• No results found

Aqua­tri­phenyl­(tri­fluoro­acetato)­tin–2,4,6 tris­(2 pyridyl) 1,3,5 triazine (1/1)

N/A
N/A
Protected

Academic year: 2020

Share "Aqua­tri­phenyl­(tri­fluoro­acetato)­tin–2,4,6 tris­(2 pyridyl) 1,3,5 triazine (1/1)"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2002). E58, m661±m662 DOI: 10.1107/S1600536802019001 Chee, Lo and Ng [Sn(C2F3O2)(C6H5)3(H2O)]C18H12N6

m661

metal-organic papers

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

Aquatriphenyl(trifluoroacetato)tin±

2,4,6-tris(2-pyridyl)-1,3,5-triazine (1/1)

Chin Fei Chee, Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators Single-crystal X-ray study

T= 168 K

Mean(C±C) = 0.006 AÊ

Rfactor = 0.040

wRfactor = 0.095

Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

The water-coordinated Sn atom in the title compound, [Sn(C2F3O2)(C6H5)3(H2O)]C18H12N6, forms hydrogen bonds

to two of the pyridyl N atoms of theN-heterocycle [Owater N

= 2.841 (4) and 2.826 (4) AÊ]. The Sn atom showstrans-C3SnO2

trigonal bipyramidal coordination.

Comment

TheN-heterocycle 2,4,6-tris(2-pyridyl)-1,3,5-triazine interacts with the Lewis acceptor bis(triphenyltin) succinate through the coordinated water molecules in the centrosymmetric adduct [Sn Owater= 2.487 (3) AÊ in the monoclinic

modi®-cation and 2.441 (3) AÊ in the triclinic modi®modi®-cation]. The water molecule forms hydrogen bonds to the N atoms of the pyridyl rings [Owater N = 2.921 (5) and 2.999 (5) AÊ in the monoclinic

modi®cation, and 2.860 (5) and 2.907 (5) AÊ in the triclinic modi®cation] (Ng, 1998). In the the 1/1 adduct, (I), of the same triazine with with triphenyltin tri¯uoroacetate monohydrate (Fig. 1), a similar hydrogen-bonding scheme is also noted [Owater N = 2.841 (4) and 2.826 (4) AÊ].

The water donor occupies an apical position of thetrans -C3SnO2 trigonal bipyramidal polyhedron of the Sn atom;

owing to the electron-withdrawing capacity of the tri¯uro-methyl group, the Lewis acidity of the triphenyltin acceptor is enhanced, and this leads to a shortening of the SnÐOwater

bond [Sn O = 2.311 (3) AÊ]. The bond distance is similar to that [2.335 (4) AÊ] found in bis[aquatri¯uoroacetatotriphenyl-tin±1,10-phenanthroline] (Ng et al., 1996); however, this compound features a different hydrogen-bonding scheme.

Experimental

The compound was prepared by heating triphenyltin hydroxide, tri-¯uoroacetic acid and 2,4,6-tris(2-pyridyl)-1,3,5-triazine in a 1:1:1 molar ratio in toluene for 1 h. The product separated as light-yellow cubic blocks when the solvent was removed (m.p. 445±447 K).

(2)

Crystal data

[Sn(C2F3O2)(C6H5)3

-(H2O)]C18H12N6

Mr= 793.36

Triclinic,P1

a= 10.567 (1) AÊ

b= 11.053 (1) AÊ

c= 15.438 (1) AÊ

= 105.559 (2) = 97.496 (2) = 101.637 (2) V= 1668.5 (2) AÊ3

Z= 2

Dx= 1.58 Mg mÿ3

MoKradiation Cell parameters from 7791

re¯ections

= 2.0±26.4 = 0.83 mmÿ1

T= 168 (2) K Block, light yellow 0.300.190.10 mm

Data collection

Bruker CCD area-detector diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.789,Tmax= 0.922

21865 measured re¯ections

6720 independent re¯ections 5013 re¯ections withI> 2(I)

Rint= 0.063

max= 26.4

h=ÿ13!13

k=ÿ13!7

l=ÿ19!19

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.040

wR(F2) = 0.095

S= 0.93 6720 re¯ections 468 parameters

H atoms treated by a mixture of independent and constrained re®nement

w= 1/[2(F

o2) + (0.0525P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 1.43 e AÊÿ3

min=ÿ1.49 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Sn1ÐC1 2.132 (4)

Sn1ÐC7 2.135 (3)

Sn1ÐC13 2.118 (4)

Sn1ÐO1 2.217 (3)

Sn1ÐO1w 2.311 (3)

C1ÐSn1ÐC13 118.1 (1)

C1ÐSn1ÐC7 122.7 (1)

C1ÐSn1ÐO1 97.5 (1)

C1ÐSn1ÐO1w 88.3 (1)

C7ÐSn1ÐC13 118.8 (1)

C7ÐSn1ÐO1 86.8 (1)

C7ÐSn1ÐO1w 88.4 (1)

C13ÐSn1ÐO1 92.6 (1)

C13ÐSn1ÐO1w 86.3 (1)

O1ÐSn1ÐO1w 173.9 (1)

The C-bound H atoms were positioned geometrically (CÐH = 0.95 AÊ) and were allowed to ride on their parent C atoms, with

Uiso(H) = 1.2Ueq(C). The water H atoms were located and re®ned,

subject to OÐH = 0.850.01 AÊ. A peak/hole larger than 1 e AÊÿwas

found near Sn1.

Data collection:SMART(Bruker, 1997); cell re®nement:SAINT

(Bruker, 1997); data reduction: SAINT; program(s) used to solve

structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

The authors thank Dr Jan Wikaira of the University of Canterbury for the diffraction measurements, and the University of Malaya (F0142/2002B, F0717/2002A) for supporting this work.

References

Bruker (1997).SAINTandSMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Ng, S. W. (1998).Acta Cryst.C54, 1386±1389.

Ng, S. W., Kumar Das, V. G. & Kennard, C. H. L. (1996).Main Group Met. Chem.19, 113±120.

Sheldrick, G. M. (1996).SADABS. University of GoÈttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

GoÈttingen, Germany.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2002). E58, m661–m662

supporting information

Acta Cryst. (2002). E58, m661–m662 [https://doi.org/10.1107/S1600536802019001]

Aquatriphenyl(trifluoroacetato)tin–2,4,6-tris(2-pyridyl)-1,3,5-triazine (1/1)

Chin Fei Chee, Kong Mun Lo and Seik Weng Ng

Aquatriphenyl(trifluoroacetato)tin–2,4,6-tris(2-pyridyl)-1,3,5-triazine (1/1)

Crystal data

[Sn(C2F3O2)(C6H5)3(H2O)]·C18H12N6

Mr = 793.36 Triclinic, P1 Hall symbol: -P 1

a = 10.567 (1) Å

b = 11.053 (1) Å

c = 15.438 (1) Å

α = 105.559 (2)°

β = 97.496 (2)°

γ = 101.637 (2)°

V = 1668.5 (2) Å3

Z = 2

F(000) = 800

Dx = 1.58 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 7791 reflections

θ = 2.0–26.4°

µ = 0.83 mm−1

T = 168 K

Block, light yellow 0.30 × 0.19 × 0.10 mm

Data collection

Bruker CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: empirical (using intensity measurements)

(SADABS; Sheldrick, 1996)

Tmin = 0.789, Tmax = 0.922

21865 measured reflections 6720 independent reflections 5013 reflections with I > 2σ(I)

Rint = 0.063

θmax = 26.4°, θmin = 2.0°

h = −13→13

k = −13→7

l = −19→19

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.040

wR(F2) = 0.095

S = 0.93 6720 reflections 468 parameters 2 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0525P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 1.43 e Å−3

Δρmin = −1.49 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(4)
(5)

supporting information

sup-3 Acta Cryst. (2002). E58, m661–m662

C37 0.0522 (4) −0.2075 (4) 0.2453 (3) 0.033 (1) C38 0.1839 (4) −0.1488 (4) 0.2529 (3) 0.031 (1) H1w1 0.526 (4) 0.144 (4) 0.366 (1) 0.06 (2)* H1w2 0.421 (3) 0.045 (3) 0.317 (3) 0.04 (1)*

H2 0.4520 0.3989 0.4404 0.035*

H3 0.3520 0.4357 0.5684 0.041*

H4 0.1320 0.3333 0.5546 0.043*

H5 0.0100 0.1942 0.4129 0.043*

H6 0.1095 0.1607 0.2856 0.036*

H8 0.6790 0.1952 0.2583 0.035*

H9 0.8873 0.3050 0.2498 0.041*

H10 0.9184 0.5018 0.2206 0.047*

H11 0.7412 0.5940 0.2027 0.053*

H12 0.5327 0.4886 0.2136 0.044*

H14 0.1106 0.0657 0.1244 0.033*

H15 0.0139 −0.1330 0.0123 0.039*

H16 0.1452 −0.2660 −0.0500 0.045*

H17 0.3724 −0.2003 −0.0016 0.055*

H18 0.4704 −0.0044 0.1124 0.043*

H25 0.6603 0.3703 0.7004 0.035*

H26 0.8644 0.4955 0.6935 0.038*

H27 0.9364 0.4531 0.5540 0.038*

H28 0.8003 0.3003 0.4256 0.038*

H30 0.4521 0.2722 0.8137 0.041*

H31 0.3959 0.2710 0.9563 0.049*

H32 0.2277 0.1001 0.9609 0.049*

H33 0.1164 −0.0561 0.8262 0.048*

H35 0.0455 −0.0976 0.4610 0.034*

H36 −0.0909 −0.2228 0.3203 0.041*

H37 −0.0002 −0.2611 0.1879 0.040*

H38 0.2206 −0.1646 0.1991 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

C1 0.029 (2) 0.023 (2) 0.022 (2) 0.008 (2) 0.005 (2) 0.009 (2) C2 0.032 (2) 0.028 (2) 0.029 (2) 0.008 (2) 0.007 (2) 0.011 (2) C3 0.052 (3) 0.030 (2) 0.022 (2) 0.017 (2) 0.009 (2) 0.006 (2) C4 0.054 (3) 0.039 (3) 0.031 (2) 0.024 (2) 0.026 (2) 0.020 (2) C5 0.032 (2) 0.043 (3) 0.041 (3) 0.014 (2) 0.019 (2) 0.021 (2) C6 0.030 (2) 0.034 (2) 0.025 (2) 0.008 (2) 0.005 (2) 0.009 (2) C7 0.026 (2) 0.024 (2) 0.018 (2) 0.003 (2) 0.004 (2) 0.005 (2) C8 0.033 (2) 0.029 (2) 0.031 (2) 0.007 (2) 0.010 (2) 0.016 (2) C9 0.022 (2) 0.046 (3) 0.039 (2) 0.010 (2) 0.008 (2) 0.016 (2) C10 0.027 (2) 0.040 (3) 0.047 (3) −0.003 (2) 0.007 (2) 0.017 (2) C11 0.033 (2) 0.032 (3) 0.069 (3) −0.001 (2) 0.004 (2) 0.027 (2) C12 0.029 (2) 0.029 (2) 0.050 (3) 0.006 (2) 0.004 (2) 0.014 (2) C13 0.027 (2) 0.032 (2) 0.017 (2) 0.004 (2) 0.006 (2) 0.010 (2) C14 0.030 (2) 0.033 (2) 0.021 (2) 0.007 (2) 0.007 (2) 0.011 (2) C15 0.032 (2) 0.036 (3) 0.024 (2) 0.001 (2) 0.000 (2) 0.010 (2) C16 0.051 (3) 0.032 (3) 0.023 (2) 0.006 (2) 0.001 (2) 0.001 (2) C17 0.050 (3) 0.047 (3) 0.037 (3 0.020 (2) 0.010 (2) −0.002 (2) C18 0.033 (2) 0.046 (3) 0.026 (2) 0.010 (2) 0.008 (2) 0.004 (2) C19 0.028 (2) 0.032 (2) 0.017 (2) −0.001 (2) −0.001 (2) 0.002 (2) C20 0.036 (2) 0.048 (3) 0.040 (3) 0.014 (2) 0.002 (2) 0.019 (2) C21 0.028 (2) 0.023 (2) 0.022 (2) 0.009 (2) 0.005 (2) 0.009 (2) C22 0.034 (2) 0.027 (2) 0.025 (2) 0.015 (2) 0.010 (2) 0.013 (2) C23 0.028 (2) 0.022 (2) 0.025 (2) 0.008 (2) 0.008 (2) 0.010 (2) C24 0.024 (2) 0.026 (2) 0.028 (2) 0.011 (2) 0.004 (2) 0.015 (2) C25 0.034 (2) 0.033 (2) 0.022 (2) 0.008 (2) 0.007 (2) 0.010 (2) C26 0.028 (2) 0.030 (2) 0.033 (2) 0.003 (2) −0.002 (2) 0.009 (2) C27 0.022 (2) 0.036 (3) 0.040 (2) 0.002 (2) 0.003 (2) 0.020 (2) C28 0.026 (2) 0.045 (3) 0.027 (2) 0.009 (2) 0.007 (2) 0.018 (2) C29 0.032 (2) 0.035 (2) 0.026 (2) 0.015 (2) 0.011 (2) 0.015 (2) C30 0.040 (2) 0.040 (3) 0.026 (2) 0.013 (2) 0.011 (2) 0.014 (2) C31 0.053 (3) 0.049 (3) 0.023 (2) 0.018 (2) 0.010 (2) 0.010 (2) C32 0.048 (3) 0.063 (3) 0.026 (2) 0.023 (2) 0.018 (2) 0.025 (2) C33 0.039 (2) 0.056 (3) 0.037 (3) 0.016 (2) 0.018 (2) 0.028 (2) C34 0.029 (2) 0.022 (2) 0.025 (2) 0.006 (2) 0.005 (2) 0.011 (2) C35 0.031 (2) 0.028 (2) 0.030 (2) 0.007 (2) 0.009 (2) 0.014 (2) C36 0.028 (2) 0.033 (2) 0.041 (2) 0.000 (2) 0.002 (2) 0.017 (2) C37 0.038 (2) 0.028 (2) 0.028 (2) 0.001 (2) −0.004 (2) 0.012 (2) C38 0.043 (2) 0.030 (2) 0.022 (2) 0.008 (2) 0.006 (2) 0.013 (2)

Geometric parameters (Å, º)

Sn1—C1 2.132 (4) C23—C34 1.482 (5)

Sn1—C7 2.135 (3) C24—C25 1.382 (5)

Sn1—C13 2.118 (4) C25—C26 1.380 (5)

Sn1—O1 2.217 (3) C26—C27 1.370 (5)

Sn1—O1w 2.311 (3) C27—C28 1.380 (5)

F1—C20 1.297 (5) C29—C30 1.384 (5)

(7)

supporting information

sup-5 Acta Cryst. (2002). E58, m661–m662

F3—C20 1.312 (5) C31—C32 1.373 (6)

O1—C19 1.237 (5) C32—C33 1.375 (6)

O2—C19 1.215 (4) C34—C35 1.390 (5)

N1—C21 1.328 (4) C35—C36 1.377 (5)

N1—C23 1.334 (4) C36—C37 1.376 (5)

N2—C22 1.338 (5) C37—C38 1.387 (5)

N2—C21 1.338 (4) O1w—H1w1 0.85 (1)

N3—C22 1.329 (5) O1w—H1w2 0.85 (1)

N3—C23 1.341 (4) C2—H2 0.9500

N4—C28 1.335 (5) C3—H3 0.9500

N4—C24 1.349 (4) C4—H4 0.9500

N5—C33 1.340 (5) C5—H5 0.9500

N5—C29 1.344 (5) C6—H6 0.9500

N6—C38 1.331 (5) C8—H8 0.9500

N6—C34 1.351 (4) C9—H9 0.9500

C1—C2 1.384 (5) C10—H10 0.9500

C1—C6 1.397 (5) C11—H11 0.9500

C2—C3 1.395 (5) C12—H12 0.9500

C3—C4 1.377 (6) C14—H14 0.9500

C4—C5 1.386 (6) C15—H15 0.9500

C5—C6 1.383 (5) C16—H16 0.9500

C7—C12 1.381 (5) C17—H17 0.9500

C7—C8 1.404 (5) C18—H18 0.9500

C8—C9 1.387 (5) C25—H25 0.9500

C9—C10 1.360 (6) C26—H26 0.9500

C10—C11 1.375 (6) C27—H27 0.9500

C11—C12 1.386 (5) C28—H28 0.9500

C13—C14 1.395 (5) C30—H30 0.9500

C13—C18 1.395 (5) C31—H31 0.9500

C14—C15 1.392 (5) C32—H32 0.9500

C15—C16 1.378 (6) C33—H33 0.9500

C16—C17 1.375 (6) C35—H35 0.9500

C17—C18 1.389 (6) C36—H36 0.9500

C19—C20 1.552 (6) C37—H37 0.9500

C21—C24 1.495 (5) C38—H38 0.9500

C22—C29 1.497 (5)

(8)

C21—N1—C23 114.9 (3) Sn1—O1w—H1w1 113 (3) C22—N2—C21 114.8 (3) Sn1—O1w—H1w2 105 (3) C22—N3—C23 114.4 (3) H1w1—O1w—H1w2 106 (4)

C28—N4—C24 116.5 (3) C1—C2—H2 119.5

C33—N5—C29 116.1 (4) C3—C2—H2 119.5

C38—N6—C34 117.5 (3) C4—C3—H3 120.1

C2—C1—C6 117.9 (3) C2—C3—H3 120.1

C2—C1—Sn1 120.4 (3) C3—C4—H4 119.8

C6—C1—Sn1 121.2 (3) C5—C4—H4 119.8

C1—C2—C3 121.1 (4) C6—C5—H5 120.4

C4—C3—C2 119.8 (4) C4—C5—H5 120.4

C3—C4—C5 120.4 (4) C5—C6—H6 119.1

C6—C5—C4 119.2 (4) C1—C6—H6 119.1

C5—C6—C1 121.7 (4) C9—C8—H8 119.8

C12—C7—C8 117.6 (3) C7—C8—H8 119.8

C12—C7—Sn1 121.5 (3) C10—C9—H9 119.6

C8—C7—Sn1 120.7 (3) C8—C9—H9 119.6

C9—C8—C7 120.5 (4) C9—C10—H10 120.2

C10—C9—C8 120.8 (4) C11—C10—H10 120.2 C9—C10—C11 119.6 (4) C10—C11—H11 119.8 C10—C11—C12 120.4 (4) C12—C11—H11 119.8 C7—C12—C11 121.1 (4) C7—C12—H12 119.4 C14—C13—C18 118.2 (3) C11—C12—H12 119.4 C14—C13—Sn1 121.3 (3) C15—C14—H14 119.6 C18—C13—Sn1 120.5 (3) C13—C14—H14 119.6 C15—C14—C13 120.9 (4) C16—C15—H15 120.0 C16—C15—C14 120.0 (4) C14—C15—H15 120.0 C17—C16—C15 119.9 (4) C17—C16—H16 120.0 C16—C17—C18 120.6 (4) C15—C16—H16 120.0 C17—C18—C13 120.5 (4) C16—C17—H17 119.7 O2—C19—O1 131.3 (4) C18—C17—H17 119.7 O2—C19—C20 115.8 (4) C17—C18—H18 119.7 O1—C19—C20 112.9 (3) C13—C18—H18 119.7 F2—C20—F1 106.1 (4) C26—C25—H25 120.4 F2—C20—F3 106.4 (4) C24—C25—H25 120.4 F1—C20—F3 104.1 (5) C27—C26—H26 120.9 F2—C20—C19 112.4 (4) C25—C26—H26 120.9 F1—C20—C19 113.5 (4) C26—C27—H27 120.4 F3—C20—C19 113.6 (3) C28—C27—H27 120.4

N1—C21—N2 125.1 (3) N4—C28—H28 118.1

(9)

supporting information

sup-7 Acta Cryst. (2002). E58, m661–m662

N4—C24—C25 122.9 (3) C32—C33—H33 117.9 N4—C24—C21 115.9 (3) C36—C35—H35 120.5 C25—C24—C21 121.1 (3) C34—C35—H35 120.5 C26—C25—C24 119.3 (3) C37—C36—H36 120.3 C27—C26—C25 118.3 (4) C35—C36—H36 120.3 C26—C27—C28 119.2 (4) C36—C37—H37 120.9 N4—C28—C27 123.7 (4) C38—C37—H37 120.9 N5—C29—C30 123.6 (3) N6—C38—H38 118.1 N5—C29—C22 116.7 (3) C37—C38—H38 118.1 C30—C29—C22 119.6 (4)

(10)

O1—Sn1—C13—C14 −60.9 (3) C29—C30—C31—C32 2.2 (6) O1w—Sn1—C13—C14 125.1 (3) C30—C31—C32—C33 −1.4 (7) C1—Sn1—C13—C18 −138.4 (3) C29—N5—C33—C32 1.1 (6) C7—Sn1—C13—C18 33.8 (4) C31—C32—C33—N5 −0.3 (7) O1—Sn1—C13—C18 121.7 (3) C38—N6—C34—C35 −1.2 (5) O1w—Sn1—C13—C18 −52.3 (3) C38—N6—C34—C23 179.0 (3) C18—C13—C14—C15 0.7 (5) N1—C23—C34—N6 11.5 (5) Sn1—C13—C14—C15 −176.8 (3) N3—C23—C34—N6 −168.6 (3) C13—C14—C15—C16 −0.6 (6) N1—C23—C34—C35 −168.3 (3) C14—C15—C16—C17 −0.3 (6) N3—C23—C34—C35 11.6 (5) C15—C16—C17—C18 1.0 (7) N6—C34—C35—C36 −1.3 (6) C16—C17—C18—C13 −0.9 (7) C23—C34—C35—C36 178.5 (4) C14—C13—C18—C17 0.0 (6) C34—C35—C36—C37 2.7 (6) Sn1—C13—C18—C17 177.5 (3) C35—C36—C37—C38 −1.7 (6) Sn1—O1—C19—O2 −2.9 (7) C34—N6—C38—C37 2.3 (6) Sn1—O1—C19—C20 178.4 (2) C36—C37—C38—N6 −0.9 (6) O2—C19—C20—F2 −85.9 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

References

Related documents

• Taxpayers subject to the provisions of Title II of the Income Tax Law (ITL) which have declared taxable income of $644,599,005 or more in the immediately preceding tax

Most companies recruit for full-time and internship positions, but some indicate Co-Op as a recruiting priority, while not attending Professional Practice

Although theoretically the likelihood of finding evidence that dumped imports have in- jured the domestic industry should fall as the industry increases its output, the results from

Political Parties approved by CNE to stand in at least some constituencies PLD – Partido de Liberdade e Desenvolvimento – Party of Freedom and Development ECOLOGISTA – MT –

This model posits four types of health beliefs that affect an individual’s health behavior, in this case, the decision to seek mental health services: perceived

The algorithm will only match applicants employers preferred for NESP positions to NESP positions and applicants employers preferred for NETP positions to NETP positions. This way

In the previous sections, we dis- cuss the expectation that a neural network exploiting the fractional convolution should perform slightly worse than a pure binary (1-bit weights

• Our goal is to make Pittsburgh Public Schools First Choice by offering a portfolio of quality school options that promote high student achievement in the most equitable and