(N Hydro­xy N phenyl­benzamidato κ2O,O′)[3 meth­oxy­salicyl­aldehyde (2,4 di­chloro­phen­oxy­acetyl)­hydrazonato κ3O,N,O′]oxovanadium(V)

10 

(1)metal-organic papers Acta Crystallographica Section E. Structure Reports Online ISSN 1600-5368. Shan Gao,* Ji-Wei Liu, Li-Hua Huo and Hui Zhao School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China Correspondence e-mail: shangao67@yahoo.com. Single-crystal X-ray study T = 293 K Ê Mean (C±C) = 0.003 A R factor = 0.042 wR factor = 0.115 Data-to-parameter ratio = 17.0 For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.. # 2004 International Union of Crystallography Printed in Great Britain ± all rights reserved. Gao et al.. The VV atom in the title complex, [V(C16H12C12N2O4)(C13H10NO2)O], is coordinated by two O atoms and one N atom of the tridentate hydrazone ligand, and by two O atoms of the bidentate hydroxamate co-ligand, thus de®ning a distorted octahedral VO(ONO)(ON) geometry.. Received 18 October 2004 Accepted 21 October 2004 Online 30 October 2004. Comment. Key indicators. m1722. (N-Hydroxy-N-phenylbenzamidato-j2O,O0 )[3-methoxysalicylaldehyde (2,4-dichlorophenoxyacetyl)hydrazonato-j3O,N,O0 ]oxovanadium(V). . The presence of oxovanadium(V) at the active sites of some biological enzymes, and the discovery of the biological relevance of hydrazone±vanadium complexes, has resulted in increased interest in the study of their structural properties (Sangeetha & Pal, 2000; Kurzak et al., 1992). In previous work, we have reported the structures of some vanadium(V) complexes containing tridentate hydrazone ligands, in which the hydrazone ligands are formed by condensing benzoylhydrazine or its derivatives with acetylacetone, salicylaldehyde or 3-methoxysalicylaldehyde (Huo, Gao, Liu, Li & Ng, 2004; Huo, Gao, Liu, Zhao & Ng, 2004; Chen et al., 1999; Gao et al., 1998; Liu & Gao, 1998). Here, we present a new oxovanadium(V) complex, (I), VOL(C13H10NO2) [H2L = 3-methoxysalicylaldehyde (1,4-dichlorophenoxyacetyl)hydrazone], obtained from the reaction of N-(3-methoxy salicylaldehyde)-N0 -(1,4-dichlorophenoxyacetyl)hydrazone, N-hydroxy-N-phenylbenzamide and VO(acetylacetonate)2 in ethanol solution.. As shown in Fig. 1, the vanadium(V) atom in (I) is coordinated by two O atoms and one N atom of the tridentate hydrazone ligand, and two O atoms of the bidentate hydroxamate co-ligand, to form a distorted octahedral VO(ONO)(ON) con®guration. The equatorial plane is de®ned by atoms O2, O3 and N1 of the fully deprotonated tridentate hydrazone ligand and the oxime atom O6 of the hydroxamate co-ligand. The axial oxo atom O1 is in a trans position relative to the carbonyl atom O7 of the hydroxamate co-ligand, with an O1ÐV1ÐO7 angle of 171.34 (7) . The V Ê from the equatorial plane towards atom deviates by 0.27 (2) A. [V(C16H12Cl2N2O4)(C13H10NO2)O]. doi: 10.1107/S1600536804026741. Acta Cryst. (2004). E60, m1722±m1724.

(2) metal-organic papers several days. CHN analysis, calculated for C29H22Cl2N3O7V: C 53.89, H 3.43, N 6.50%; found: C 53.97, H 3.48, N 6.45%. Crystal data [V(C16H12Cl2N2O4)(C13H10NO2)O] Mr = 646.34 Monoclinic, C2=c Ê a = 26.290 (2) A Ê b = 14.445 (2) A Ê c = 15.568 (2) A

(3) = 107.30 (3) Ê3 V = 5644.6 (15) A Z=8. Dx = 1.521 Mg mÿ3 Mo K radiation Cell parameters from 22 925 re¯ections  = 3.4±27.5  = 0.59 mmÿ1 T = 293 (2) K Prism, red 0.39  0.27  0.20 mm. Data collection Figure 1. A view of the structure of (I), with 30% probability displacement ellipsoids.. Ê is atom O1. The V1ÐO1 bond distance of 1.5810 (16) A within the normal range of values observed in the structures of VO3+ complexes (Chen et al., 1999). The bond distances to atom V1 in the equatorial plane follow the order phenoxide O < oxime O < enolic O < imine N. The axial V1ÐO7 distance of Ê is longer than the equatorial VÐO bond 2.1816 (15) A lengths, due to the strong trans in¯uence of the oxo group. The bond lengths (Table 1) indicate some degree of electron delocalization of the hydrazone ligand. The O3ÐC9ÐC10Ð O5 torsion angle is 58.1 (3) , suggesting that the phenoxyacetate group has some conformational ¯exibility. The hydrazone ligand and the hydroxamate co-ligand combine with the VV atom to give one six-membered and two ®ve-membered chelate rings. The two ®ve-membered chelate rings, involving atoms O3/C9/N2/N1/V1 and O6/N3/C23/O7/ V1, are basically planar, with mean deviations of 0.04 (2) and Ê , respectively, whereas the six-membered chelate 0.07 (2) A ring, involving atoms O2/C1/C6/C7/N1/V1, is non-planar, with Ê . The dihedral angle between an r.m.s. deviation of 0.18 (2) A the two ®ve-membered chelate rings is 71.7 (7) . The dihedral angles between the benzene rings C1±C6 and C11±C16, C11± C16 and C17±C22, C17±C22 and C24±C29, and C1±C6 and C24±C29 are 71.3 (6), 69.8 (6), 66.0 (6) and 52.5 (6) , respectively.. Experimental The VO(acac)2 starting material (acacÿ = acetylacetonate) was synthesized according to the method of Rowe & Jones (1957). The ligand (H2L), 3-methoxysalicylaldehyde (1,4-dichlorophenoxyacetyl)hydrazone, was synthesized by condensing 3-methoxysalicylaldehyde with an equimolar quantity of (1,4-dichlorophenoxyacetyl)hydrazine in ethanol. An ethanol solution (15 ml) of VO(acac)2 (2 mmol) was added dropwise to an ethanol solution (15 ml) containing N-(3-methoxysalicylaldehyde)-N0 -(1,4-dichlorophenoxyacetyl)hydrazone (2 mmol) and the mixture was re¯uxed with stirring for 1 h. An ethanol solution containing N-hydroxy-Nphenylbenzamide (2 mmol) was added slowly to the above solution with stirring for 25 min and then ®ltered. The resulting dark-red solid was dissolved in dichloromethane and ®ltered. Dark-red crystals of (I) were obtained by slow diffusion of hexane into the ®ltrate over Acta Cryst. (2004). E60, m1722±m1724. Rigaku R-AXIS RAPID areadetector diffractometer ! scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.802, Tmax = 0.891 23 639 measured re¯ections. 6460 independent re¯ections 5251 re¯ections with I > 2(I) Rint = 0.026 max = 27.5 h = ÿ34 ! 34 k = ÿ18 ! 18 l = ÿ20 ! 18. Refinement Re®nement on F 2 R[F 2 > 2(F 2)] = 0.042 wR(F 2) = 0.115 S = 1.02 6460 re¯ections 380 parameters H-atom parameters constrained. w = 1/[ 2(Fo2) + (0.0608P)2 + 5.141P] where P = (Fo2 + 2Fc2)/3 (/)max = 0.001 Ê ÿ3 max = 0.48 e A Ê ÿ3 min = ÿ0.33 e A. Table 1. Ê ,  ). Selected geometric parameters (A V1ÐN1 V1ÐO1 V1ÐO2 V1ÐO3 V1ÐO6. 2.0672 (17) 1.5810 (16) 1.8452 (14) 1.9737 (14) 1.8541 (14). N1ÐV1ÐO7 O1ÐV1ÐN1 O1ÐV1ÐO2 O1ÐV1ÐO3 O1ÐV1ÐO6 O1ÐV1ÐO7 O2ÐV1ÐN1 O2ÐV1ÐO3. 88.04 (6) 99.88 (8) 98.71 (7) 99.46 (7) 96.27 (8) 171.34 (7) 83.41 (6) 153.37 (7). V1ÐO7 N1ÐN2 N1ÐC7 N2ÐC9 O3ÐC9 O2ÐV1ÐO6 O2ÐV1ÐO7 O3ÐV1ÐN1 O3ÐV1ÐO7 O6ÐV1ÐN1 O6ÐV1ÐO3 O6ÐV1ÐO7. 2.1816 (15) 1.397 (2) 1.285 (3) 1.291 (3) 1.291 (2) 107.17 (6) 85.58 (6) 74.41 (6) 79.21 (6) 159.14 (7) 90.02 (6) 75.23 (6). All H atoms were placed in calculated positions and were allowed Ê and Uiso(H) = to ride on their parent C atoms, with CÐH = 0.93 A Ê and Uiso(H) = 1.2Ueq for aromatic H atoms, and with CÐH = 0.96 A 1.5Ueq for methyl H atoms. Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell re®nement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.. The authors thank the National Natural Science Foundation of China (grant No. 20101003), Heilongjiang Province Natural Science Foundation (grant No. B007), the Educational Gao et al.. . [V(C16H12Cl2N2O4)(C13H10NO2)O]. m1723.

(4) metal-organic papers Committee Foundation of Heilongjiang Province and Heilongjiang University for supporting this work.. References Chen, W., Gao, S. & Liu, S.-X. (1999). Acta Cryst. C55, 531±533. Gao, S., Weng, Z.-Q. & Liu, S.-X. (1998). Polyhedron, 17, 3595±3606. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Huo, L. H., Gao, S., Liu, J. W., Li, J. & Ng, S. W. (2004). Acta Cryst. E60, m758± m760. Huo, L. H., Gao, S., Liu, J. W., Zhao, H. & Ng, S. W. (2004). Acta Cryst. E60, m606±m608.. m1724. Gao et al.. . [V(C16H12Cl2N2O4)(C13H10NO2)O]. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. Kurzak, B., Kozlowski, H. & Farkas, E. (1992). Coord. Chem. Rev. 114, 169± 200. Liu, S.-X. & Gao, S. (1998). Polyhedron, 17, 81±84. Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA. Rowe, R. & Jones, M. M. (1957). Inorg. Synth. 5, 113±115. Sangeetha, N. R. & Pal, S. (2000). Bull. Chem. Soc. Jpn, 73, 357±363. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.. Acta Cryst. (2004). E60, m1722±m1724.

(5) supporting information. supporting information Acta Cryst. (2004). E60, m1722–m1724. [https://doi.org/10.1107/S1600536804026741]. (N-Hydroxy-N-phenylbenzamidato-κ2O,O′)[3-methoxysalicylaldehyde (2,4-dichlorophenoxyacetyl)hydrazonato-κ3O,N,O′]oxovanadium(V) Shan Gao, Ji-Wei Liu, Li-Hua Huo and Hui Zhao (N-Hydroxy-N-phenylbenzamidato-κ2O,O′)[3-methoxysalicylaldehyde (2,4-dichlorophenoxyacetyl)hydrazonatoκ3O,N,O′]oxovanadium(V) Crystal data [V(C16H12Cl2N2O4)(C13H10NO2)O] Mr = 646.34 Monoclinic, C2/c Hall symbol: -C 2yc a = 26.290 (2) Å b = 14.445 (2) Å c = 15.568 (2) Å β = 107.30 (3)° V = 5644.6 (15) Å3 Z=8. F(000) = 2640 Dx = 1.521 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 22925 reflections θ = 3.4–27.5° µ = 0.59 mm−1 T = 293 K Prism, red 0.39 × 0.27 × 0.20 mm. Data collection Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10 pixels mm-1 ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.802, Tmax = 0.891. 23639 measured reflections 6460 independent reflections 5251 reflections with I > 2σ(I) Rint = 0.026 θmax = 27.5°, θmin = 3.1° h = −34→34 k = −18→18 l = −20→18. Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.042 wR(F2) = 0.115 S = 1.02 6460 reflections 380 parameters 0 restraints Primary atom site location: structure-invariant direct methods. Acta Cryst. (2004). E60, m1722–m1724. Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0608P)2 + 5.141P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.48 e Å−3 Δρmin = −0.33 e Å−3. sup-1.

(6) supporting information Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2). V1 Cl1 Cl2 N1 N2 N3 O1 O2 O3 O4 O5 O6 O7 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 H3 H4 H5. x. y. z. Uiso*/Ueq. 0.321105 (12) 0.46458 (3) 0.38065 (4) 0.30830 (6) 0.31307 (7) 0.39976 (6) 0.26180 (6) 0.33666 (5) 0.31960 (6) 0.33445 (6) 0.37046 (6) 0.35002 (5) 0.40533 (5) 0.31100 (7) 0.30890 (8) 0.28196 (9) 0.25938 (10) 0.26421 (10) 0.28972 (8) 0.29564 (8) 0.34044 (13) 0.31834 (7) 0.32245 (9) 0.36954 (8) 0.32947 (9) 0.33256 (10) 0.37666 (11) 0.41737 (10) 0.41371 (9) 0.41183 (8) 0.41329 (10) 0.42550 (11) 0.43537 (10) 0.43351 (9) 0.42157 (9) 0.42757 (8) 0.48198 (8) 0.51918 (8) 0.56972 (9) 0.58342 (10) 0.54670 (12) 0.49644 (10) 0.2788 0.2409 0.2505. 0.53758 (2) 0.94856 (6) 1.01847 (6) 0.55964 (11) 0.65065 (12) 0.59063 (12) 0.52134 (10) 0.41870 (9) 0.67327 (9) 0.23986 (10) 0.84276 (11) 0.55213 (10) 0.56606 (10) 0.36539 (14) 0.26907 (14) 0.21351 (17) 0.25130 (18) 0.34333 (18) 0.40191 (15) 0.49835 (15) 0.14289 (18) 0.70352 (14) 0.80608 (15) 0.88075 (14) 0.87108 (16) 0.91332 (17) 0.96487 (16) 0.97505 (17) 0.93312 (17) 0.62751 (15) 0.72179 (17) 0.7572 (2) 0.6983 (2) 0.6048 (2) 0.56763 (18) 0.59495 (13) 0.63366 (15) 0.61873 (15) 0.65413 (18) 0.7058 (2) 0.7220 (3) 0.6848 (2) 0.1504 0.2134 0.3675. 0.51372 (2) 0.62883 (5) 0.27871 (5) 0.63686 (12) 0.66864 (12) 0.43681 (11) 0.45322 (11) 0.55690 (10) 0.52761 (10) 0.52733 (12) 0.61107 (10) 0.41948 (9) 0.57838 (9) 0.60035 (14) 0.58567 (15) 0.62926 (18) 0.69153 (19) 0.71087 (17) 0.66489 (15) 0.68671 (15) 0.5184 (2) 0.60498 (14) 0.62224 (16) 0.53111 (14) 0.45193 (16) 0.37469 (17) 0.37621 (17) 0.45321 (18) 0.53048 (16) 0.36041 (13) 0.35063 (17) 0.27688 (19) 0.21512 (16) 0.22521 (15) 0.29830 (15) 0.52323 (13) 0.55165 (13) 0.50606 (15) 0.53866 (17) 0.61584 (19) 0.66106 (19) 0.62971 (17) 0.6170 0.7202 0.7548. 0.03199 (10) 0.0760 (2) 0.0799 (2) 0.0355 (4) 0.0407 (4) 0.0372 (4) 0.0446 (3) 0.0381 (3) 0.0396 (3) 0.0517 (4) 0.0447 (3) 0.0375 (3) 0.0385 (3) 0.0372 (4) 0.0416 (5) 0.0533 (6) 0.0578 (6) 0.0530 (6) 0.0406 (5) 0.0409 (5) 0.0743 (9) 0.0365 (4) 0.0436 (5) 0.0387 (4) 0.0469 (5) 0.0526 (6) 0.0514 (6) 0.0524 (6) 0.0464 (5) 0.0377 (4) 0.0516 (6) 0.0635 (7) 0.0615 (7) 0.0566 (7) 0.0463 (5) 0.0346 (4) 0.0370 (4) 0.0421 (5) 0.0504 (5) 0.0646 (7) 0.0772 (9) 0.0617 (7) 0.064* 0.069* 0.064*. Acta Cryst. (2004). E60, m1722–m1724. sup-2.

(7) supporting information H7 H8C H8B H8A H10A H10B H12 H13 H15 H18 H19 H20 H21 H22 H25 H26 H27 H28 H29. 0.2900 0.3605 0.3059 0.3589 0.3215 0.2921 0.2998 0.3049 0.4472 0.4062 0.4270 0.4435 0.4404 0.4201 0.5099 0.5947 0.6176 0.5558 0.4720. 0.5178 0.1315 0.1147 0.1170 0.8183 0.8368 0.8354 0.9070 1.0098 0.7611 0.8209 0.7224 0.5658 0.5039 0.5845 0.6430 0.7299 0.7582 0.6943. 0.7401 0.4771 0.4962 0.5760 0.6830 0.5810 0.4505 0.3215 0.4537 0.3930 0.2692 0.1654 0.1824 0.3055 0.4530 0.5083 0.6377 0.7128 0.6615. 0.049* 0.111* 0.111* 0.111* 0.052* 0.052* 0.056* 0.063* 0.063* 0.062* 0.076* 0.074* 0.068* 0.056* 0.050* 0.061* 0.077* 0.093* 0.074*. Atomic displacement parameters (Å2). V1 Cl1 Cl2 N1 N2 N3 O1 O2 O3 O4 O5 O6 O7 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12. U11. U22. U33. U12. U13. U23. 0.03085 (17) 0.0545 (4) 0.1076 (6) 0.0331 (8) 0.0441 (9) 0.0345 (8) 0.0355 (7) 0.0382 (7) 0.0497 (8) 0.0542 (9) 0.0443 (8) 0.0340 (7) 0.0367 (7) 0.0287 (9) 0.0324 (10) 0.0469 (13) 0.0520 (13) 0.0505 (13) 0.0372 (10) 0.0377 (10) 0.0790 (19) 0.0306 (9) 0.0456 (11) 0.0407 (10) 0.0415 (11). 0.03022 (17) 0.1104 (6) 0.0761 (5) 0.0346 (8) 0.0368 (9) 0.0455 (10) 0.0415 (8) 0.0322 (7) 0.0303 (7) 0.0337 (8) 0.0459 (8) 0.0424 (8) 0.0458 (8) 0.0356 (10) 0.0375 (10) 0.0397 (12) 0.0513 (14) 0.0567 (14) 0.0414 (11) 0.0459 (11) 0.0377 (13) 0.0360 (10) 0.0378 (11) 0.0323 (10) 0.0418 (11). 0.03714 (18) 0.0579 (4) 0.0629 (4) 0.0426 (9) 0.0469 (10) 0.0345 (8) 0.0550 (9) 0.0503 (8) 0.0426 (8) 0.0715 (11) 0.0448 (8) 0.0371 (7) 0.0360 (7) 0.0476 (11) 0.0522 (12) 0.0711 (16) 0.0742 (17) 0.0590 (14) 0.0458 (11) 0.0437 (11) 0.110 (3) 0.0452 (11) 0.0540 (13) 0.0455 (11) 0.0548 (13). 0.00074 (12) −0.0322 (4) 0.0155 (4) 0.0014 (6) 0.0006 (7) −0.0035 (7) 0.0000 (6) 0.0037 (6) 0.0009 (6) 0.0011 (7) −0.0098 (6) −0.0045 (6) −0.0027 (6) −0.0003 (7) 0.0006 (8) −0.0072 (9) −0.0074 (11) −0.0007 (11) −0.0003 (8) 0.0021 (9) 0.0034 (13) 0.0015 (8) −0.0031 (9) 0.0018 (8) −0.0005 (9). 0.01354 (13) 0.0088 (3) 0.0361 (4) 0.0169 (7) 0.0224 (8) 0.0149 (7) 0.0106 (7) 0.0227 (6) 0.0195 (7) 0.0251 (8) 0.0147 (7) 0.0123 (6) 0.0157 (6) 0.0118 (8) 0.0087 (9) 0.0145 (12) 0.0250 (13) 0.0273 (11) 0.0165 (9) 0.0193 (9) 0.0336 (18) 0.0151 (8) 0.0250 (10) 0.0163 (9) 0.0106 (10). 0.00042 (13) 0.0001 (4) 0.0258 (4) 0.0015 (7) −0.0040 (8) 0.0005 (7) −0.0020 (7) 0.0044 (6) −0.0008 (6) −0.0030 (7) −0.0019 (7) −0.0040 (6) 0.0043 (6) 0.0076 (9) 0.0048 (9) 0.0091 (11) 0.0202 (12) 0.0141 (12) 0.0084 (9) 0.0046 (9) −0.0111 (15) −0.0038 (9) −0.0053 (9) −0.0026 (8) −0.0026 (10). Acta Cryst. (2004). E60, m1722–m1724. sup-3.

(8) supporting information C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29. 0.0546 (13) 0.0649 (15) 0.0516 (13) 0.0403 (11) 0.0330 (9) 0.0619 (14) 0.0684 (17) 0.0449 (13) 0.0417 (12) 0.0411 (11) 0.0335 (9) 0.0324 (9) 0.0384 (10) 0.0375 (11) 0.0401 (12) 0.0629 (17) 0.0488 (13). 0.0497 (13) 0.0435 (12) 0.0533 (14) 0.0497 (12) 0.0502 (12) 0.0495 (13) 0.0639 (16) 0.104 (2) 0.094 (2) 0.0594 (13) 0.0351 (10) 0.0436 (11) 0.0474 (12) 0.0633 (15) 0.092 (2) 0.118 (3) 0.094 (2). 0.0480 (13) 0.0510 (13) 0.0592 (15) 0.0491 (12) 0.0316 (9) 0.0516 (13) 0.0626 (16) 0.0382 (12) 0.0349 (11) 0.0392 (11) 0.0377 (10) 0.0365 (10) 0.0435 (11) 0.0550 (14) 0.0602 (15) 0.0529 (15) 0.0486 (13). 0.0108 (11) 0.0135 (11) −0.0006 (10) −0.0026 (9) 0.0035 (8) 0.0138 (11) 0.0119 (13) 0.0023 (13) −0.0051 (12) −0.0043 (10) 0.0033 (7) −0.0004 (8) 0.0004 (9) 0.0002 (10) −0.0208 (13) −0.0339 (17) −0.0187 (13). 0.0067 (11) 0.0253 (12) 0.0271 (12) 0.0132 (10) 0.0121 (8) 0.0296 (12) 0.0265 (14) 0.0156 (10) 0.0131 (10) 0.0130 (9) 0.0143 (8) 0.0126 (8) 0.0170 (9) 0.0207 (10) 0.0133 (11) 0.0201 (13) 0.0241 (11). 0.0006 (11) 0.0090 (10) 0.0048 (11) −0.0038 (10) 0.0031 (8) 0.0081 (11) 0.0255 (13) 0.0167 (14) −0.0138 (12) −0.0099 (10) 0.0010 (8) 0.0021 (8) −0.0013 (9) 0.0059 (12) −0.0037 (15) −0.0300 (17) −0.0212 (14). Geometric parameters (Å, º) V1—N1 V1—O1 V1—O2 V1—O3 V1—O6 V1—O7 N1—N2 N1—C7 N2—C9 O3—C9 Cl1—C16 Cl2—C14 N3—C17 N3—C23 O2—C1 O4—C2 O4—C8 O5—C10 O5—C11 O6—N3 O7—C23 C1—C2 C1—C6 C2—C3 C3—C4 C3—H3 C4—C5 C4—H4. Acta Cryst. (2004). E60, m1722–m1724. 2.0672 (17) 1.5810 (16) 1.8452 (14) 1.9737 (14) 1.8541 (14) 2.1816 (15) 1.397 (2) 1.285 (3) 1.291 (3) 1.291 (2) 1.722 (2) 1.735 (2) 1.423 (2) 1.328 (3) 1.333 (2) 1.348 (3) 1.421 (3) 1.426 (2) 1.354 (3) 1.372 (2) 1.246 (2) 1.409 (3) 1.391 (3) 1.376 (3) 1.390 (4) 0.9300 1.361 (4) 0.9300. C9—C10 C10—H10A C10—H10B C11—C12 C11—C16 C12—C13 C12—H12 C13—C14 C13—H13 C14—C15 C15—C16 C15—H15 C17—C18 C17—C22 C18—C19 C18—H18 C19—C20 C19—H19 C20—C21 C20—H20 C21—C22 C21—H21 C22—H22 C23—C24 C24—C25 C24—C29 C25—C26 C25—H25. 1.504 (3) 0.9700 0.9700 1.370 (3) 1.388 (3) 1.372 (3) 0.9300 1.372 (4) 0.9300 1.357 (4) 1.375 (3) 0.9300 1.372 (3) 1.377 (3) 1.379 (3) 0.9300 1.365 (4) 0.9300 1.362 (4) 0.9300 1.376 (3) 0.9300 0.9300 1.476 (3) 1.386 (3) 1.376 (3) 1.372 (3) 0.9300. sup-4.

(9) supporting information C5—C6 C5—H5 C6—C7 C7—H7 C8—H8A C8—H8B C8—H8C. 1.401 (3) 0.9300 1.431 (3) 0.9300 0.9600 0.9600 0.9600. C26—C27 C26—H26 C27—C28 C27—H27 C28—C29 C28—H28 C29—H29. 1.368 (4) 0.9300 1.374 (4) 0.9300 1.374 (4) 0.9300 0.9300. N1—V1—O7 O1—V1—N1 O1—V1—O2 O1—V1—O3 O1—V1—O6 O1—V1—O7 O2—V1—N1 O2—V1—O3 O2—V1—O6 O2—V1—O7 O3—V1—N1 O3—V1—O7 O6—V1—N1 O6—V1—O3 O6—V1—O7 N1—C7—C6 N1—C7—H7 N2—N1—V1 N2—C9—C10 N3—O6—V1 N3—C23—C24 O2—C1—C2 O2—C1—C6 O3—C9—N2 O3—C9—C10 O4—C2—C3 O4—C2—C1 O4—C8—H8A O4—C8—H8C O4—C8—H8B O5—C10—C9 O5—C10—H10A O5—C10—H10B O5—C11—C12 O5—C11—C16 O6—N3—C17 O7—C23—N3 O7—C23—C24 C1—O2—V1 C1—C6—C5. 88.04 (6) 99.88 (8) 98.71 (7) 99.46 (7) 96.27 (8) 171.34 (7) 83.41 (6) 153.37 (7) 107.17 (6) 85.58 (6) 74.41 (6) 79.21 (6) 159.14 (7) 90.02 (6) 75.23 (6) 123.8 (2) 118.1 116.83 (12) 117.65 (18) 118.78 (11) 120.92 (17) 119.32 (19) 121.35 (18) 123.68 (18) 118.67 (18) 125.6 (2) 114.53 (18) 109.5 109.5 109.5 111.31 (16) 109.4 109.4 125.78 (19) 116.2 (2) 115.09 (16) 116.92 (17) 122.15 (18) 129.17 (12) 119.8 (2). C11—O5—C10 C11—C12—C13 C11—C12—H12 C11—C16—Cl1 C12—C11—C16 C12—C13—H13 C13—C12—H12 C13—C14—Cl2 C14—C13—C12 C14—C13—H13 C14—C15—C16 C14—C15—H15 C15—C14—Cl2 C15—C14—C13 C15—C16—C11 C15—C16—Cl1 C16—C15—H15 C17—C18—C19 C17—C18—H18 C17—C22—H22 C18—C17—N3 C18—C17—C22 C18—C19—H19 C19—C18—H18 C19—C20—H20 C20—C19—C18 C20—C19—H19 C20—C21—C22 C20—C21—H21 C21—C20—C19 C21—C20—H20 C21—C22—C17 C21—C22—H22 C22—C17—N3 C22—C21—H21 C23—N3—O6 C23—N3—C17 C23—O7—V1 C24—C25—H25 C24—C29—H29. 119.22 (17) 120.9 (2) 119.6 119.62 (18) 118.0 (2) 120.1 119.6 119.9 (2) 119.7 (2) 120.1 118.9 (2) 120.6 119.2 (2) 121.0 (2) 121.5 (2) 118.87 (19) 120.6 118.8 (2) 120.6 120.9 119.01 (19) 121.9 (2) 120.1 120.6 119.5 119.7 (3) 120.1 120.5 (2) 119.8 121.0 (2) 119.5 118.1 (2) 120.9 119.1 (2) 119.8 115.05 (15) 129.58 (17) 111.42 (13) 119.8 119.7. Acta Cryst. (2004). E60, m1722–m1724. sup-5.

(10) supporting information C1—C6—C7 C2—O4—C8 C2—C3—C4 C2—C3—H3 C3—C2—C1 C3—C4—H4 C4—C3—H3 C4—C5—C6 C4—C5—H5 C5—C4—C3 C5—C4—H4 C5—C6—C7 C6—C1—C2 C6—C5—H5 C6—C7—H7 C7—N1—V1 C7—N1—N2 C9—N2—N1 C9—O3—V1 C9—C10—H10A C9—C10—H10B. 120.12 (18) 117.8 (2) 120.3 (2) 119.9 119.8 (2) 119.8 119.9 120.3 (2) 119.9 120.5 (2) 119.8 120.1 (2) 119.15 (19) 119.9 118.1 126.64 (15) 116.52 (17) 107.67 (16) 116.44 (12) 109.4 109.4. C25—C24—C23 C25—C26—H26 C26—C25—C24 C26—C25—H25 C26—C27—C28 C26—C27—H27 C27—C26—C25 C27—C26—H26 C27—C28—C29 C27—C28—H28 C28—C27—H27 C28—C29—C24 C28—C29—H29 C29—C24—C25 C29—C24—C23 C29—C28—H28 H8B—C8—H8A H8C—C8—H8A H8C—C8—H8B H10B—C10—H10A. 123.81 (19) 120.0 120.4 (2) 119.8 120.1 (2) 119.9 120.0 (2) 120.0 119.9 (3) 120.0 119.9 120.5 (2) 119.7 119.0 (2) 117.19 (18) 120.0 109.5 109.5 109.5 108.0. V1—N1—N2—C9 V1—N1—C7—C6 V1—O2—C1—C2 V1—O2—C1—C6 V1—O3—C9—N2 V1—O3—C9—C10 V1—O6—N3—C17 V1—O6—N3—C23 V1—O7—C23—N3 V1—O7—C23—C24 N1—V1—O2—C1 N1—V1—O3—C9 N1—V1—O6—N3 N1—V1—O7—C23 N1—N2—C9—O3 N1—N2—C9—C10 N2—N1—C7—C6 N2—C9—C10—O5 N3—C17—C18—C19 N3—C17—C22—C21 N3—C23—C24—C25 N3—C23—C24—C29 O1—V1—N1—N2 O1—V1—N1—C7 O1—V1—O2—C1 O1—V1—O3—C9. 8.0 (2) 1.8 (3) 145.53 (16) −39.4 (3) −6.7 (3) 174.21 (14) −159.97 (13) 14.5 (2) −9.4 (2) 169.77 (15) 43.84 (18) 7.95 (13) 23.6 (3) −154.42 (14) −1.1 (3) 178.07 (17) −179.22 (19) 122.7 (2) 179.4 (2) −179.58 (19) −39.2 (3) 143.0 (2) −105.97 (14) 72.96 (18) −55.20 (18) 105.66 (15). O6—N3—C23—C24 O7—V1—N1—N2 O7—V1—N1—C7 O7—V1—O2—C1 O7—V1—O3—C9 O7—V1—O6—N3 O7—C23—C24—C25 O7—C23—C24—C29 C1—C2—C3—C4 C1—C6—C7—N1 C2—C1—C6—C5 C2—C1—C6—C7 C2—C3—C4—C5 C3—C4—C5—C6 C4—C5—C6—C1 C4—C5—C6—C7 C5—C6—C7—N1 C6—C1—C2—O4 C6—C1—C2—C3 C7—N1—N2—C9 C8—O4—C2—C1 C8—O4—C2—C3 C10—O5—C11—C12 C10—O5—C11—C16 C11—O5—C10—C9 C11—C12—C13—C14. 179.24 (16) 70.52 (13) −110.55 (17) 132.37 (18) −83.03 (14) −14.19 (12) 141.7 (2) −36.1 (3) −3.6 (3) 17.2 (3) −3.2 (3) 174.4 (2) −0.8 (4) 3.2 (4) −1.1 (4) −178.8 (2) −165.2 (2) −174.73 (19) 5.6 (3) −171.05 (18) 171.5 (2) −8.9 (4) −14.6 (3) 166.07 (18) 95.4 (2) 1.0 (3). Acta Cryst. (2004). E60, m1722–m1724. sup-6.

(11) supporting information O1—V1—O6—N3 O2—V1—N1—N2 O2—V1—N1—C7 O2—V1—O3—C9 O2—V1—O6—N3 O2—V1—O7—C23 O2—C1—C2—O4 O2—C1—C2—C3 O2—C1—C6—C5 O2—C1—C6—C7 O3—V1—N1—N2 O3—V1—N1—C7 O3—V1—O2—C1 O3—V1—O6—N3 O3—V1—O7—C23 O3—C9—C10—O5 O4—C2—C3—C4 O5—C11—C12—C13 O5—C11—C16—Cl1 O5—C11—C16—C15 O6—V1—N1—N2 O6—V1—N1—C7 O6—V1—O2—C1 O6—V1—O3—C9 O6—V1—O7—C23 O6—N3—C17—C18 O6—N3—C17—C22 O6—N3—C23—O7. Acta Cryst. (2004). E60, m1722–m1724. 164.16 (13) 156.29 (14) −24.78 (17) −26.7 (2) −94.69 (14) 122.04 (14) 0.5 (3) −179.2 (2) −178.3 (2) −0.7 (3) −8.82 (13) 170.11 (18) 77.3 (2) 64.65 (13) −79.92 (14) −58.1 (3) 176.7 (2) 179.6 (2) −1.6 (3) 179.9 (2) 34.2 (3) −146.86 (19) −154.58 (17) −157.98 (14) 12.98 (13) 107.0 (2) −72.8 (2) −1.6 (3). C12—C11—C16—Cl1 C12—C11—C16—C15 C12—C13—C14—Cl2 C12—C13—C14—C15 Cl2—C14—C15—C16 C13—C14—C15—C16 C14—C15—C16—C11 C14—C15—C16—Cl1 C16—C11—C12—C13 C17—N3—C23—O7 C17—N3—C23—C24 C17—C18—C19—C20 C18—C17—C22—C21 C18—C19—C20—C21 C19—C20—C21—C22 C20—C21—C22—C17 C22—C17—C18—C19 C23—N3—C17—C18 C23—N3—C17—C22 C23—C24—C25—C26 C23—C24—C29—C28 C24—C25—C26—C27 C25—C24—C29—C28 C25—C26—C27—C28 C26—C27—C28—C29 C27—C28—C29—C24 C29—C24—C25—C26. 179.03 (17) 0.6 (3) −179.92 (18) −0.2 (4) 179.37 (19) −0.4 (4) 0.2 (4) −178.31 (19) −1.1 (3) 171.89 (19) −7.2 (3) 0.6 (4) 0.6 (3) −0.2 (4) 0.0 (4) −0.2 (3) −0.8 (4) −66.5 (3) 113.6 (2) −177.4 (2) 179.1 (3) −1.0 (4) 1.2 (4) 0.2 (4) 1.3 (5) −2.0 (5) 0.3 (4). sup-7.

(12)

New documents

Furthermore, we incorporate our classi- fier into a novel application that takes as input a set of corrected essays that have been sen- tence aligned with their originals and outputs

This paper seeks to model the dynamics of the term structure of interest rates, that is, the set of prices of pure discount zero-coupon bonds that differ only in their time to

At run-time, TransAhead starts with a source sentence, and iterates with the user, making predictions on the grammar patterns and lexical translations, while adapting to the user’s

Original Article Chinese herbal combination of Epimedium, Drynariae rhizoma, and Salvia miltiorrhiza extracts prevents osteoporosis in ovariectomized rats.. Hailing Guo1*, Qin Du2*,

The models integrated into the baseline are: phrase translation probabilities and RF lexical translation probabilities on phrase level, each for both transla- tion directions, length

house prices, income, mortgage interest rates, building costs, the stock of housing, household.. formation and land

Our main contributions are: i we create a first corpus of events on Twitter, ii we show how to use paraphrases in FSD, and how to combine it with LSH to handle high-volume streams, iii

We aimed to determine the differences in risk factors for hospital death of patients with HF admitted to the Intensive Care Units ICU of the Beth Israel Deacons Medical Center BIDMC and

We get the features using another script from Post.9 While TSG fragments tile a parse tree into a few useful fragments,C& J features can pro- duce thousands of features per sentence,

4.1 Overall results We ran the parser on each treebank with each of four feature configurations: one with no morpho- logical features no-morph; one with the original morphological