrigationwas15%inCentralFerryand 45%inOthello.Alinearregressionmodelindicatedthatdifferences inwaterregimeandtemperatureexplained77%(p<0.001)ofthe variationinyieldwithabout10%moreyieldvariationattributedto theinteractionofavailablemoistureandtemperature(Fig.2b).

Likegrainyield,thousandkernelweightwaslowestindrought, intermediateinirrigated,andhighestinmoist-coolrain-fed condi-tion.Themoist-coolrain-fedconditionshowedhighesttestweight andlowestgrainnumberperspike.Irrigatedanddrought condi-tionsdidn’tshowconsistentandstatisticallysignificantdifference ingrainnumberandtestweight.Thesoftwinterwheatsubgroup hadhighergrainnumberperspikecomparetohardwinterinall environmentalconditions.Thousandkernelweightandtestweight were significantly higher in hard winter wheat under drought condition,butdidn’tshowsignificantdifferencebetweenthe sub-groupsundermoist-coolrain-fedandirrigatedconditions.

3.3. Responseinphenology:headingdateandstaygreen

Headingwaslateinmoist-coolrain-fedcondition,intermediate in irrigated,and earlyindroughtconditions (Table3).In refer-encetomoist-coolcondition,earlyearemergencewasobserved underdrought(4.7–6.3%)andirrigation(3.0–4.2%).Headingdate andstay greenshowedadirectrelationship,thehighest degree ofstaygreenbeingobtainedinlateheadinggenotypesfollowedby mediumandearlygenotypes(Fig.3).Differenceinphenologyposes aconfoundingeffectonhydrationstatusandsubsequentlyonthe relationshipbetweenyieldandcomponenttraits.Tominimizethis confoundingeffect,thestudypopulationwasdividedintoearly, intermediate,andlatephenologysubgroups.Genotypeswith head-ingdatelowerthanthe25percentilecutoffweregroupedasearly phenologygroups.Genotypeswithheadingdatebetween25and 75percentileweregroupedasintermediatephenology;and geneo-typeswithheadingdateabovethe25percentileweregroupedas latephenologygroups.

(5)

Fig.1. Cumulativeprecipitationandtemperatureoftheexperimentalsitesin2012–2013growingseason:Lowesttemperatureandhighestprecipitationwasobtainedin Pullman;intermediatetemperatureandlowestprecipitationinOthello;andhighesttemperatureandintermediateprecipitationinCentralFerry.

Table3

Descriptivesummaryofgrainyield,yieldcomponents,headingdate,stay-green,andspectralreflectanceindicesinPNWwinterwheat:Meansandstandarderrors(SE)were calculatedfrommultipletrialswithintreatments.

Traita Hardb Soft

Drought Irrigated MoistcoolRFc Drought Irrigated MoistcoolRF

Mean SEd Mean SE Mean SE Mean SE Mean SE Mean SE

DTH 222.26c 0.208 226.52b 0.201 234.06a 0.323 225.46c 0.076 229.53b 0.118 236.04a 0.182 SG 0.87c 0.023 1.01b 0.028 1.10a 0.027 1.02c 0.015 1.16a 0.013 1.09b 0.017 Yield 3.61c 0.052 4.91b 0.100 7.42b 0.097 3.60c 0.028 5.68b 0.051 8.04a 0.047 GNS 36.32b 0.727 41.05a 0.675 31.29c 0.602 46.10a 0.444 44.74b 0.446 36.49c 0.341 TKW 32.83c 0.306 34.68b 0.334 35.73a 0.363 31.06c 0.176 34.63b 0.175 36.52a 0.240 TW 75.15b 0.166 73.51c 0.181 76.93a 0.141 73.48b 0.089 73.06b 0.090 76.09a 0.062 PHT 93.54c 0.975 112.33a 1.176 108.73b 1.242 81.66c 0.391 103.39a 0.399 95.13b 0.470 PE 13.24b 0.387 20.96a 0.576 21.20a 0.483 9.44c 0.163 18.74a 0.191 14.93b 0.173 CT 26.32a 0.115 23.11b 0.086 23.07b 0.088 24.58b 0.076 22.27c 0.129 28.33a 0.207 NDVI 0.66c 0.006 0.76a 0.012 0.75b 0.006 0.68c 0.003 0.81a 0.005 0.77b 0.003 SR 5.69c 0.075 7.72a 0.239 6.36b 0.085 6.19c 0.050 8.76a 0.117 6.81b 0.051 GNDVI 0.66c 0.004 0.70a 0.009 0.69b 0.004 0.67c 0.002 0.74a 0.004 0.71b 0.002 NWI 0.04c 0.001 0.08a 0.002 0.08a 0.001 0.05c 0.001 0.09a 0.001 0.08b 0.001 PRI −0.11a 0.001 0.11a 0.001 0.12b 0.001 0.10a 0.000 0.10a 0.001 0.11b 0.001 NCPI 0.46a 0.006 0.34c 0.015 0.39b 0.006 0.40a 0.003 0.31c 0.007 0.36b 0.002 ARI 0.89a 0.035 0.33c 0.103 0.40b 0.038 0.62a 0.016 0.58c 0.055 0.21b 0.018 XES 5.01a 0.023 4.94a,b 0.026 4.78b 0.028 4.94a 0.026 4.38b 0.028 4.38b 0.023

Differentsuperscriptacrossmoistureregimeswithinthesamemarketclassshowsstatisticallysignificantdifference(Alpha=0.05).

aDTHdaystoheading(measuredindaysaftersowing),NWInormalizedwaterindex,PRIphotochemicalreflectanceindex,NCPInormalizedchlorophyll-pigmentratio

index,ARIanthocyaninreflectanceindexSGstaygreen,NDVInormalizeddifferencevegetationindex,SRsimpleratio,XESxanthophyllpigmentepoxidationstate,Yield

measuredin(t/ha),GNSgrainnumberperspike,TKWthousandkernelweight(g),TWtestweight(kg/hl),PHTplantheight(cm),PEPeduncleextrusion(cm),CTcanopy temperature(◦C).

b Hardandsoftgroupsrepresentthetwomarketclassesthatdelineatethetwosubpopulations. c Moist-coolrain-fedenvironmentwasthehighprecipitationconditioninPullman,WA. d SEwascalculatedfrommultipletrialswithintreatments.

3.4. Responsesinplantheightandpeduncleextrusion

Plantheightwaslowestindrought,intermediateinhigh pre-cipitation,andhighestinirrigatedenvironments.Thesoftwinter

subgrouphadsignificantlylowermeanplantheightthanthehard wintersubgroup.Peduncleextrusionshowedthesecondhighest responsetodrought(40–50%reduction)nexttoyieldreduction.

(6)

Fig.2.(a)Meangrainyieldovertrials(CF,OTandPUstandsforCentralFerry,OthelloandPullmanexperimentalsites,respectively;andthetwodigitsstandsforyearof experiment2012and2013)and(b)modelexplaininggrainyield(t/ha)byenvironmentalvariables(precipitationandthermaltime).

Fig.3. Meanstaygreenestimatebasedonflagleafsenescencescoreinearly, medium,andlateheadinggenotypesofhardwintersubgroupindrought,irrigated, andhighprecipitationconditions.

3.5. Responseinreflectanceindicesandcanopytemperature

Treatmentsshowedsignificantdifferencesingrowth-specific SRImeasurements,theirmeans,andrateofdeclineovergrowth stages(Table3).NDVI,SR,GNDVI,andNWIwerehighestin irri-gatedcondition,intermediateinmoistcoolrain-fed,andlowestin droughtcondition(Table3).Conversely,NCPIandARIwere low-estinirrigatedcondition,intermediateinmoist-coolrain-fed,and highestindroughtcondition.Therewasnosignificantdifferencein meanPRIbetweentreatments.TheoverallrateofNDVIdeclinewas highestindrought,intermediateinmoist-coolrain-fed,and low-estinirrigatedcondition.NDVIdeclinebetweenheadingandearly grainfillwaslowestinmoist-coolrain-fedfollowedbyirrigated anddrought(Fig.4).Canopytemperatureinrain-fedconditionwas higherthanirrigatedconditions.TheCTmeasurementunder moist-coolrain-fedconditioninsoftwinterwheatwasexcludedfrom analysisforitsinconsistency.

3.6. Phenotypicassociationbetweengrainyieldandvarioustraits

Grainyieldshowedpositivecorrelationwithgrainnumberper spikeinhardwinterwheatandwiththousandkernelweightin

Fig.4.TrendofNDVIdeclineovergrowthstagesinPNWwinterwheatpopulation underdrought,irrigated,andmoist-coolrain-fedconditions.

softwinterconsistentlyacrossmoistureregimes(Table4).Insoft winterwheat,grainnumberperspikeandthousandkernelweight werenegativelycorrelatedunderallenvironmentswhereasinhard winter,thenegativecorrelationwasstatisticallysignificantonlyin theirrigatedcondition.

Thecorrelationbetweengrainyieldanddaystoheadingunder droughtconditionwasnotstatisticallysignificantinboth subpopu-lations.Inthehardwintersubgroup,grainyieldanddaystoheading werepositivelycorrelatedunderirrigatedandmoist-coolrain-fed conditions,whereasinsoftwintersubgroupslightlynegative cor-relationwasobtainedunderirrigatedcondition(Table4).Insoft winterwheat,thousandkernelweightwasnegativelycorrelated withdays to headingin both subpopulations and across mois-tureregimeseventhoughtheassociationinhardwinter wheat wasweakandstatisticallyinsignificantunderdroughtcondition (r=0.13;p=0.26).

Negativecorrelationbetweengrainyieldandplantheightwas obtained in hard winter wheat under all moisture conditions whereasinsoftwinterwheat,thesetwotraitsshowedpositive cor-relationunderdrought,negativeunderirrigation,andstatistically insignificantundermoist-coolrain-fedcondition.Peduncle extru-sionandgrainyieldwerepositivelycorrelatedunderdroughtand moistcoolrain-fedconditionsinsoftwinterwhereasthetwotraits didn’tshowsignificantassociationinhardwinterwheat.

Yield was positively correlated with NDVI, SR, GNDVI, and PRI,andnegativelycorrelatedwithNCPI,ARI,andXES(p<0.001) (Table5).Generally,reflectanceindicestakenatmid-grain-fillstage showedstrongercorrelationwithgrainyieldascomparedtoother

(7)

Table4

PhenotypiccorrelationsofdevelopmentaltraitsandyieldcomponentsinPacificNorthwestwinterwheatunderdrought,irrigated,andmoist-coolrain-fedenvironments (associationinsoftwinterispresentedinupperdiagonalandtheassociationinhardwinterwheatispresentedinlowerdiagonal).

Variablea TRTb GY GNS TKW TW DTH PHT PE CT

Rc Sig.d r Sig. r Sig. r Sig. r Sig. r Sig. r Sig. r Sig.

GY I 0.10 0.08 0.20 *** 0.24 **** −0.08 ns 0.34 **** 0.33 **** −0.15 * II −0.03 ns 0.21 **** 0.11 0.07 −0.14 −0.19 ** −0.02 ns −0.09 ns III 0.08 ns 0.26 *** −0.12 * 0.09 ns 0.08 ns 0.21 *** −0.24 **** GNS I 0.28 * −0.38 **** −0.39 **** 0.16 ** −0.10 ns −0.19 *** 0.16 ** II 0.36 ** −0.19 ** −0.36 **** 0.18 ** 0.00 ns −0.17 ** −0.05 ns III 0.23 0.06 −0.22 *** −0.25 **** 0.08 ns −0.12 * −0.21 *** 0.22 *** TKW I 0.16 ns 0.07 ns 0.34 **** −0.23 **** 0.17 ** 0.15 * −0.21 *** II 0.02 ns −0.31 ** 0.14 * −0.28 **** −0.08 ns −0.04 ns 0.05 ns III 0.02 ns −0.03 ns 0.25 **** −0.15 ** 0.03 ns 0.09 ns 0.01 ns TW I −0.02 ns 0.15 ns −0.07 ns −0.07 ns 0.33 **** 0.24 **** −0.11 0.06 II −0.01 ns −0.26 * 0.04 *** −0.26 **** 0.14 * 0.05 ns −0.05 ns III −0.14 ns −0.09 ns 0.11 *** −0.20 *** 0.19 ** 0.11 0.07 −0.13 * DTH I −0.05 ns −0.08 ns −0.13 *** −0.41 *** 0.14 * −0.10 0.07 0.08 ns II 0.23 8 0.18 ns −0.23 * −0.20 0.07 0.34 **** 0.01 ns −0.10 ns III 0.35 ** 0.15 ns −0.36 ** −0.43 *** 0.31 **** 0.22 *** −0.04 ns PHT I −0.21 0.07 −0.04 ns −0.04 ns 0.02 ns 0.02 ns 0.32 **** −0.20 *** II −0.28 ** 0.07 ns −0.20 0.07 0.15 ns −0.04 ns 0.33 **** −0.18 ** III −0.32 ** 0.17 ns −0.19 ns −0.16 ns 0.07 ns 0.47 **** −0.38 **** PE I 0.09 ns 0.03 ns −0.05 ns 0.08 ns −0.11 ns 0.47 **** −0.19 ** II 0.08 ns 0.01 ns −0.12 ns 0.22 * 0.07 ns 0.11 ns −0.06 ns III −0.15 ns 0.29 * −0.25 * −0.19 ns 0.23 0.06 0.71 **** −0.21 *** CT I −0.05 ns 0.01 ns −0.35 ** −0.03 ns 0.03 ns −0.35 ** −0.24 * −0.05 II −0.22 * −0.04 ns −0.08 ns −0.03 ns −0.03 ns 0.17 ns −0.08 ns −0.22 III −0.03 ns −0.14 ns −0.06 ns 0.07 ns −0.06 ns 0.09 ns −0.13 ns −0.03

aGYGrainyield,GNSGrainnumberperspike,TKWthousandkernelweight,TWtestweight,DTHdaystoheading,PHTplantheight,PEpeduncleextrusion,CTcanopy

temperature.

b Treatmentsrepresentingdrought(I)irrigated(II),andmoistcoolrain-fed(III)conditions. c rCorrelationcoefficient.

d Statisticalsignificanceasindicatedbyp-valuensnonsignificant:*p<0.05,**p<0.01,***p<0.001,****p<0.0001.Non-significantassociationsclosetothe0.05thresholds

areindicatedasactualpvalue.

Table5

PhenotypiccorrelationofgrainyieldwithmeanvegetationindicesderivedfrommultiplemeasurementsacrossgrowthstagesinPacificNorthwestwinterwheat.

Subgroup Traita Drought Irrigated Moist-coolrain-fed

Earlyb Medium Late Early Medium Late Early Medium Late

Hardwinterwheat NDVI 0.51c 0.62 0.45 0.70 0.48 0.62 0.73 0.67 0.66

SR 0.60 0.61 0.47 0.82 0.62 0.70 0.84 0.77 0.77 GNDVI 0.50 0.55 0.40 0.81 0.65 0.73 0.77 0.69 0.71 NWI 0.69 0.78 0.66 0.72 0.53 0.63 0.82 0.76 0.69 PRI 0.38 0.45 0.27 0.74 0.52 0.48 0.66 0.63 0.52 NCPI −0.52 −0.73 −0.61 −0.71 −0.46 −0.53 −0.75 −0.70 −0.68 ARI −0.59 −0.70 −0.69 −0.71 −0.46 −0.51 −0.82 −0.79 −0.74 XES −0.59 −0.13 −0.25 −0.67 −0.41 −0.75 −0.61 −0.46 −0.66

Softwinterwheat NDVI 0.65 0.68 0.68 0.49 0.51 0.35 0.54 0.37 0.41

SR 0.64 0.60 0.65 0.51 0.54 0.31 0.66 0.51 0.50 GNDVI 0.65 0.68 0.68 0.50 0.62 0.21 0.56 0.41 0.50 NWI 0.76 0.75 0.70 0.63 0.67 0.46 0.68 0.59 0.39 PRI 0.24 0.20 0.43 0.33 0.21 0.23 0.27 0.30 0.26 NCPI −0.59 −0.55 −0.60 −0.50 −0.38 −0.33 −0.54 −0.46 −0.38 ARI −0.65 −0.57 −0.66 −0.48 −0.44 −0.31 −0.68 −0.59 −0.51 XES −0.35 −0.41 −0.40 −0.33 −0.33 −0.26 −0.47 −0.35 −0.29

aNDVInormalizeddifferencevegetationindex,NWInormalizedwaterindex,PRIphotochemicalreflectanceindex,NCPInormalizedchlorophyll-pigmentratioindex,ARI

anthocyaninreflectanceindex,SGstaygreen,SRsimpleratio,XESxanthophyllpigmentepoxidationstate.

b Early,medium,andlaterepresentsphenologygroupsbasedontherespectiveheadingdate. c Allcorrelationsweresignificantatp=0.01.

growthstages(Table6).However,thegrowthstagespecific mea-surementsandtheirslopeovergrowthstagewerelessconsistent amongtrials(Table6).

Grainyieldshowedconsistentlypositivecorrelationwithstay greenacrossmoisturecategories(S.Fig.1).Thecorrelationsofgrain number perspike and thousandkernel weightwith NWIwere statistically significant and consistent across moisture regimes

(p<0.05)whereastheassociationswithotherindiceswereeither populationorenvironmentdependent(datanotshown).Canopy temperatureshowednegative correlationswithgrainyield and thousandkernelweightthatwerestatisticallysignificantatleast inonemoistureregime(p<0.05).Canopytemperaturewasalso significantlyassociatedwithplantheight(Table4)andvarious

(8)

veg-Table6

Phenotypiccorrelationofgrainyieldwithgrowthstage-specificNDVImeasurementsandparametersderivedfrommultiplemeasurements. Subgroupa Parameterb Trialsc

I II III IV V VI VII Hard AUVIC 0.65 0.42 0.48 0.50 0.69 0.50 0.57 Slope 0.06 0.48 0.43 0.38 0.66 0.49 0.25 Mean 0.66 0.50 0.50 0.45 0.67 0.70 0.55 Heading 0.55 0.39 0.13 0.22 0.11 0.47 0.30 EarlyGF 0.67 0.44 0.54 0.52 0.09 0.69 0.46 MidGF 0.60 0.52 0.47 0.50 0.73 0.70 0.58 LateGF 0.41 0.47 0.40 0.35 0.62 0.68 0.37 Soft AUVIC 0.71 0.64 0.36 0.28 0.64 0.65 0.50 Slope 0.31 0.47 0.25 0.10 0.53 0.66 0.30 Mean 0.72 0.50 0.37 0.28 0.64 0.67 0.50 Heading 0.56 0.02 0.10 0.33 0.56 0.41 0.29 EarlyGF 0.58 0.49 0.42 0.32 0.39 0.64 0.47 MidGF 0.71 0.54 0.43 0.29 0.63 0.64 0.45 LateGF 0.55 0.42 0.11 0.06 0.56 0.67 0.43

aHardandsoftmarketclasseswereconsideredaspopulationsubgroups.

bAUVICareaundervegetationindexcurve,slopeandmeanofNDVIcalculatedfromgrowth.

c ICentralFerry2012(rain-fed),IICentralFerry2013(rain-fed),IIICentralFerry2013(irrigated),IVPullman2012(rain-fed),VPullman2013(rain-fed),VIOthello2013

(rain-fed),VIIOthello2013(irrigated).

etationindicesatleastindroughtandirrigatedconditions(datanot shown).

Overall,higheryieldwasassociatedwithhigherNDVIat grain-fillstages(Feekes10–Feekes11)(S.Fig.3)andalowrateofNDVI declineovergrowthstages(Fig.5).Correlationcoefficientswere strongandconsistentacrossenvironmentsandsubgroupswhen theaverageof SRIwasused. Genotypesthat havelow yield in rain-fedconditionsexhibitedthelowestmeanNDVIandsharpest declineovergrowthstages.Themoistcoolrain-fedconditionhad lower meanNDVI than that of irrigated conditionat all stages exceptattheearlygrain-fill(Fig.5).DespitethislowerNDVI, high-estyieldwasscoredinthemoist coolrain-fedconditiondueto thelongervegetativeperiod(pre-heading)anddelayedonsetof physiologicalmaturity.

Similar to the stay green character, growth stage-specific reflectanceindicesandtheirderivedparameterswerestrongly cor-relatedwithheadingdate.Ingeneral,ARI,andNCPIwerehigherin earlygenotypesfollowedbyintermediateandlate.GNDVI,NDVI, NWI,PRI,andSRweregenerallyhigherinlateheadinggenotypes followedbymediumandearlyheadinggroupswiththeexception thatNWIunderdroughtandPRIunderirrigationdidn’tshow sig-nificantdifferencesamongearly,intermediate,andlateheading genotypes.

Thestaygreen estimatecalculatedfromflagleafsenescence wasmoderatelycorrelatedwithcanopylevelstaygreen.The cor-relationofstaygreenwithAUVICrangedfrom0.41to0.73inthe overallpopulationandfrom0.26to0.76withinphenology-based subgroups.Amongthegrowthstage-specificNDVImeasurements, thehighestcorrelationwasobtainedeitherinthemidorlategrain fillstage(r=0.58to0.78;p<0.001).Theassociationwasstatistically significantandindependenttothetimeoftransitioningbetween vegetativeandreproductivephases(S.Fig.3).

3.7. Principalcomponentanalysisoftraits

The principal component analysis based on covariance of agronomicandremotelysensedtraitsrevealedaremarkable dif-ferentiationofthePacificNorthwestwinterwheatthatalignwith thesoft andhardwinterwheatmarketclasses(Fig.6).Thesoft whiteandclubwhitesubgroupsshowedhighdegreeofoverlapin thisanalysis.Thefirstthreeprincipalcomponentsexplained76%of traitcovarianceacrosstrials,twoofwhichaccountedforthe53%. Thethreecomponentscumulativelyexplained75%,89%,and84% ofcovarianceamongtraitsunderdrought,irrigated,andmoistcool

rain-fedconditions,respectively.Inallconditions,ARI,NCPI,and CTwerepositionedincloseproximitywitheachotheranddistant fromtheothertraitsincludingyield(Fig.6),whichisinagreement withthenegativeassociationobtainedthroughcorrelation anal-ysis(Table5).Thetraitsthatweredifferentiatedacrossthefirst dimensionofPCAarepresumedtobeinformativeforcomparative assessmentofgenotypesacrossthesubgroupsthatwereslightly differentiatedin theseconddimension.However,this hastobe furtherinvestigatedtodeterminetherelevantdimensionsthatcan betranslatedtoindicationofagronomicperformance.

Likewise,thepositions ofGNDVI,NDVI,NDVI,NWI,PRI,and SRweremostlywithina90◦radiusrelativetoyieldindicatingthe positivephenotypicassociation.Similarevaluationoftherelative distanceamongindicessuggeststhatARI,NCPI,PRI,andNDVIhave moderateco-linearityamongoneanotherandshowbetter repre-sentationoftheprincipalcomponents.Ontheotherhand,GNDVI andSRwerepositionedin closeproximitywithNDVIand NWI, respectively,indicatingstrongerco-linearityandpossible redun-dancyofinformation.

4. Discussion

Thehighestyieldrecordedinmoistcoolrain-fedconditionis consistentwiththehistoricalyieldaverageofthesiteandismainly attributed toits cool-moist growingcondition. In contrast, the droughtstressobservedinthisstudy(Fig.1)isatypicalpatternin PNWsemiaridareasthatstartswithlowsoilwaterbudgetduring plantingandprogressivelyworsensthroughgrainfill(Donaldson, 1996).OthelloandCentralFerryexperiencewarmersummersthat exacerbatethedroughtstress.Evenwhenoptimumsoilmoisture wasmaintainedthroughirrigation,theheatstresswassufficient totriggerearlysenescenceinmostofthePNWwinterwheat.The modelthataccountsforbothtemperatureandsoilmoistureclearly showedthatthedroughtstresswasacombinedeffectofmoisture deficitandhightemperaturewhichisatypicaldroughtscenarioin theregion(Milesetal.,2010).

ThehigheryieldresponsetoirrigationinOthellothanin Cen-tralFerrywasduetotherelativelyhightemperaturethatspedup theonsetofsenescenceandshortenedthegrain-filldurationin theCentralFerry.Theextendedpre-floweringgrowthandbiomass accumulation should be balanced with post-flowering assimi-lateusetomaximizeyieldgain fromirrigation(Reynoldsetal., 2001).Thephenologicaleventsbetweenplantingandphysiological maturityarehighlymodulatedbygenescontrollingvernalization

(9)

Fig.5.Growthstage-specificmeasurementsofNDVIanditsdeclinecurveovergrowthstages.TheY-axisshowsthemeanNDVIvalueandtheX-axisshowsthegrowthstage foreachNDVImeasurement.ThetrendofeachlineshowsthechangeinmeanNDVIacrossgrowthstages.

requirement(Vrn)andphotoperiodsensitivity(Ppd)which deter-minethestemelongation,flowering,andonsetofsenescence(Chen etal.,2010).PriorinformationindicatesthatPNWwinterwheatis predominantlyphotoperiodsensitive,meaningtheaccessionsdo nottransitiontoreproductivephasebeforefulfillingthe photope-riodrequirement(Santraetal.,2009).Asaresult,onlyafewlines ofthePNWaccessionswereobservedtoexhibitearlytransition toreproductivephaseandphysiologicalmaturity.Onthecontrary, linesthathavegeneticrelatednesstotheMidwestbreedinglines suchasJagger(PI593688)andKarl(PI564245)showedsubstantial degreeof earliness. Someof the allelic variationsin vernaliza-tionandphotoperiodresponsivenessgenesreportedlyhavestress adaptiveapplications.Such variants havebeenused todevelop earlymaturingwinterwheatvarietiesthataredesignedtoescape severeterminaldroughtandheatstress.Weobservedastrong cor-relationbetweenthetimetoheadingandphysiologicalmaturity.As aresult,mostoftheearlyvarietieshadlowbiomassaccumulation comparedtothelategenotypesasinferredfromNDVI measure-ments(Fig.4).

Inourstudy, thevariation inear emergencebetween treat-mentswasmainlyinresponsetotemperaturedifferences.Early earemergenceasaresultofmoisturedeficitwaslessthan2%when comparedtotheirrigatedconditionsinthesametemperature con-dition.Suchminimaldroughtresponseinphenologyisexpected

whenwaterdeficitoccursaftertheonsetofthereproductivestage. Insupporttothisclaim,thewaterstressinthisexperimentstarted atbootingstageandprogressivelyincreasedafterwards. Addition-ally,thesoilwaterbudgetmayhavedelayedtheonsetofdrought responseuntilafterheading.Thisfindingalsosuggeststhatgrain yieldishighlydeterminedbythosetraitsthatareexpressedduring thegrainfillstage.

4.1. Phenotypicassociationamongagronomictraits

Earlyheadingandcompletionoflifecyclebeforetheonsetof terminalheatanddroughtstressisperceivedasayield-positive adaptivemechanism. Suchadaptive mechanismsarecommonly usedinMidwestthroughcultivarslikeJagger andKarltoavoid terminalheatstress.However,wedidn’tobservea yield advan-tageofearlyheadingandearlyphysiologicalmaturityinourstudy. Earlymaturity doesn’thaveoverall yieldadvantagein environ-mentswheresoilmoisturedeficitoccurpost-floweringandannual rainfallfluctuatesbetweenyears(Foulkesetal.,2007).Early transi-tioningtoreproductivestagefollowedbyearlyonsetofsenescence hasapparentyieldadvantageinyearsofseverterminaldrought. Thispositiveassociationwasevidentin2013and2014growing seasonswhendroughtandhightemperaturestartedpostflowering andprogressedthereafter.However,earlytransitioningto

(10)

repro-Fig.6. Thefirsttwoprincipalcomponentsofgeneticcovarianceamongmajormarketclasses(left)andagronomicandphysiologicaltraits(right)inPacificNorthwest winterwheatpopulation:DTHdaystoheading,SGstaygreen,PHTplantheight,PEpeduncleextrusion,GYgrainyield,TWtestweight,TKWthousandkernelweight,CT

canopytemperature,NDVINormalizeddifferencevegetationindex,SRsimpleratio,NWINormalizedwaterindex,PRIPhotochemicalreflectanceindex,NCPINormalized chlorophyll-pigmentratioindex,ARIAnthocyaninreflectanceindex,XESXanthophyllpigmentepoxidationstate.

ductivestageinresponsetocombinedeffectofhightemperature andwaterdeficitwouldnothaveyieldadvantagewhenremnant soilmoistureisleftunusedasevidentin2012trial.These contrast-ingeffectsmighthavecompensatedwitheachotherresultinga neutraleffectofearlinessduringthestudyperiod.

Thelongvegetativeperiod(lateheading)observedunder irriga-tiondidn’tincreaseyield(Table4),suggestingthattheaccumulated assimilatesduringlongpre-floweringperiodwerenotcompletely utilized during the short grain fill duration (Understande and Christiansen,1986;SlaferandRawson,1994;Wheeleretal.,1996). Additionally,lackofstandardplantstatureinsomeaccessionsled tocontinuousincreasesinheightandverylatetransitionto repro-ductivephase,reducingoverallefficiencyofassimilatepartitioning (Marri etal.,2005).Ontheotherhand,thepositiveassociation betweenheadingdateandgrainyieldobservedinmoistcool rain-fedconditionresultedfromthelowertemperatureandoptimum soilmoisturewhichextendedthephysiologicallyactiveperiodfor assimilatesynthesis,reserve,andrelocationfornormalgrain devel-opment(LopesandReynolds,2012).Asaresult,geneticvariation inthis traitcouldbeutilized toimproveyield inenvironments thathavemoderatethermaltimeandremnantsoilmoistureasthe plantsareclosetomaturity.

Thetraitsthatshowedconsistentassociationwithgrainyield acrossenvironmentsmaybethemostdesiredtraitstostabilize yieldinthechangingenvironment.Thousandkernelweight,grain number perspike, andstay green fallin this category andwill allowfurtheryieldimprovement inwiderangeofenvironment. Thecompensatoryinteractionofgrainnumberandgrainweight washighlightedbythenegativecorrelationofthesetraitsinall moistureregimes.Thisrelationshipisattributedtoinsufficientrate anddurationofgrainfillasdiscussedinDuguidandBrule-Babel (1994).Duetothiscompensationeffect,breedersoftenimprove grainyieldeitherthroughimprovinggrainweightorgrainnumber perplant.Suchdifferentialselectionhistorymayhavecausedthe remarkabledifferentiationbetweensoftandhardmarketclassesof PNWwinterwheatinthedegreeofphenotypicassociationbetween thousandkernelweight,grainnumberperspike,andgrainyield. Ontheotherhand,theenvironmentspecificassociationsofgrain

yieldwithcanopytemperature,plantheight,anddaystoheading indicatethepossibilityofimprovinglocalproductivitybyselecting alternativevariantsofthesetraits.

Positive associationbetween yield and the stay green char-acterwasfoundinallstudiedconditions.Unlikephenologyand plantstature,staygreenisthegenotypicabilitytomaintain hydra-tionstatusandsystemintegrityandtosustainphotosynthesisand assimilaterelocation(ThomasandSmart,1993;Christopheretal., 2008).Thisresultsuggeststhat variation canbeutilized to co-improvebothyieldpotentialanddroughttoleranceinPNWwinter wheat.Genotypicstaygreencharacteristicscouldbeattributedto variousmorpho-physiologicaltraitssuchasrootaccesstodeepsoil moisture,efficienttranspirationsystem,andplantarchitecturethat wereintrogressedin duecourseoftheregionalbreedingeffort. Genotypesthathavehigherstaygreeninthisstudycanbefurther evaluatediftheypossess distinctivecompositionofthese alter-nativetraitsandexplorethepossibilityofaccumulatingthemto furtherincreaseagronomicperformance.

4.2. Relationshipbetweenreflectanceindicesandgrainyield

Ingeneral,SRIsmeasuredatmid-grain-fillweremorestrongly associatedwithyieldthanatothergrowthstages.Previousreports havesuggestedthatthisstageismoreinformativebecause geno-typicvariationsinleafareaindexandsubsequentlyinSRIsarelow duringheadingandearlyvegetativestages(Babaretal.,2006).In addition,earlymeasurementsarealsoconfoundedbysaturation problemsofsomeindices(unabletodiscerngenotypesfor sub-tledifferences)neartheirpeakvalue(JiangandHuete,2010).The correlationsacrossenvironmentsandsubgroupswereless consis-tentforgrowthstagespecificmeasurementsascomparedtothe parametersderivedfrommultiplegrowthstages(Table6).

ThecorrelationcoefficientsofgrainyieldwithNDVImeasuredat heading,earlygrainfill,andlategrainfillwerenotsignificantinat leastonetrial.Ontheotherhand,thecorrelationofgrainyieldwith AUVIC,weightedmean,andarithmeticmeanwerecomparableto thehighestcorrelationsofgrowthstagespecificmeasurements. Asaresult,selectionofhighyielding genotypesatthegrainfill

(11)

stageseemsmoreefficient.However,theenvironmentalvariation inmulti-locationandmulti-yearphenotypingmaycausehigher genotype-by-environmentinteractiononsinglecomparedto mul-tiplemeasurements(Babaret al.,2006).In suchcases,multiple measurementsacrossgrowthstagesmaybepreferredtocapture theresponseofvariousphysiologicalattributesthatcumulatively affectyield.

4.3. Relationshipbetweenstaygreenandvegetationindices

Therelationshipbetweenspectralreflectanceandstay green canbefurtherutilizedtodevelopathroughputphenotyping alter-nativeforthestaygreentrait.Staygreeninwheatisnotjustadelay inleafsenescence,butalsoaslowlyprogressinglossofgreenness inthepeduncleandspike(Reynoldsetal.,2009).Asaresult,the canopylevelspectralreflectanceprovidesamoreinclusive esti-mateofstaygreen.

4.4. Multico-linearityoftraitsanddimensionreduction

Asamajorlimitationatleastfromastatisticalpointofview, spectralreflectanceindicesexhibitsubstantialmultico-linearity amongthemselves.Thisisbecausemostindicesarederivedfrom eitherinfrared,visible,orbothlightspectrawhichplantsexhibit similarabsorptionandreflectancebehavior.TheclusteringofNDVI, SR,GNDVI,andPRIinonedimensionofcomponentanalysiswas oftheirphysiologicalconnectiontovegetative growth,biomass, andpigmentcomposition.Asdemonstratedinthisstudy,analysis ofgenotypiccovariancefordifferentindicescanbeeffectivelyused toreduceinformationredundancybyidentifyingdistinctiveindices thatrepresentdifferentphysiologicalattributes.Thisanalysiswill helpindevelopingareduced-dimensionpredictivemodelforgrain yield.Theobservationthatsomeindiceswerefoundtobe distinc-tivefromeachothervalidatespreviousreportsthattheseindices representdifferentphysiologicalattributesofyieldandyield sta-bility:NDVIwithbiomass,pigmentabundance, and staygreen; NCPIwithphotosyntheticefficiencyinstressedcondition, compo-sitionofstressrelatedpigments;NWIforandplanthydrationstatus (Babaretal.,2006;Reynoldsetal.,2012).

5. Conclusions

Droughtintensityin easternWashingtonand yield response ofthelocallyadaptedwinterwheatgermplasmwasaffectedby thecombinationofhighergrowingdegreedaysandsoilmoisture deficit.Therefore,itisimportanttoconsiderbothgrowingdegree daysandavailablemoisturetocharacterizeyieldandyield stabil-ity.Thestudyalsohighlightedtheimportanceofcharacterizing droughtresponsesandphenotypicassociationofyielddetermining traitstofullyunderstandthemechanismsofdroughttolerance.The variationinphenologyamongtreatmentswasmainlyinresponse totemperature variation between thesites. Because the effect ofearlinessperseonyieldcanbeneutral,positive, ornegative dependingonthetimingandintensityofthestress,breeders usu-allystandardizetheirgeneticmaterialswithdesired phenology thatmaximizesthecultivar’sperformanceintargetenvironments. Themoderate to highstatisticalpower of SRI-based modelsto predictyieldinallconditionsshowsanimpendingsolutionto over-comephenotypingbottleneckandcharacterizelargergermplasm collections.PositiveassociationsbetweenyieldandSRI-based esti-matesofstaygreenwerefoundinallconditionsmakingthistrait oneofthepromisingphysiological traitsthatcanbeutilizedto co-improvebothyieldpotentialanddroughttolerance.Ingeneral, theproxymeasurementswillbeusefultofurtherimproveyield potentialandyieldstabilitybyfacilitatingselectionforyield

pos-itivetraitssuchasstaygreen, abovegroundbiomass,andplant hydrationstatus.

Acknowledgments

This projectwas supportedby Washington State University Hatchproject#0232,theWashingtonGrainCommissionProject #3234,andtheNationalResearchInitiativeCompetitiveGrants CAPproject2011-68002-30029fromtheUSDANationalInstitute ofFoodandAgriculture.WegreatlyappreciateRyanHigginbotham andGarySheltonformaintenanceofthefieldscreeninglocations. WethankDr.MichaelPumphreyandDr.AsaphCousinsfortheir helpfulreviewofthemanuscript.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.fcr.2016.06.018.

References

Álvaro,F.,Isidro,J.,Villegas,D.,GarcíaDelMoral,L.F.,Royo,C.,2008.Oldand moderndurumwheatvarietiesfromItalyandSpaindifferinmainspike components.FieldCropsRes.106,86–93.

Alexander,W.,Smith,E.,Dhanasobhan,C.,1984.Acomparisonofyieldandyield componentselectioninwinterwheat.Euphytica33,953–961.

Aparicio,N.,Villegas,D.,Casadesus,J.,Araus,J.L.,Royo,C.,2000.Spectralvegetation indicesasnondestructivetoolsfordeterminingdurumwheatyield.Agron.J. 92,83–91.

Aparicio,N.,Villegas,D.,Araus,J.L.,Casadesús,J.,Royo,C.,2002.Relationship betweengrowthtraitsandspectralreflectanceindicesindurumwheat.Crop Sci.42,1547–1555.

Babar,M.A.,Reynolds,M.P.,vanGinkel,M.,Klatt,A.R.,Raun,W.R.,Stone,M.L., 2006.Spectralreflectancetoestimategeneticvariationforin-seasonbiomass, leafchlorophyll,andcanopytemperatureinwheat.CropSci.46,1046–1057. Bai,G.,Das,M.K.,Carver,B.F.,Xu,X.,Krenzer,E.G.,2004.Covariationfor

microsatellitemarkerallelesassociatedwithRht8andcoleoptilelengthin winterwheat.CropSci.44,1187–1194.

Barrett,B.A.,Kidwell,K.K.,1998.AFLP-basedgeneticdiversityassessmentamong wheatcultivarsfromthePacificNorthwest.CropSci.38,1261–1271. Blum,A.,1996.Cropresponsetodroughtandtheinterpretationofadaptation.

PlantGrowthRegul.20,135–148.

Blum,A.,2006.Droughtadaptationincerealcrops:aprolog.In:Ribault,J.M.(Ed.), DroughtAdaptationinCereals.FoodProductsPress,NewYork,pp.3–11. Chen,X.M.,2005.Epidemiologyandcontrolofstriperust[Pucciniastriiformisf.sp.

tritici]onwheat.Can.J.PlantPathol.27,314–337.

Chen,Y.,Carver,B.F.,Wang,S.,Cao,S.,Yan,L.,2010.Geneticregulationof developmentalphasesinwinterwheat,Mol.Breed.118,1339–1349. Christopher,J.T.,Manschadi,A.M.,Hammer,J.T.,Borrell,A.K.,2008.Developmental

andphysiologicaltraitsassociatedwithhighyieldandstay-greenphenotype inwheat.Aust.J.Agric.Res.59,354–364.

Cutforth,H.W.,Campbell,C.A.,Jame,Y.W.,Clarke,J.M.,Depauw,R.M.,1988. Growthcharacteristics,yieldcomponentsandrateofgraindevelopmentof twohigh-yieldingwheatsHY320andDT367,comparedtotwostandard cultivars,NeepawaandWakooma.Can.J.PlantSci.68,915–928.

Dhungana,P.,Eskridge,K.M.,Baenyiger,P.S.,Campbell,B.T.,Gill,K.S.,Dweikat,I., 2007.Analysisofgenotype-by-environmentinteractioninwheatusinga structuralequationmodelandchromosomesubstitutionlines.CropSci.47, 477–484.

Donaldson,E.,1996.Croptraitsforwaterstresstolerance.Am.J.Altern.Agr.11, 89–94.

Duguid,S.D.,Brule-Babel,A.L.,1994.Rateanddurationofgrainfillinginfivespring wheat(TriticumaestivumL.)genotypes.Can.J.PlantSci.74,681–686. Edae,E.A.,Byrne,P.F.,Manmathan,H.,Haley,S.D.,Moragues,M.,Lopes,M.S.,

Reynolds,M.P.,2014.Associationmappingandnucleotidesequencevariation infivedroughttolerancecandidategenesinspringwheat.PlantGenome6, 1–13.

Edmeades,G.O.,Bola ˜nos,J.,Chapman,S.C.,1997.Valueofsecondarytraitsin selectingfordroughttoleranceintropicalmaize.In:Edmeades,G.O.,Bänziger, M.,Nickelson,H.R.,Pe ˜na-Valdivia,C.B.(Eds.),DevelopingDroughtandLow-N TolerantMaize.CIMMYT,Mexico,DF,pp.222–234.

El-Mohsen,A.A.A.,Hegazy,S.R.A.,Taha,M.H.,2012.Genotypicandphenotypic interrelationshipsamongyieldandyieldcomponentsinEgyptianbreadwheat genotypes.J.PlantBreedCropSci.4,9–16.

Farshadfar,E.,Elyas,P.,Hasheminasab,H.,2013.Incorporationofagronomicand physiologicalindicatorsofdroughttoleranceinasingleintegratedselection indexforscreeningdroughttolerantlandracesofbreadwheatgenotypes.Intl. J.Agron.Plant.Prod.4,314–325.

(12)

Fiorani,F.,Schurr,U.,2013.FutureScenariosforplantphenotyping.Annu.Rev. PlantBiol.64,267–291.

Fischer,K.S.,Fukai,S.,Kumar,A.,Leung,H.,Jongdee,B.,2012.Fieldphenotyping strategiesandbreedingforadaptationofricetodrought.Front.Physiol.3,282. Fischer,R.A.,Maurer,R.,1978.Droughtresistanceinspringwheatcultivars.I.

Grainyieldresponse.Aust.J.Agric.Res29,897–912.

Foulkes,M.J.,Sylvester-Bradley,R.,Weightman,R.,Snape,J.W.,2007.Identifying physiologicaltraitsassociatedwithimproveddroughtresistanceinwinter wheat.FieldCropsRes.103,11–24.

Gitelson,A.,Kaufman,Y.,Merzlyak,M.,1996.Useofagreenchannelinremote sensingofglobalvegetationfromEOS-MODIS.RemoteSens.Environ.58, 289–298.

Gitelson,A.A.,Zur,Y.,Chivkunova,O.B.,Merzlyak,M.N.,2002.Assessingcarotenoid contentinplantleaveswithreflectancespectroscopy.Photochem.Photobiol. 75,272–281.

Gomez,D.,Vanzetti,L.,Helguera,M.,Lombardo,L.,Fraschina,J.,Miralles,D.J.,2014. EffectofVrn-1,Ppd-1genesandearlinessperseonheadingtimein

Argentineanbreadwheatcultivars.FieldCropsRes.158,73–81.

Haboudane,D.,Tremblay,N.,Miller,J.R.,Vigneault,P.,2004.Remoteestimationof cropchlorophyllcontentusingspectralindicesderivedfromhyperspectral data.IEEETrans.Geosci.Rem.Sens.46,423–437.

Jiang,Z.,Huete,A.R.,2010.LinearizationofNDVIBasedonitsrelationshipwith vegetationfraction.Photogramm.Eng.RemoteSens.76,965–975. Kirkegaard,J.A.,Howe,G.N.,Pitson,G.,2001.Agronomicinteractionsbetween

droughtandcropsequence.Proceedingsofthe10thAustralianAgronomy ConferenceHobart.

Lin,C.S.,Poushinsky,G.A.,1983.modifiedaugmenteddesignforanearlystageof plantselectioninvolvingalargenumberoftestlineswithoutreplication. Biometrics39,553–561.

Liu,K.,Li,Y.,Hu,H.,Zhou,L.,Xiao,X.,Yu,P.,2015.Estimatingriceyieldbasedon normalizeddifferencevegetationindexatheadingstageofdifferentnitrogen applicationratesinsoutheastofChina,J.Environ.Ag.Ric.Sci.2,13.

Lopes,M.S.,Reynolds,M.P.,2012.Stay-greeninspringwheatcanbedeterminedby spectralreflectancemeasurements(normalizeddifferencevegetationindex) independentlyfromphenology.J.Exp.Bot.63,3789–3798.

Lopez,C.G.,Banowetz,G.M.,Peterson,C.J.,Kronstad,W.E.,2003.Dehydrin expressionanddroughttoleranceinsevenwheatcultivars.CropSci.43, 577–582.

Marri,P.R.,Sarla,N.,Reddy,L.V.,Siddiq,E.A.,2005.Identificationandmappingof yieldandyieldrelatedQTLsfromanIndianaccessionofOryzarufipogon.BMC Gene13,33–39.

McNeal,F.H.,Qualset,C.O.,Baldridge,D.E.,Stewart,V.R.,1978.Selectionforyield andyieldcomponentsinwheat.CropSci.18,795–799.

Miles,E.L.,Elsner,M.M.,Littell,J.S.,Binder,L.W.,Lettenmaier,D.P.,2010.Assessing regionalimpactsandadaptationstrategiesforclimatechange:theWashington ClimateChangeImpactsAssessment.Clim.Change102,9–27.

Mohammadi,M.,Sharifi,P.,Karimizadeh,R.,Shefazadeh,M.K.,2012.Relationships betweengrainyieldandyieldcomponentsinbreadwheatunderdifferent wateravailability(drylandandsupplementalirrigationconditions).Not.Bot. HortiAgrobo.40,195–200.

Morgan,J.M.,1995.Growthandyieldofwheatathighsoilwaterdeficitinseasons ofvaryingevaporativedemand.FieldCropsRes.40,143–152.

Mote,P.W.,2003.TrendsintemperatureandprecipitationinthePacific Northwest.NorthwestSci.77,271–281.

Naruoka,Y.,Garland-Campbell,K.A.,Carter,A.H.,2015.Genome-wideassociation mappingforstriperust(PucciniastriiformisF.sp.tritici)inUSPacificNorthwest winterwheat(TriticumaestivumL.).Theor.Appl.Genet.128,1083–1101.

Naumann,J.C.,Young,D.R.,Anderson,J.E.,2009.Spatialvariationsinsalinitystress acrossacoastallandscapeusingvegetationindicesderivedfromhyperspectral imagery.PlantEcol.202,285–297.

Ollinger,S.V.,2011.Sourcesofvariabilityincanopyreflectanceandtheconvergent propertiesofplants.NewPhytol.189,375–394.

Pe ˜nuelas,J.,Filella,I.,Biel,C.,Serrano,L.,Save,R.,1993.Thereflectanceatthe 950–970nmregionasanindicatorofplantwaterstatus.Int.J.RemoteSens. 14,1887–1905.

Pe ˜nuelas,J.,Baret,F.,Filella,I.,1995.Semi-empiricalindicestoassess

carotenoids/chlorophyllaratiofromleafspectralreflectance.Photosynthetica 31,221–230.

Reynolds,M.P.,Ortiz-Monasterio,J.I.,McNab,A.(Eds.),2001.CIMMYT,ElBatan, Mexico.

Reynolds,M.P.,Manes,Y.,Izanloo,A.,Langridge,P.,2009.Phenotypingapproaches forphysiologicalbreedingandgenediscoveryinwheat.Ann.Appl.Biol.155, 309–320.

Reynolds,M.P.,Pask,A.J.D.,Mullan,D.M.(Eds.),2012.CIMMYT,Mexico,DF. Rosyara,U.R.,Pant,K.,Duveiller,E.,Sharma,R.C.,2007.Variationinchlorophyll

content,anatomicaltraitsandagronomicperformanceofwheatgenotypes differinginspotblotchresistanceundernaturalepiphytoticconditions. Australas.PlantPathol.36,245–251.

Rouse,J.W.,Haas,R.H.,Schell,J.A.,Deering,D.W.,1973.Monitoringvegetation systemsinthegreatplainswithERTS.3rdERTSSymposiumNASASP-351I, 309–317.

Saiyed,I.M.,Bullock,P.R.,Sapirstein,H.D.,Finlay,G.J.,Jarvis,C.K.,2009.Thermal timemodelsforestimatingwheatphenologicaldevelopmentand weather-basedrelationshipstowheatquality.Can.J.PlantSci.89,429–439. Santra,D.K.,Santra,M.,Allan,R.E.,Campbell,K.G.,Kidwell,K.K.,2009.Geneticand

molecularcharacterizationofvernalizationgenesVrn-A1Vrn-B1,andVrn-D1 inspringwheatgermplasmfromthePacificNorthwestregionoftheUSA.Plant Breed.128,576–584.

Schillinger,W.F.,Papendick,R.,2008.Thenandnow:125earsofdrylandwheat farmingintheInlandPacificNorthwest.Agron.J.100,S-166–S-182. Slafer,G.A.,Rawson,H.M.,1994.Sensitivityofwheatphasicdevelopmenttomajor

environmentalfactors:are-examinationofsomeassumptionsmadeby physiologistsandmodellers.Aust.J.PlantPhysiol.21,393–426.

Stenberg,P.,Rautiainen,M.,Manninen,T.,2004.Reducedsimpleratiobetterthan NDVIforestimatingLAIinFinnishpineandsprucestands.SilvaFenn.38,3–14. Thomas,H.,Smart,C.M.,1993.Cropsthatstaygreen.Ann.Appl.Biol.123,193–201. Tucker,C.J.,Sellers,P.J.,1986.Satelliteremotesensingofprimaryproduction.Int.J.

RemoteSens.7,1395–1416.

Understande,D.J.,Christiansen,S.,1986.Interactionsofwatervariablesand growingdegreedaysonheadingphaseofwinterwheat.Agr.ForestMeteorol. 38,169–180.

Wheeler,T.R.,Hong,T.D.,Ellis,R.H.,Morison,J.I.L.,Hadley,P.,1996.Theduration andrateofgraingrowth:andharvestindexofwheat(TriticumaestivumL.)in responsetotemperatureandCO2.J.Exp.Bot.47,623–630.

Wiegand,C.L.,Richardson,A.J.,1990.Useofspectralvegetationindicestoinferleaf area,evapotranspirationandyield:i.Rationale.Agron.J.82,623–629. Wu,X.,Chang,X.,Jing,R.,2012.Geneticinsightintoyield-associatedtraitsof

wheatgrowninmultiplerain-fedenvironments.PLoSOne7,e31249. Zarate-Valdez,J.L.,Whiting,M.L.,Lampinen,B.D.,Metcalf,S.,Ustin,S.L.,Brown,

P.H.,2012.Predictionofleafareaindexinalmondsbyvegetationindexes. Comput.Electron.Agric.85,24–32.

vanGinkel,M.,Calhoun,D.S.,Gebeyehu,G.,Miranda,A.,Tian-you,C.,PargasLara, R.,Trethowan,R.M.,Sayre,K.,Crossa,J.,Rajaram,S.,1998.Planttraitsrelatedto yieldofwheatinearly,late,orcontinuousdroughtconditions.Euphytica100, 109–121.

References

Related documents

Our first specification estimates the relationship between relative firm performance and the ownership share of managers, a dummy for ownership exclusively by managers, the number

The resulting non-parametric estimate of the Average Treatment Effect on the Treated (ATT), average impact of membership in agricultural cooperatives on the technical efficiency

b -site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) initiates the production of b -amyloid (A b ), the major constituent of amyloid plaques in Alzheimer’s disease

While the extreme price volatility generated by the Russian crisis was painful to many investors, it provides a unique window into the impact of changing default probabilities

In an economy with incomplete information, a representative investor cannot observe expected growth rates of economic fundamentals such as real output and money supply that depend

Even for the case of a single commodity the Negishi-approach has three important advantages over conventional methods: First, as policies are homogeneous of degree zero in

3 Brumm (2011) tested the relationship between inflation and CBI and found that they are endogenously determined, while the negative correlation between the two remains

becomes even more significant when the administration of Encumbrance is given by Power of Attorney Imposing Loading Liability Rights (hereinafter referred SKMHT), due