• No results found

1,5 Di­phenyl­pent 4 ene 1,3 dione

N/A
N/A
Protected

Academic year: 2020

Share "1,5 Di­phenyl­pent 4 ene 1,3 dione"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Cryst.(2002). E58, o1301±o1303 DOI: 10.1107/S160053680201930X Arrieta and Mostad C17H14O2

o1301

organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,5-Diphenylpent-4-ene-1,3-dione

Antonio F. Arrietaaand Arvid Mostadb*

aInstitute for Organic Catalysis Research,

University of Rostock, Buchbinderstraûe 5-6, D-18051 Rostock, Germany, andbDepartment of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway

Correspondence e-mail: arvidm@kjemi.uio.no

Key indicators Single-crystal X-ray study

T= 152 K

Mean(C±C) = 0.004 AÊ

Rfactor = 0.044

wRfactor = 0.141 Data-to-parameter ratio = 7.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title molecule, C17H14O2, exists in the enolized form and displays a strong asymmetric intramolecular hydrogen bond. The structure supports the hypothesis that the conjugation in the molecule is a determining factor for the position of the enol H atom.

Comment

The 1,5-diphenylpent-4-ene-1,3-dione (DPPD) molecule, (I), depicted in Fig. 1, is essentially planar, as a result of the conjugation throughout the pentene chain. The largest deviation from the least-squares plane passing through all non-H atoms is less than 0.2 AÊ. The angle between the planes of the two phenyl rings in the molecule is 5.0 (1). The strong intramolecular hydrogen bond is asymmetric, the H atom being bonded to the O atom closest to the ole®n bond (O2); O2ÐH20 = 1.02 (8) AÊ, O1 H20 = 1.53 (8) AÊ, O1 O2 = 2.498 (3) AÊ and O2ÐH20 O1 = 157 (7). The observed position of the enol H atom is corroborated by the bond-length pattern within the enol group; this position, as had been expected, ensures the formation of the longest possible conjugated chain in the molecule. This structural principle has been observed for related compounds (Arrieta & Mostad, 2001, 2002) and for trimethinemeropolymethines with extended-conjugation (DaÈhne & Kulpe, 1977).

The crystal structure is composed of molecular layers normal to theaaxis, as may be seen from Fig. 2. Within these layers, each molecule is in contact with four neighbouring molecules, as illustrated in Fig. 3. The angle between the C1± C6 ring and its neighbours is 54.3 (4), whereas the C12±C17 ring is at an angle of 51.9 (4) to the surrounding aromatic moieties. The geometry of the interactions is given in Table 2, together with the hydrogen bonds. This packing mode, where neigbouring aromatic rings are at an angle of 7020to each other and a CÐH bond in one ring is pointing towards the -electrons of a C atom in the other, is repeatedly seen in crystal structures of similar molecules (Mostad, 1994; Arrieta & Mostad, 2001). Between the layers there appear to be only three H C distances less than 3.1 AÊ, but only one of these contacts includes a CÐH C angle larger than 150, namely C16ÐH16 C2v[symmetry code: (v)1

2+x,32ÿy,ÿ12+z]. The weak interaction between the layers may explain the dif®culty in growing good crystals.

(2)

organic papers

o1302

Arrieta and Mostad C17H14O2 Acta Cryst.(2002). E58, o1301±o1303

Experimental

The title compound was synthesized by condensation of benzoyl-acetone with benzaldehyde, according to a known procedure (Arrieta et al., 1992; Radeglia & Arrieta, 1998); m.p. 370±371 K. The fragile crystals (which could be easily destroyed while handling) of a plate-like shape were obtained by recrystallization from a mixture of petroleum ether (fraction 333±373 K) and acetone.

Crystal data

C17H14O2

Mr= 250.28 Monoclinic,Cc a= 30.102 (6) AÊ b= 5.712 (1) AÊ c= 7.466 (2) AÊ

= 93.97 (3) V= 1280.7 (4) AÊ3

Z= 4

Dx= 1.298 Mg mÿ3 MoKradiation Cell parameters from 1024

re¯ections

= 2.0±28.0

= 0.08 mmÿ1

T= 152 (2) K Plate, yellow 0.50.20.1 mm

Data collection

Bruker SMART diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1997) Tmin= 0.959,Tmax= 0.992

8368 measured re¯ections 1622 independent re¯ections

1419 re¯ections withI> 2(I) Rint= 0.044

max= 28.5

h=ÿ40!40 k=ÿ7!7 l=ÿ9!9

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.044

wR(F2) = 0.141

S= 1.08 1622 re¯ections 228 parameters

All H-atom parameters re®ned

w= 1/[2(F

o2) + (0.0899P)2 + 0.0642P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.005

max= 0.27 e AÊÿ3

min=ÿ0.25 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

O1ÐC7 1.259 (3) O2ÐC9 1.313 (3) O2ÐH20 1.02 (8) C6ÐC7 1.497 (3) C7ÐC8 1.425 (3)

C8ÐC9 1.386 (4) C9ÐC10 1.451 (3) C10ÐC11 1.348 (4) C11ÐC12 1.463 (3)

C9ÐO2ÐH20 100 (4) C5ÐC6ÐC7 122.7 (2) O1ÐC7ÐC8 120.8 (2) O1ÐC7ÐC6 118.2 (2) C8ÐC7ÐC6 121.0 (2) C9ÐC8ÐC7 120.2 (2) O2ÐC9ÐC8 121.6 (2)

O2ÐC9ÐC10 117.3 (2) C8ÐC9ÐC10 121.1 (2) C11ÐC10ÐC9 122.5 (2) C10ÐC11ÐC12 126.4 (2) C13ÐC12ÐC11 122.6 (2) C17ÐC12ÐC11 119.0 (2)

C2ÐC1ÐC6ÐC7 ÿ179.4 (2) C1ÐC6ÐC7ÐO1 ÿ8.4 (4) C5ÐC6ÐC7ÐO1 172.1 (3) C1ÐC6ÐC7ÐC8 171.5 (2) C5ÐC6ÐC7ÐC8 ÿ8.0 (4) O1ÐC7ÐC8ÐC9 0.7 (4) C6ÐC7ÐC8ÐC9 ÿ179.2 (2)

C7ÐC8ÐC9ÐO2 2.0 (4) C7ÐC8ÐC9ÐC10 ÿ176.5 (2) O2ÐC9ÐC10ÐC11 ÿ2.0 (4) C8ÐC9ÐC10ÐC11 176.6 (3) C9ÐC10ÐC11ÐC12 ÿ175.8 (2) C10ÐC11ÐC12ÐC13 ÿ0.2 (4) C10ÐC11ÐC12ÐC17 177.5 (3)

Figure 1

The atom numbering and displacement ellipsoids at the 50% probability level in the DPPD molecule. A dashed line shows the intramolecular hydrogen bond.

Figure 3

The interactions between a DPPD moleculeAand its four neigboursB, C,DandE.

Figure 2

(3)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O2ÐH20 O1 1.02 (8) 1.53 (8) 2.498 (3) 157 (7) C1ÐH1 C5i 1.00 (3) 2.90 (3) 3.825 (4) 153 (2)

C4ÐH4 C2ii 1.00 (5) 2.97 (5) 3.918 (4) 158 (4)

C14ÐH14 C17iii 0.91 (3) 2.81 (3) 3.670 (4) 158 (2)

C17ÐH17 C14iv 1.05 (4) 2.98 (4) 3.941 (4) 152 (3)

Symmetry codes: (i) x;3ÿy;zÿ1

2; (ii) x;2ÿy;12‡z; (iii) x;1ÿy;12‡z; (iv)

x;2ÿy;zÿ1 2.

The H atoms were all located in difference Fourier maps and re®ned isotropically (CÐH 0.91±1.05 AÊ). As the structure does not contain anomalous scatterers, the Friedel equivalents were merged and the Flack (1983) parameter was not re®ned.

Data collection:SMART(Bruker, 1998); cell re®nement:SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve

structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

References

Arrieta, A., Beyer, L., Kleinpeter, E., Lehmann, J. & Dargatz, M. (1992).J. Prak. Chem.334, 696±700.

Arrieta, A. F. & Mostad, A. (2001).Acta Cryst.E57, o1198±o1199. Arrieta, A. F. & Mostad, A. (2002).Acta Cryst.E58, o188±o190.

Bruker (1998).SMARTandSAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

DaÈhne, S. & Kulpe, S. (1977).Abh. Akad. Wiss. DDR,Abt. Math. Naturwiss. Teil 8N, pp. 44±45. Berlin: Tech. Akademieverlag.

Flack, H. D. (1983).Acta Cryst.A39, 876±881. Mostad, A. (1994).Acta Chem. Scand.48, 144±148. Radeglia, R. & Arrieta, A. F. (1998).Pharmazie,53, 28±32.

Sheldrick, G. M. (1997). SADABS (Version 1.0.2), SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

(4)

supporting information

sup-1

Acta Cryst. (2002). E58, o1301–o1303

supporting information

Acta Cryst. (2002). E58, o1301–o1303 [https://doi.org/10.1107/S160053680201930X]

1,5-Diphenylpent-4-ene-1,3-dione

Antonio F. Arrieta and Arvid Mostad

1,5-diphenylpent-4-ene-1,3-dione

Crystal data

C17H14O2

Mr = 250.28

Monoclinic, Cc a = 30.102 (6) Å

b = 5.712 (1) Å

c = 7.466 (2) Å

β = 93.97 (3)°

V = 1280.7 (4) Å3

Z = 4

F(000) = 528

Dx = 1.298 Mg m−3

Melting point: 371 K

Mo radiation, λ = 0.71073 Å Cell parameters from 1024 reflections

θ = 2.0–28.0°

µ = 0.08 mm−1

T = 152 K Plate, yellow 0.5 × 0.2 × 0.1 mm

Data collection

Bruker P4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 8 pixels mm-1

ω scans

Absorption correction: empirical (using intensity measurements)

(SADABS; Sheldrick, 1997a)

Tmin = 0.959, Tmax = 0.992

8368 measured reflections 1622 independent reflections 1419 reflections with I > 2σ(I)′

Rint = 0.044

θmax = 28.5°, θmin = 1.4°

h = −40→40

k = −7→7

l = −9→9

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.044

wR(F2) = 0.141

S = 1.08 1622 reflections 228 parameters 2 restraints

Primary atom site location: structure-invariant direct methods

Hydrogen site location: difference Fourier map All H-atom parameters refined

w = 1/[σ2(F

o2) + (0.0899P)2 + 0.0642P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.005

Δρmax = 0.27 e Å−3

Δρmin = −0.25 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

(5)

supporting information

sup-2

Acta Cryst. (2002). E58, o1301–o1303

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.43996 (7) 1.5204 (4) 0.2864 (3) 0.0427 (6)

O2 0.36220 (7) 1.3790 (4) 0.2153 (3) 0.0418 (6)

H20 0.392 (3) 1.463 (12) 0.219 (10) 0.11 (2)*

C1 0.52881 (8) 1.4566 (5) 0.3905 (3) 0.0292 (5)

C2 0.57307 (9) 1.4277 (5) 0.4519 (4) 0.0308 (6)

C3 0.58658 (9) 1.2290 (5) 0.5475 (3) 0.0308 (6)

C4 0.55578 (9) 1.0562 (5) 0.5817 (4) 0.0319 (6)

C5 0.51115 (9) 1.0846 (5) 0.5192 (4) 0.0298 (5)

C6 0.49746 (8) 1.2851 (5) 0.4236 (3) 0.0260 (5)

C7 0.45026 (8) 1.3236 (5) 0.3530 (3) 0.0292 (5)

C8 0.41784 (9) 1.1428 (5) 0.3606 (4) 0.0324 (6)

C9 0.37441 (8) 1.1806 (5) 0.2926 (3) 0.0297 (5)

C10 0.34033 (9) 1.0036 (4) 0.3080 (4) 0.0308 (6)

C11 0.29738 (9) 1.0397 (4) 0.2512 (3) 0.0278 (5)

C12 0.26026 (8) 0.8785 (4) 0.2712 (3) 0.0262 (5)

C13 0.26575 (8) 0.6607 (5) 0.3547 (3) 0.0278 (5)

C14 0.22917 (9) 0.5199 (5) 0.3806 (4) 0.0303 (6)

C15 0.18663 (9) 0.5927 (5) 0.3226 (4) 0.0316 (6)

C16 0.18041 (8) 0.8067 (5) 0.2366 (4) 0.0320 (6)

C17 0.21696 (8) 0.9485 (4) 0.2101 (3) 0.0278 (5)

H1 0.5207 (10) 1.609 (5) 0.329 (4) 0.018 (7)*

H2 0.5929 (14) 1.547 (7) 0.431 (5) 0.040 (9)*

H3 0.6179 (11) 1.222 (6) 0.591 (4) 0.027 (7)*

H4 0.5665 (16) 0.916 (8) 0.653 (6) 0.057 (12)*

H5 0.4900 (12) 0.962 (6) 0.552 (5) 0.034 (9)*

H17 0.2106 (13) 1.110 (6) 0.147 (5) 0.036 (9)*

H8 0.4255 (13) 0.990 (7) 0.426 (5) 0.034 (9)*

H10 0.3482 (12) 0.868 (7) 0.376 (5) 0.040 (10)*

H11 0.2894 (10) 1.203 (5) 0.192 (4) 0.022 (7)*

H13 0.2944 (11) 0.608 (5) 0.395 (4) 0.023 (7)*

H14 0.2320 (9) 0.384 (5) 0.443 (4) 0.012 (6)*

H15 0.1598 (18) 0.517 (9) 0.348 (7) 0.064 (13)*

H16 0.1499 (14) 0.860 (8) 0.193 (6) 0.048 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0284 (9) 0.0348 (10) 0.0638 (15) −0.0031 (8) −0.0049 (9) 0.0175 (10)

O2 0.0273 (9) 0.0367 (11) 0.0602 (14) −0.0041 (8) −0.0055 (9) 0.0138 (9)

(6)

supporting information

sup-3

Acta Cryst. (2002). E58, o1301–o1303

C2 0.0280 (12) 0.0342 (12) 0.0302 (13) −0.0046 (11) 0.0016 (10) 0.0002 (10)

C3 0.0244 (11) 0.0373 (13) 0.0305 (13) 0.0036 (10) −0.0007 (9) −0.0023 (10)

C4 0.0315 (13) 0.0331 (13) 0.0306 (13) 0.0056 (10) −0.0020 (10) 0.0011 (10) C5 0.0261 (12) 0.0310 (12) 0.0321 (13) −0.0010 (10) 0.0013 (10) 0.0009 (10)

C6 0.0237 (10) 0.0266 (11) 0.0275 (12) −0.0010 (9) −0.0001 (9) −0.0020 (9)

C7 0.0242 (11) 0.0310 (12) 0.0323 (13) 0.0005 (9) 0.0006 (10) 0.0019 (10)

C8 0.0275 (11) 0.0279 (11) 0.0412 (15) −0.0013 (10) −0.0024 (10) 0.0027 (10)

C9 0.0253 (11) 0.0314 (12) 0.0323 (13) −0.0008 (9) 0.0009 (10) 0.0005 (10)

C10 0.0290 (12) 0.0281 (13) 0.0349 (14) −0.0031 (9) −0.0006 (10) 0.0009 (10) C11 0.0264 (11) 0.0288 (11) 0.0277 (12) −0.0021 (9) −0.0008 (9) 0.0010 (10) C12 0.0228 (11) 0.0288 (12) 0.0265 (12) −0.0018 (9) −0.0011 (9) −0.0026 (9)

C13 0.0270 (11) 0.0291 (11) 0.0268 (11) 0.0015 (9) −0.0021 (9) −0.0013 (10)

C14 0.0360 (14) 0.0268 (12) 0.0279 (13) −0.0023 (10) 0.0002 (10) −0.0019 (10) C15 0.0289 (12) 0.0341 (13) 0.0316 (13) −0.0060 (10) 0.0016 (10) −0.0046 (10) C16 0.0243 (11) 0.0391 (14) 0.0323 (13) −0.0004 (10) −0.0013 (10) −0.0046 (10)

C17 0.0251 (11) 0.0293 (11) 0.0286 (13) 0.0019 (9) −0.0022 (9) −0.0022 (10)

Geometric parameters (Å, º)

O1—C7 1.259 (3) C8—H8 1.02 (4)

O2—C9 1.313 (3) C9—C10 1.451 (3)

O2—H20 1.02 (8) C10—C11 1.348 (4)

C1—C2 1.388 (4) C10—H10 0.95 (4)

C1—C6 1.394 (3) C11—C12 1.463 (3)

C1—H1 1.00 (3) C11—H11 1.05 (3)

C2—C3 1.386 (4) C12—C13 1.396 (4)

C2—H2 0.93 (4) C12—C17 1.409 (3)

C3—C4 1.390 (4) C13—C14 1.388 (3)

C3—H3 0.98 (4) C13—H13 0.94 (4)

C4—C5 1.401 (4) C14—C15 1.387 (4)

C4—H4 1.00 (4) C14—H14 0.91 (3)

C5—C6 1.396 (4) C15—C16 1.388 (5)

C5—H5 0.99 (4) C15—H15 0.95 (4)

C6—C7 1.497 (3) C16—C17 1.391 (4)

C7—C8 1.425 (3) C16—H16 1.00 (4)

C8—C9 1.386 (4) C17—H17 1.05 (4)

C9—O2—H20 100 (4) O2—C9—C10 117.3 (2)

C2—C1—C6 120.2 (2) C8—C9—C10 121.1 (2)

C2—C1—H1 116 (2) C11—C10—C9 122.5 (2)

C6—C1—H1 123 (2) C11—C10—H10 120 (2)

C3—C2—C1 120.5 (3) C9—C10—H10 117 (2)

C3—C2—H2 121 (2) C10—C11—C12 126.4 (2)

C1—C2—H2 118 (2) C10—C11—H11 117 (2)

C2—C3—C4 120.0 (2) C12—C11—H11 117 (2)

C2—C3—H3 117 (2) C13—C12—C17 118.4 (2)

C4—C3—H3 123 (2) C13—C12—C11 122.6 (2)

(7)

supporting information

sup-4

Acta Cryst. (2002). E58, o1301–o1303

C3—C4—H4 118 (3) C14—C13—C12 120.5 (2)

C5—C4—H4 122 (3) C14—C13—H13 119 (2)

C6—C5—C4 120.5 (2) C12—C13—H13 120 (2)

C6—C5—H5 122 (2) C15—C14—C13 120.5 (2)

C4—C5—H5 117 (2) C15—C14—H14 118 (2)

C1—C6—C5 119.2 (2) C13—C14—H14 121 (2)

C1—C6—C7 118.2 (2) C14—C15—C16 120.1 (2)

C5—C6—C7 122.7 (2) C14—C15—H15 126 (3)

O1—C7—C8 120.8 (2) C16—C15—H15 114 (3)

O1—C7—C6 118.2 (2) C15—C16—C17 119.8 (2)

C8—C7—C6 121.0 (2) C15—C16—H16 121 (2)

C9—C8—C7 120.2 (2) C17—C16—H16 120 (2)

C9—C8—H8 119 (2) C16—C17—C12 120.8 (2)

C7—C8—H8 120 (2) C16—C17—H17 117 (2)

O2—C9—C8 121.6 (2) C12—C17—H17 122 (2)

C6—C1—C2—C3 −0.3 (4) C7—C8—C9—C10 −176.5 (2)

C1—C2—C3—C4 0.3 (4) O2—C9—C10—C11 −2.0 (4)

C2—C3—C4—C5 −0.1 (4) C8—C9—C10—C11 176.6 (3)

C3—C4—C5—C6 −0.2 (4) C9—C10—C11—C12 −175.8 (2)

C2—C1—C6—C5 0.1 (4) C10—C11—C12—C13 −0.2 (4)

C2—C1—C6—C7 −179.4 (2) C10—C11—C12—C17 177.5 (3)

C4—C5—C6—C1 0.2 (4) C17—C12—C13—C14 −1.7 (4)

C4—C5—C6—C7 179.7 (2) C11—C12—C13—C14 176.0 (2)

C1—C6—C7—O1 −8.4 (4) C12—C13—C14—C15 0.5 (4)

C5—C6—C7—O1 172.1 (3) C13—C14—C15—C16 0.5 (4)

C1—C6—C7—C8 171.5 (2) C14—C15—C16—C17 −0.5 (4)

C5—C6—C7—C8 −8.0 (4) C15—C16—C17—C12 −0.7 (4)

O1—C7—C8—C9 0.7 (4) C13—C12—C17—C16 1.7 (4)

C6—C7—C8—C9 −179.2 (2) C11—C12—C17—C16 −176.0 (2)

C7—C8—C9—O2 2.0 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O2—H20···O1 1.02 (8) 1.53 (8) 2.498 (3) 157 (7)

C1—H1···C5i 1.00 (3) 2.90 (3) 3.825 (4) 153 (2)

C4—H4···C2ii 1.00 (5) 2.97 (5) 3.918 (4) 158 (4)

C14—H14···C17iii 0.91 (3) 2.81 (3) 3.670 (4) 158 (2)

C17—H17···C14iv 1.05 (4) 2.98 (4) 3.941 (4) 152 (3)

References

Related documents

This model posits four types of health beliefs that affect an individual’s health behavior, in this case, the decision to seek mental health services: perceived

Most companies recruit for full-time and internship positions, but some indicate Co-Op as a recruiting priority, while not attending Professional Practice

Political Parties approved by CNE to stand in at least some constituencies PLD – Partido de Liberdade e Desenvolvimento – Party of Freedom and Development ECOLOGISTA – MT –

• Storage node - node that runs Account, Container, and Object services • ring - a set of mappings of OpenStack Object Storage data to physical devices To increase reliability, you

In the previous sections, we dis- cuss the expectation that a neural network exploiting the fractional convolution should perform slightly worse than a pure binary (1-bit weights

Electron micrographs of mannonamide aggregates from water (a-e) or xylene (f): (a and b) details of aged fiber aggregates of D-mannonamide 2 negatively stained

Facet joint arthropathy - osteophyte formation and distortion of joint alignment MRI Axial T2 L3-L4 disk Psoas Paraspinal muscles Psoas Paraspinal NP AF MRI Axial T2 PACS, BIDMC

• Taxpayers subject to the provisions of Title II of the Income Tax Law (ITL) which have declared taxable income of $644,599,005 or more in the immediately preceding tax