• No results found

2,2 Di­chloro 1 (4 eth­oxy­phen­yl)cyclo­propanyl 2,3 di­methyl­piperidin 1 yl ketone

N/A
N/A
Protected

Academic year: 2020

Share "2,2 Di­chloro 1 (4 eth­oxy­phen­yl)cyclo­propanyl 2,3 di­methyl­piperidin 1 yl ketone"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o3486

Sunet al. C

19H25Cl2NO2 doi:10.1107/S160053680602811X Acta Cryst.(2006). E62, o3486–o3487

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

2,2-Dichloro-1-(4-ethoxyphenyl)cyclopropanyl

2,3-dimethylpiperidin-1-yl ketone

Na-Bo Sun, Cheng-Xia Tan, Jian-Quan Weng and De-Long Shen*

College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People’s Republic of China

Correspondence e-mail: pesticide@zjut.edu.cn

Key indicators

Single-crystal X-ray study T= 298 K

Mean(C–C) = 0.003 A˚ Rfactor = 0.034 wRfactor = 0.085

Data-to-parameter ratio = 18.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 16 July 2006 Accepted 20 July 2006

#2006 International Union of Crystallography All rights reserved

In the title compound, C19H25Cl2NO2, the piperidine ring

shows a normal chair conformation and the cyclopropane ring forms a dihedral angle of 55.68 (17)with the benzene ring.

Comment

Cycloprothrin derivatives have a high potential for biological activity. They are commonly characterized by low toxicity and good environmental compatibility. As part of our ongoing study on the structure–activity relationships for cycloprothrin derivatives and related compounds, we have recently isolated the title compound, (I), and determined its crystal structure.

The molecular structure of (I) is shown in Fig. 1. The piperidine ring shows a normal chair conformation. The cyclopropane ring forms a dihedral angle of 55.68 (17) with

the benzene ring. Weak C—H O hydrogen bonding is observed between neighboring molecules (Table 1).

Experimental

2,3-Dimethylpiperdine (1.0 g, 8.8 mmol) and triethylamine (1.2 g, 11.9 mmol) were dissolved in dichloromethane (15 ml) with stirring. Then 2,2-dichloro-1-(4-ethoxyphenyl)cyclopropanecarbonyl chloride (2.94 g, 10 mmol) was added dropwise to the mixture at room temperature. The mixture was stirred at room temperature for 15 h, washed three times with water and then dried, yielding 2.93 g of a solid product (yield 90.0%). This was recrystallized from ethanol to give single crystals of (I).

Crystal data

C19H25Cl2NO2

Mr= 370.32 Monoclinic,Cc a= 11.662 (5) A˚

b= 16.242 (8) A˚

c= 11.398 (5) A˚

= 115.078 (19)

V= 1955.3 (15) A˚3

Z= 4

Dx= 1.258 Mg m 3

MoKradiation

= 0.34 mm1

T= 298 (1) K Chunk, colorless 0.330.300.20 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.888,Tmax= 0.934

9469 measured reflections 4133 independent reflections 3347 reflections withF2> 2(F2)

Rint= 0.024

(2)

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.034

wR(F2) = 0.085

S= 1.02 4133 reflections 219 parameters

H-atom parameters constrained

w= 1/[0.0004Fo2+(Fo2)]/(4Fo2)

(/)max< 0.001

max= 0.32 e A˚

3

min=0.37 e A˚

3

Extinction correction: Larson (1970), equation 22 Extinction coefficient: 145 (16) Absolute structure: Flack (1983),

[image:2.610.314.563.73.215.2]

1889 Friedel Pairs Flack parameter: 0.009 (4)

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

C11—H11 O1i

0.93 2.40 3.322 (3) 170

Symmetry code: (i)xþ1 2;yþ

1 2;zþ

1 2.

Methyl H atoms were placed in calculated positions with C—H = 0.96 A˚ and torsion angles were refined to fit the electron density. Other H atoms were placed in calculated positions with C—H = 0.93 (aromatic), 0.98 (methine) and 0.97 A˚ (methylene), and refined in riding mode, withUiso(H) = 1.2Ueq(C).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refine-ment:PROCESS-AUTO; data reduction:CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure:SHELXS97 (Shel-drick, 1997); program(s) used to refine structure: CRYSTALS (Betteridgeet al., 1996); molecular graphics:ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

The work was supported by the Education Bureau Foun-dation of Zhejiang Province (No. 20030145).

References

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003).J. Appl. Cryst.36, 1487.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Higashi, T. (1995).ABSCOR. Rigaku Corporation, Tokyo, Japan.

Larson, A. C. (1970).Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.

Rigaku (1998).PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2004). CrystalStructure. Version 3.7.0. Rigaku/MSC, The

Woodlands, Texas, USA.

Sheldrick, G. M. (1997).SHELXS97. University of Go¨ttingen, Germany.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2006). E62, o3486–o3487

supporting information

Acta Cryst. (2006). E62, o3486–o3487 [https://doi.org/10.1107/S160053680602811X]

2,2-Dichloro-1-(4-ethoxyphenyl)cyclopropanyl 2,3-dimethylpiperidin-1-yl

ketone

Na-Bo Sun, Cheng-Xia Tan, Jian-Quan Weng and De-Long Shen

2,2-Dichloro-1-(4-ethoxyphenyl)cyclopropanyl 2,3-dimethylpiperidin-1-yl ketone

Crystal data

C19H25Cl2NO2

Mr = 370.32 Monoclinic, Cc

Hall symbol: C -2yc

a = 11.662 (5) Å

b = 16.242 (8) Å

c = 11.398 (5) Å

β = 115.078 (19)°

V = 1955.3 (15) Å3

Z = 4

F(000) = 784.0

Dx = 1.258 Mg m−3

Melting point: 432-434 K K Mo radiation, λ = 0.71075 Å Cell parameters from 8522 reflections

θ = 3.2–27.5°

µ = 0.34 mm−1

T = 298 K Chunk, colorless 0.33 × 0.30 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Detector resolution: 10.0 pixels mm-1

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin = 0.888, Tmax = 0.934 9469 measured reflections

4133 independent reflections 3347 reflections with F2 > 2σ(F2)

Rint = 0.024

θmax = 27.5°

h = −14→15

k = −21→21

l = −14→14

Refinement

Refinement on F2

R[F2 > 2σ(F2)] = 0.034

wR(F2) = 0.085

S = 1.02 4133 reflections 219 parameters

H-atom parameters constrained

w = 1/[0.0004Fo2 + 1σ(Fo2)]/(4Fo2) (Δ/σ)max < 0.001

Δρmax = 0.32 e Å−3 Δρmin = −0.37 e Å−3

Extinction correction: Larson (1970), equation 22

Extinction coefficient: 145 (16)

Absolute structure: Flack (1983), 1889 Friedel Pairs

Absolute structure parameter: 0.009 (4)

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

(4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 0.16170 (6) 0.41375 (4) 0.32210 (8) 0.0761 (2)

Cl2 0.16421 (6) 0.41874 (4) 0.06979 (6) 0.0758 (2)

O1 0.08258 (12) 0.23702 (11) 0.01319 (16) 0.0682 (4)

O2 0.10888 (16) 0.08052 (12) 0.56676 (18) 0.0812 (5)

N1 0.27535 (13) 0.17874 (11) 0.07917 (16) 0.0496 (4)

C1 0.23125 (14) 0.27401 (11) 0.22310 (18) 0.0417 (4)

C2 0.34566 (17) 0.33123 (11) 0.2730 (2) 0.0454 (5)

C3 0.21612 (17) 0.36614 (12) 0.2171 (2) 0.0493 (5)

C4 0.19111 (16) 0.22899 (12) 0.0953 (2) 0.0471 (5)

C5 0.40104 (17) 0.15575 (12) 0.1801 (2) 0.0478 (5)

C6 0.5000 (2) 0.17168 (13) 0.1271 (2) 0.0605 (6)

C7 0.4654 (2) 0.1262 (2) −0.0004 (2) 0.0838 (9)

C8 0.3332 (2) 0.1458 (2) −0.0964 (2) 0.0871 (9)

C9 0.2363 (2) 0.13407 (17) −0.0436 (2) 0.0700 (7)

C10 0.19811 (16) 0.22639 (11) 0.31800 (18) 0.0410 (4)

C11 0.28973 (17) 0.19576 (13) 0.4321 (2) 0.0520 (5)

C12 0.25725 (19) 0.14796 (16) 0.5127 (2) 0.0619 (6)

C13 0.1316 (2) 0.13020 (12) 0.4811 (2) 0.0565 (6)

C14 0.03855 (18) 0.16178 (13) 0.3695 (2) 0.0567 (6)

C15 0.07271 (17) 0.20922 (12) 0.2885 (2) 0.0505 (5)

C16 −0.0141 (2) 0.04778 (17) 0.5293 (2) 0.0796 (9)

C17 −0.0076 (3) −0.0121 (2) 0.6285 (3) 0.1073 (12)

C18 0.3989 (2) 0.06890 (13) 0.2284 (2) 0.0656 (7)

C19 0.6334 (2) 0.15331 (18) 0.2252 (3) 0.0821 (8)

H5 0.4199 0.1931 0.2535 0.057*

H6 0.4966 0.2306 0.1077 0.073*

H11 0.3745 0.2076 0.4547 0.062*

H12 0.3201 0.1274 0.5890 0.074*

H14 −0.0463 0.1514 0.3487 0.068*

H15 0.0098 0.2300 0.2124 0.061*

H21 0.3982 0.3360 0.2263 0.055*

H22 0.3983 0.3355 0.3653 0.055*

H71 0.4721 0.0674 0.0161 0.101*

H72 0.5239 0.1421 −0.0365 0.101*

H81 0.3117 0.1102 −0.1710 0.105*

H82 0.3307 0.2028 −0.1229 0.105*

H91 0.2286 0.0759 −0.0291 0.084*

H92 0.1552 0.1550 −0.1054 0.084*

H161 −0.0419 0.0207 0.4459 0.095*

H162 −0.0728 0.0915 0.5236 0.095*

H171 −0.0913 −0.0312 0.6104 0.129*

H172 0.0286 0.0138 0.7121 0.129*

H173 0.0442 −0.0578 0.6278 0.129*

H181 0.3320 0.0642 0.2560 0.079*

(5)

supporting information

sup-3 Acta Cryst. (2006). E62, o3486–o3487

H183 0.3849 0.0304 0.1597 0.079*

H191 0.6525 0.1856 0.3017 0.098*

H192 0.6406 0.0959 0.2471 0.098*

H193 0.6919 0.1667 0.1890 0.098*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.0991 (4) 0.0538 (3) 0.0995 (5) 0.0197 (2) 0.0654 (4) 0.0008 (3)

Cl2 0.0770 (3) 0.0750 (4) 0.0733 (4) 0.0235 (3) 0.0299 (3) 0.0331 (3)

O1 0.0336 (6) 0.0980 (12) 0.0572 (9) 0.0115 (7) 0.0038 (6) −0.0132 (8)

O2 0.0746 (11) 0.0917 (12) 0.0785 (11) −0.0144 (9) 0.0336 (9) 0.0262 (9)

N1 0.0416 (8) 0.0587 (10) 0.0420 (9) 0.0091 (7) 0.0114 (7) −0.0051 (7)

C1 0.0315 (7) 0.0429 (9) 0.0500 (10) 0.0072 (6) 0.0166 (7) 0.0035 (8)

C2 0.0392 (9) 0.0411 (10) 0.0529 (11) 0.0033 (7) 0.0166 (8) 0.0022 (8)

C3 0.0485 (10) 0.0454 (10) 0.0569 (11) 0.0142 (8) 0.0252 (9) 0.0106 (9)

C4 0.0363 (9) 0.0505 (11) 0.0522 (12) 0.0040 (7) 0.0165 (9) −0.0002 (8)

C5 0.0380 (8) 0.0455 (10) 0.0541 (11) 0.0090 (7) 0.0138 (8) −0.0018 (8)

C6 0.0529 (11) 0.0543 (12) 0.0824 (16) 0.0099 (9) 0.0365 (11) 0.0016 (10)

C7 0.0851 (17) 0.100 (2) 0.0843 (18) 0.0258 (15) 0.0532 (15) 0.0009 (15)

C8 0.1031 (19) 0.107 (2) 0.0574 (15) 0.0320 (17) 0.0403 (15) −0.0032 (14)

C9 0.0661 (14) 0.0830 (18) 0.0496 (13) 0.0167 (12) 0.0135 (11) −0.0164 (11)

C10 0.0368 (8) 0.0388 (9) 0.0461 (10) 0.0003 (7) 0.0163 (8) −0.0015 (7)

C11 0.0371 (9) 0.0607 (12) 0.0525 (12) −0.0038 (8) 0.0136 (8) 0.0067 (9)

C12 0.0519 (11) 0.0745 (15) 0.0508 (13) −0.0036 (10) 0.0136 (10) 0.0125 (10) C13 0.0596 (12) 0.0534 (12) 0.0607 (13) −0.0061 (10) 0.0295 (10) 0.0044 (10) C14 0.0427 (10) 0.0612 (13) 0.0701 (15) −0.0024 (9) 0.0276 (10) 0.0034 (10)

C15 0.0393 (9) 0.0558 (12) 0.0519 (11) 0.0086 (8) 0.0148 (8) 0.0076 (9)

C16 0.0731 (15) 0.0769 (17) 0.103 (2) −0.0048 (13) 0.0512 (15) 0.0194 (16)

C17 0.103 (2) 0.098 (2) 0.141 (2) −0.0088 (17) 0.070 (2) 0.034 (2)

C18 0.0659 (13) 0.0529 (13) 0.0722 (15) 0.0062 (10) 0.0237 (11) 0.0040 (10)

C19 0.0538 (12) 0.0837 (18) 0.112 (2) 0.0081 (12) 0.0384 (13) −0.0035 (16)

Geometric parameters (Å, º)

Cl1—C3 1.754 (2) C2—H21 0.970

Cl2—C3 1.748 (2) C2—H22 0.970

O1—C4 1.2208 (19) C5—H5 0.980

O2—C13 1.377 (3) C6—H6 0.980

O2—C16 1.415 (3) C7—H71 0.970

N1—C4 1.348 (2) C7—H72 0.970

N1—C5 1.477 (2) C8—H81 0.970

N1—C9 1.467 (3) C8—H82 0.970

C1—C2 1.524 (2) C9—H91 0.970

C1—C3 1.505 (2) C9—H92 0.970

C1—C4 1.516 (2) C11—H11 0.930

C1—C10 1.507 (3) C12—H12 0.930

(6)

C5—C6 1.534 (3) C15—H15 0.930

C5—C18 1.518 (3) C16—H161 0.970

C6—C7 1.525 (4) C16—H162 0.970

C6—C19 1.512 (2) C17—H171 0.960

C7—C8 1.498 (3) C17—H172 0.960

C8—C9 1.501 (4) C17—H173 0.960

C10—C11 1.379 (2) C18—H181 0.960

C10—C15 1.383 (2) C18—H182 0.960

C11—C12 1.373 (3) C18—H183 0.960

C12—C13 1.383 (3) C19—H191 0.960

C13—C14 1.374 (2) C19—H192 0.960

C14—C15 1.385 (3) C19—H193 0.960

C16—C17 1.468 (5)

C13—O2—C16 118.79 (18) C7—C6—H6 106.8

C4—N1—C5 125.94 (17) C19—C6—H6 106.8

C4—N1—C9 118.67 (15) C6—C7—H71 109.0

C5—N1—C9 114.97 (18) C6—C7—H72 109.0

C2—C1—C3 58.53 (11) C8—C7—H71 109.0

C2—C1—C4 121.16 (19) C8—C7—H72 109.0

C2—C1—C10 119.68 (15) H71—C7—H72 109.5

C3—C1—C4 116.97 (16) C7—C8—H81 108.5

C3—C1—C10 118.82 (18) C7—C8—H82 108.5

C4—C1—C10 111.93 (15) C9—C8—H81 108.5

C1—C2—C3 60.07 (12) C9—C8—H82 108.5

Cl1—C3—Cl2 111.21 (10) H81—C8—H82 109.5

Cl1—C3—C1 118.48 (17) N1—C9—H91 109.4

Cl1—C3—C2 118.26 (14) N1—C9—H92 109.4

Cl2—C3—C1 121.06 (15) C8—C9—H91 109.4

Cl2—C3—C2 118.37 (18) C8—C9—H92 109.4

C1—C3—C2 61.39 (11) H91—C9—H92 109.5

O1—C4—N1 122.60 (19) C10—C11—H11 119.6

O1—C4—C1 118.85 (19) C12—C11—H11 119.6

N1—C4—C1 118.48 (13) C11—C12—H12 119.8

N1—C5—C6 108.33 (17) C13—C12—H12 119.8

N1—C5—C18 110.73 (15) C13—C14—H14 120.4

C6—C5—C18 115.47 (19) C15—C14—H14 120.4

C5—C6—C7 110.75 (19) C10—C15—H15 119.2

C5—C6—C19 112.7 (2) C14—C15—H15 119.2

C7—C6—C19 112.5 (2) O2—C16—H161 110.0

C6—C7—C8 111.5 (2) O2—C16—H162 110.0

C7—C8—C9 113.4 (2) C17—C16—H161 110.0

N1—C9—C8 109.7 (2) C17—C16—H162 110.0

C1—C10—C11 122.00 (17) H161—C16—H162 109.5

C1—C10—C15 119.68 (15) C16—C17—H171 109.5

C11—C10—C15 118.3 (2) C16—C17—H172 109.5

C10—C11—C12 120.77 (18) C16—C17—H173 109.5

(7)

supporting information

sup-5 Acta Cryst. (2006). E62, o3486–o3487

O2—C13—C12 116.04 (18) H171—C17—H173 109.5

O2—C13—C14 124.1 (2) H172—C17—H173 109.5

C12—C13—C14 119.8 (2) C5—C18—H181 109.5

C13—C14—C15 119.2 (2) C5—C18—H182 109.5

C10—C15—C14 121.56 (16) C5—C18—H183 109.5

O2—C16—C17 107.6 (2) H181—C18—H182 109.5

C1—C2—H21 120.0 H181—C18—H183 109.5

C1—C2—H22 120.0 H182—C18—H183 109.5

C3—C2—H21 120.0 C6—C19—H191 109.5

C3—C2—H22 120.0 C6—C19—H192 109.5

H21—C2—H22 109.5 C6—C19—H193 109.5

N1—C5—H5 107.3 H191—C19—H192 109.5

C6—C5—H5 107.3 H191—C19—H193 109.5

C18—C5—H5 107.3 H192—C19—H193 109.5

C5—C6—H6 106.8

C13—O2—C16—C17 171.5 (2) C10—C1—C3—Cl1 0.50 (18)

C16—O2—C13—C12 −168.6 (2) C10—C1—C3—Cl2 −143.32 (14)

C16—O2—C13—C14 11.4 (3) C10—C1—C3—C2 109.02 (17)

C4—N1—C5—C6 −128.6 (2) C4—C1—C10—C11 115.16 (19)

C4—N1—C5—C18 103.8 (2) C4—C1—C10—C15 −61.9 (2)

C5—N1—C4—O1 −170.1 (2) C10—C1—C4—O1 84.8 (2)

C5—N1—C4—C1 6.9 (3) C10—C1—C4—N1 −92.3 (2)

C4—N1—C9—C8 130.1 (2) C1—C2—C3—Cl1 108.87 (18)

C9—N1—C4—O1 2.1 (3) C1—C2—C3—Cl2 −111.92 (17)

C9—N1—C4—C1 179.1 (2) N1—C5—C6—C7 −55.3 (2)

C5—N1—C9—C8 −56.9 (2) N1—C5—C6—C19 177.69 (19)

C9—N1—C5—C6 59.0 (2) C18—C5—C6—C7 69.5 (2)

C9—N1—C5—C18 −68.6 (2) C18—C5—C6—C19 −57.5 (2)

C2—C1—C3—Cl1 −108.52 (16) C5—C6—C7—C8 53.3 (3)

C2—C1—C3—Cl2 107.7 (2) C19—C6—C7—C8 −179.6 (2)

C2—C1—C4—O1 −125.0 (2) C6—C7—C8—C9 −51.9 (3)

C2—C1—C4—N1 57.9 (2) C7—C8—C9—N1 52.0 (3)

C4—C1—C2—C3 104.55 (19) C1—C10—C11—C12 −175.6 (2)

C2—C1—C10—C11 −35.5 (2) C1—C10—C15—C14 176.4 (2)

C2—C1—C10—C15 147.49 (18) C11—C10—C15—C14 −0.8 (3)

C10—C1—C2—C3 −107.6 (2) C15—C10—C11—C12 1.4 (3)

C3—C1—C4—O1 −57.2 (2) C10—C11—C12—C13 −0.5 (3)

C3—C1—C4—N1 125.7 (2) C11—C12—C13—O2 178.8 (2)

C4—C1—C3—Cl1 139.81 (15) C11—C12—C13—C14 −1.2 (3)

C4—C1—C3—Cl2 −4.0 (2) O2—C13—C14—C15 −178.2 (2)

C4—C1—C3—C2 −111.7 (2) C12—C13—C14—C15 1.8 (3)

C3—C1—C10—C11 −103.6 (2) C13—C14—C15—C10 −0.8 (3)

(8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C11—H11···O1i 0.93 2.40 3.322 (3) 170

Figure

Table 1Hydrogen-bond geometry (A˚ , �).

References

Related documents

PayNet was founded in Skokie, Illinois in 1999. To that point, there was no widely used credit reporting system for commercial term loans in the US. In 2001, PayNet launched a

The key differences between this work and the proposed architecture are: (i) we de- sign a fine-tunable hierarchical attention structure to extract word-level features for

Chorion group (Group B) showed statistically highly significant mean gain in the relative clinical attachment level (p-value=0.001*) and significant mean reduction in

This table presents the correlation between the daily intensity of idiosyncratic jumps and the optimal proportion of foreign assets. (the sum of optimal weights of EFA and

In a recent study, Olivero, Li and Jeon (2011) investigates the effects of bank consolidation on the bank lending channel using bank-specific panel data from Asian and Latin

It is straightforward to answer sequential questions using our framework: we allow the model to take the previous question and its answers as input, with a slightly modified

answers, in order to better distinguish the correct answers from other candidates? We propose three independent models in two directions. First, we develop two hybrid models

Despite of the overall presence of dialogues with such mixed motives in everyday life, little at- tention has been given to this topic in text planning in contrast to