Refinement of pyrobelonite, PbMnIIVO4(OH), a member of the descloizite group

Download (0)

Full text

(1)

Acta Cryst.(2001). E57, i119±i121 DOI: 10.1107/S1600536801020037 Uwe Kolitsch PbMnVO4(OH)

i119

inorganic papers

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

Refinement of pyrobelonite, PbMn

II

VO

4

(OH), a

member of the descloizite group

Uwe Kolitsch

UniversitaÈt Wien, Institut fuÈr Mineralogie und Kristallographie, Geozentrum, Althanstr. 14, A-1090 Wien, Austria

Correspondence e-mail: uwe.kolitsch@univie.ac.at

Key indicators Single-crystal X-ray study T= 293 K

Mean(V±O) = 0.004 AÊ Rfactor = 0.018 wRfactor = 0.047

Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2001 International Union of Crystallography Printed in Great Britain ± all rights reserved

Pyrobelonite [lead manganese(II) vanadate(V) hydroxide],

PbMnIIVO

4(OH), has been re®ned in space groupPnma. It is

isostructural with descloizite, PbZnVO4(OH). MnIIO4(OH)2

octahedra share edges to form in®nite chains parallel to theb

axis. Distorted VO4 tetrahedra share vertices with the

octahedra to form a compact framework, in which voids are

occupied by [3+4]-coordinated Pb2+cations. All atoms except

O3 are on special positions with site symmetry 1 (Mn) or .m.

(remaining atoms).

Comment

Pyrobelonite, PbMnIIVO

4(OH), is a member of the descloizite

group of lead oxysalt minerals with the general formula

PbM(XO4)(OH), whereM= Cu2+, Fe2+, Mn2+or Zn, andX=

As5+ or V5+ (Mandarino, 1999). These minerals are

ortho-rhombic and crystallize in either space groupPnmaorP212121;

the space group of the Fe2+±As member (gabrielsonite),

originally reported as P21ma (Moore, 1967), is uncertain (a

current single-crystal study by the author suggestsPna21, but

also strongly indicates the presence of twinning ± the structure could not be solved so far).

Received 14 November 2001 Accepted 20 November 2001 Online 30 November 2001

Figure 1

View of the crystal structure of pyrobelonite along [100]. MnIIO 4(OH)2

octahedra are red, VO4tetrahedra are yellow and marked with crosses,

(2)

inorganic papers

i120

Uwe Kolitsch PbMnVO4(OH) Acta Cryst.(2001). E57, i119±i121

The crystal structure of pyrobelonite was originally deter-mined by Donaldson & Barnes (1955) and isotropically

re®ned in space groupPnmato a conventionalRindex of 0.09.

However, the H atom was not detected and the authors

suggested that the correct space group might bePn21a. Later,

Qurashi & Barnes (1963) argued that pyrobelonite may crystallize inP212121.

Due to a general interest in the crystallography and crystal chemistry of secondary lead minerals, the structure of pyro-belonite was studied again in order to determine the correct space group, the location of the H atom, and to provide high-precision geometrical parameters. The sample studied is from

the Iron Monarch iron ore mine, South Australia (Pringet al.,

1989, 1999) and consists of dark-red anhedral grains embedded in a matrix. EDS analyses showed major Pb, Mn and V components, and negligible amounts of impurities. The pyrobelonite grains are associated with pale-yellow

vanadi-nite, Pb5(VO4)Cl.

The present structure re®nement demonstrates that

pyro-belonite crystallizes in space groupPnmaand is isostructural

with descloizite, PbZnVO4(OH) (Hawthorne & Faggiani,

1979). Re®ned single-crystal unit-cell parameters are close to those reported earlier (Barnes & Qurashi, 1952; Donaldson & Barnes, 1955; Moore, 1967; Barnes & Ahmed, 1969; Rodnova,

1993). The calculated density, 5.828 Mg mÿ3, is in very good

agreement with the value reported by Moore (1967),

5.82 Mg mÿ3(previously measured values were highly

incon-sistent; see Donaldson & Barnes, 1955).

The structure is characterized by MnIIO

4(OH)2octahedra

(<MnII±O> = 2.17 AÊ) sharing edges to form in®nite chains

parallel to the b axis (Figs. 1±3). Distorted VO4 tetrahedra

share vertices with the octahedra to form a compact frame-work. VÐO bond lengths average 1.73 AÊ; the previously reported low-precision bond lengths ranged from 1.62 (12) to 1.83 (12) AÊ (Donaldson & Barnes, 1955). Voids in the

framework are occupied by the [3+4]-coordinated Pb2+cation,

which has seven O ligands. Two further O atoms are both at a distance of 3.2843 (15) AÊ. The H atom is bonded to OH4 and is involved in a medium-strong hydrogen bond donated to O2,

with an OH4 O2 distance of 2.783 (5) AÊ. Bond-valence

sums for the metal cations, calculated using the parameters of Brese & O'Keeffe (1991), give 1.93 v.u. for Pb, 2.16 v.u. for Mn and 4.93 v.u. for V.

The decorated chain present in pyrobelonite and other descloizite-type minerals is also found, ®rst, in the structure of

linarite [PbCu(SO4)(OH)2]-type minerals (Effenberger, 1987)

and, secondly, as a fundamental building block of the sheets in

the structure types of tsumcorite, Pb(Zn,Fe3+)

2

(As-O4)2(OH,H2O)2(Tillmanns & Gebert, 1973), and bermanite,

MnIIMnIII

2(PO4)2(OH)24H2O (Kampf & Moore, 1976).

Details on these relationships are discussed by Hawthorne (1994).

Experimental

The title compound is a natural sample (see above). Crystal data

PbMnVO4(OH)

Mr= 394.08

Orthorhombic,Pnma a= 7.646 (2) AÊ

b= 6.179 (1) AÊ

c= 9.507 (2) AÊ

V= 449.15 (17) AÊ3

Z= 4

Dx= 5.828 Mg mÿ3

MoKradiation Cell parameters from 898

re¯ections = 3.5±30.0

= 42.11 mmÿ1

T= 293 (2) K Fragment, dark red 0.080.080.05 mm Figure 2

The structure of pyrobelonite in a perspective view along [010], showing the corner-linkage between the MnIIO

4(OH)2 octahedra and the VO4

tetrahedra. Designations as in Fig. 1.

Figure 3

(3)

Data collection

Nonius KappaCCD diffractometer 'and!scans

Absorption correction: numerical (maXus; Mackayet al., 1998)

Tmin= 0.059,Tmax= 0.125 1242 measured re¯ections 714 independent re¯ections

699 re¯ections withI> 2(I)

Rint= 0.014 max= 30.0

h=ÿ10!10

k=ÿ8!8

l=ÿ13!13

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.018

wR(F2) = 0.047

S= 1.15 714 re¯ections 49 parameters

H-atom coordinates re®ned

w= 1/[2(F

o2) + (0.024P)2

+ 1.300P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 1.26 e AÊÿ3

min=ÿ1.80 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0086 (4)

Table 1

Selected geometric parameters (AÊ,).

PbÐOH4 2.354 (4)

PbÐO3 2.470 (3)

PbÐO1i 2.744 (4) PbÐO3ii 2.781 (3) PbÐO2i 2.841 (4) MnÐOH4iii 2.082 (3)

MnÐO1iv 2.221 (3) MnÐO3ii 2.221 (3)

VÐO2 1.656 (4)

VÐO1 1.747 (4)

VÐO3 1.755 (3)

VÐO3v 1.755 (3)

OH4iiiÐMnÐO1iv 87.92 (10) OH4ÐMnÐO1iv 92.08 (10) OH4iiiÐMnÐO3ii 91.85 (13) OH4ÐMnÐO3ii 88.15 (13) O1ivÐMnÐO3ii 88.83 (12) O1viÐMnÐO3ii 91.17 (12)

OH4iiiÐMnÐO3vii 88.15 (13) OH4ÐMnÐO3vii 91.85 (13) O2ÐVÐO1 104.9 (2) O2ÐVÐO3 107.12 (11) O1ÐVÐO3 111.90 (10) O3ÐVÐO3v 113.3 (2)

Symmetry codes: (i)1

2ÿx;1ÿy;zÿ12; (ii)xÿ12;21ÿy;12ÿz; (iii)ÿx;ÿy;1ÿz; (iv)

x;yÿ1;z; (v)x;3

2ÿy;z; (vi)ÿx;1ÿy;1ÿz; (vii)12ÿx;yÿ12;12‡z.

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

OH4ÐH O2i 0.77 (9) 2.02 (9) 2.783 (5) 176 (8)

Symmetry code: (i) 1ÿx;1ÿy;1ÿz.

The H atom was constrained to have aUisovalue of 0.02 AÊ2. The

re®ned OÐH distance is 0.77 (9) AÊ. The largest two peaks in the ®nal difference Fourier map are closest to O2 (at 1.66 AÊ) and OH4 (at 1.10 AÊ). The next three peaks are closest to the Pb atom.

Data collection:COLLECT(Nonius, 2001); cell re®nement:HKL SCALEPACK(Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:ATOMS(Shape Software, 1999); software used to prepare material for publication:SHELXL97.

Mr Jack Leach of Melbourne, Victoria, Australia, is kindly thanked for furnishing the studied sample.

References

Barnes, W. H. & Ahmed, F. R. (1969).Can. Mineral.10, 117±123. Barnes, W. H. & Qurashi, M. M. (1952).Am. Mineral.37, 407±422. Brese, N. E. & O'Keeffe, M. (1991).Acta Cryst.B47, 192±197. Donaldson, D. M. & Barnes, W. H. (1955).Am. Mineral.40, 580±596. Effenberger, H. (1987).Mineral. Petrol.36, 3±12.

Hawthorne, F. C. (1994).Acta Cryst.B50, 481±510.

Hawthorne, F. C. & Faggiani, R. (1979).Acta Cryst.B35, 717±720. Kampf, A. R. & Moore, P. B. (1976).Am. Mineral.61, 1241±1248.

Mackay, S., Gilmore, C. J., Edwards, C., Tremayne, M., Stuart, N. & Shankland, K. (1998).maXus. University of Glasgow, Scotland, Nonius BV, Delft, The Netherlands, and MacScience Co. Ltd, Yokohama, Japan.

Mandarino, J. A. (1999).Fleischer's Glossary of Mineral Species1999. Tucson: The Mineralogical Record Inc.

Moore, P. B. (1967).Ark. Mineral. Geol.4, 401±405.

Nonius (2001).COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307±326. London: Academic Press.

Pring, A., Francis, G. & Birch, W. D. (1989).Aust. Mineral.4, 49±55. Pring, P., Kolitsch, U. & Francis, G. (1999).Aust. J. Mineral.6, 9±23. Qurashi, M. M. & Barnes, W. H. (1963).Can. Mineral.7, 561±577. Rodnova, V. I. (1993).Zap. Vseross. Mineral. Ova,122, 62±65.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Shape Software (1999).ATOMS for Windows and Macintosh. Version 5.0.4. Kingsport, TN 37663, USA.

Tillmanns, E. & Gebert, W. (1973).Acta Cryst.B29, 2789±2794.

Acta Cryst.(2001). E57, i119±i121 Uwe Kolitsch PbMnVO4(OH)

i121

(4)

supporting information

sup-1

Acta Cryst. (2001). E57, i119–i121

supporting information

Acta Cryst. (2001). E57, i119–i121 [https://doi.org/10.1107/S1600536801020037]

Refinement of pyrobelonite, PbMn

II

VO

4

(OH), a member of the descloizite

group

Uwe Kolitsch

lead manganese(II) vanadate(V) hydroxide

Crystal data

PbMnVO4(OH)

Mr = 394.08

Orthorhombic, Pnma a = 7.646 (2) Å

b = 6.179 (1) Å

c = 9.507 (2) Å

V = 449.15 (17) Å3

Z = 4

F(000) = 684

Dx = 5.828 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 898 reflections

θ = 3.5–30.0°

µ = 42.11 mm−1

T = 293 K

Fragment, dark red 0.08 × 0.08 × 0.05 mm

Data collection

Nonius KappaCCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ψ and ω scans

Absorption correction: numerical maXus (Mackay et al., 1998)

Tmin = 0.059, Tmax = 0.125

1242 measured reflections 714 independent reflections 699 reflections with I > 2σ(I)

Rint = 0.014

θmax = 30.0°, θmin = 3.4°

h = −10→10

k = −8→8

l = −13→13

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.018

wR(F2) = 0.047

S = 1.15 714 reflections 49 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map H atoms treated by a mixture of independent

and constrained refinement

w = 1/[σ2(F

o2) + (0.024P)2 + 1.30P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 1.26 e Å−3

Δρmin = −1.80 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

(5)

supporting information

sup-2

Acta Cryst. (2001). E57, i119–i121 Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Pb 0.13286 (2) 0.2500 0.177529 (19) 0.01086 (11)

Mn 0.0000 0.0000 0.5000 0.00650 (17)

V 0.36513 (9) 0.7500 0.31118 (9) 0.00422 (19)

O1 0.1882 (5) 0.7500 0.4274 (4) 0.0082 (7)

O2 0.5407 (5) 0.7500 0.4133 (4) 0.0178 (8)

O3 0.3728 (3) 0.5128 (5) 0.2099 (3) 0.0103 (5)

OH4 0.1565 (5) 0.2500 0.4244 (4) 0.0072 (7)

H 0.243 (11) 0.2500 0.465 (8) 0.020*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Pb 0.01011 (15) 0.01714 (16) 0.00532 (14) 0.000 0.00006 (5) 0.000

Mn 0.0089 (3) 0.0049 (4) 0.0057 (3) −0.0007 (3) 0.0002 (2) 0.0008 (2)

V 0.0049 (4) 0.0048 (4) 0.0029 (4) 0.000 0.0012 (2) 0.000

O1 0.0099 (17) 0.0087 (16) 0.0058 (15) 0.000 0.0028 (13) 0.000

O2 0.0083 (16) 0.034 (2) 0.0106 (17) 0.000 −0.0038 (13) 0.000

O3 0.0137 (12) 0.0084 (13) 0.0089 (12) 0.0012 (9) 0.0027 (8) −0.0011 (11)

OH4 0.0050 (14) 0.0068 (17) 0.0098 (18) 0.000 −0.0031 (12) 0.000

Geometric parameters (Å, º)

Pb—OH4 2.354 (4) V—Pbxiv 3.4829 (11)

Pb—O3 2.470 (3) V—Pbxv 3.7077 (7)

Pb—O3i 2.470 (3) V—Pbxvi 3.7077 (7)

Pb—O1ii 2.744 (4) V—Pbxvii 3.7833 (7)

Pb—O3iii 2.781 (3) O1—Mnx 2.221 (3)

Pb—O3iv 2.781 (3) O1—Mnxvii 2.221 (3)

Pb—O2ii 2.841 (4) O1—Pbxiv 2.744 (4)

Pb—O2v 3.2843 (15) O1—Pbxvii 3.920 (2)

Pb—O2iv 3.2843 (15) O1—Pbviii 4.487 (4)

Pb—Vii 3.4829 (11) O1—Pbxv 4.701 (3)

Mn—OH4vi 2.082 (3) O1—Pbxvi 4.701 (3)

Mn—OH4 2.082 (3) O2—Pbxiv 2.841 (4)

Mn—O1vii 2.221 (3) O2—Pbxvi 3.2843 (15)

(6)

supporting information

sup-3

Acta Cryst. (2001). E57, i119–i121

Mn—O3iii 2.221 (3) O2—Pbxviii 4.622 (4)

Mn—O3ix 2.221 (3) O3—Mnxix 2.221 (3)

Mn—Mnx 3.0895 (5) O3—Pbxvi 2.781 (3)

Mn—Mnxi 3.0895 (5) O3—Pbxiv 4.681 (3)

Mn—Pbvi 3.5801 (6) OH4—Mnx 2.082 (3)

Mn—Pbiv 3.6214 (6) OH4—Pbxvi 3.769 (4)

Mn—Pbxii 3.6214 (6) OH4—Pbiv 4.120 (4)

V—O2 1.656 (4) OH4—Pbxiv 4.234 (3)

V—O1 1.747 (4) OH4—Pbxii 4.234 (3)

V—O3 1.755 (3) OH4—H 0.77 (9)

V—O3xiii 1.755 (3)

OH4—Pb—O3 79.55 (10) O3iii—Pb—O2iv 119.80 (9)

OH4—Pb—O3i 79.55 (10) O3iv—Pb—O2iv 53.02 (9)

O3—Pb—O3i 82.23 (13) O2ii—Pb—O2iv 70.57 (7)

OH4—Pb—O1ii 145.68 (13) O2v—Pb—O2iv 140.33 (13)

O3—Pb—O1ii 74.78 (9) OH4vi—Mn—OH4 180.0

O3i—Pb—O1ii 74.78 (9) OH4vi—Mn—O1vii 87.92 (10)

OH4—Pb—O3iii 70.81 (9) OH4—Mn—O1vii 92.08 (10)

O3—Pb—O3iii 150.13 (3) OH4vi—Mn—O1viii 92.08 (10)

O3i—Pb—O3iii 95.69 (9) OH4—Mn—O1viii 87.92 (10)

O1ii—Pb—O3iii 133.63 (8) O1vii—Mn—O1viii 180.0

OH4—Pb—O3iv 70.81 (9) OH4vi—Mn—O3iii 91.85 (13)

O3—Pb—O3iv 95.69 (9) OH4—Mn—O3iii 88.15 (13)

O3i—Pb—O3iv 150.13 (3) O1vii—Mn—O3iii 88.83 (12)

O1ii—Pb—O3iv 133.63 (8) O1viii—Mn—O3iii 91.17 (12)

O3iii—Pb—O3iv 71.45 (12) OH4vi—Mn—O3ix 88.15 (13)

OH4—Pb—O2ii 156.57 (12) OH4—Mn—O3ix 91.85 (13)

O3—Pb—O2ii 117.21 (9) O1vii—Mn—O3ix 91.17 (12)

O3i—Pb—O2ii 117.21 (9) O1viii—Mn—O3ix 88.83 (12)

O1ii—Pb—O2ii 57.75 (12) O3iii—Mn—O3ix 180.0

O3iii—Pb—O2ii 90.37 (9) O2—V—O1 104.9 (2)

O3iv—Pb—O2ii 90.37 (9) O2—V—O3 107.12 (11)

OH4—Pb—O2v 106.17 (7) O1—V—O3 111.90 (10)

O3—Pb—O2v 144.17 (9) O2—V—O3xiii 107.12 (11)

O3i—Pb—O2v 64.76 (9) O1—V—O3xiii 111.90 (10)

O1ii—Pb—O2v 83.06 (7) O3—V—O3xiii 113.3 (2)

O3iii—Pb—O2v 53.02 (9) Mn—OH4—H 109 (4)

O3iv—Pb—O2v 119.80 (9) Mnx—OH4—H 109 (4)

O2ii—Pb—O2v 70.57 (7) Pb—OH4—H 125 (6)

OH4—Pb—O2iv 106.17 (7) Pbxvi—OH4—H 46 (6)

O3—Pb—O2iv 64.76 (9) Pbiv—OH4—H 163 (6)

O3i—Pb—O2iv 144.17 (10) Pbxiv—OH4—H 52 (2)

O1ii—Pb—O2iv 83.06 (7) Pbxii—OH4—H 52 (2)

(7)

supporting information

sup-4

Acta Cryst. (2001). E57, i119–i121 Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

OH4—H···O2xviii 0.77 (9) 2.02 (9) 2.783 (5) 176 (8)

Figure

Updating...

References

Related subjects : Crystal chemistry