• No results found

5 Acetyl 4 methyl 2 (o toluidinyl) 1,3 thia­zole

N/A
N/A
Protected

Academic year: 2020

Share "5 Acetyl 4 methyl 2 (o toluidinyl) 1,3 thia­zole"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1478

Bohari M. Yaminet al. C

13H14N2OS doi:10.1107/S160053680501250X Acta Cryst.(2005). E61, o1478–o1479

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Acetyl-4-methyl-2-(

o

-toluidinyl)-1,3-thiazole

Bohari M. Yamin,* Noor Azilah Kasim and Ezuanita Akhiar

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail: bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study

T= 273 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.044

wRfactor = 0.122

Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, C13H14N2OS, the benzene and thiazole

rings make a dihedral angle of 73.44 (10). The intermolecular N—H N hydrogen bonds link the molecules into centro-symmetric dimers. The crystal packing is further stabilized by van der Waals forces.

Comment

In the title molecule, (I) (Fig. 1), all bond lengths and angles are in normal ranges (Allenet al., 1987). The geometry of the thiazole ring (Table 1) is close to that observed in its trisub-stituted analogue methyl 2-amino-isopropyl-1,3-thiazole-4-carboxylate (Kennedyet al., 2004). The S1/C8/N2/C9/C10/N1/ C13 moiety and the C11/C12/O1 acetyl group are essentially coplanar, with a maximum deviation of 0.009 (2) A˚ for atom N1. The dihedral angle between the thiazole ring and the acetyl fragment is 9.15 (14). The benzene and thiazole rings make a dihedral angle of 73.44 (10). In the molecule, there is a weak intramolecular C—H O hydrogen bond (Table 2). Intermolecular N—H N hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers, arranged parallel to theacface. The crystal packing (Fig. 2) is further stabilized by van der Waals forces.

Experimental

A solution of o-toluidine (1.34 g, 0.01 mol) in acetone (50 ml) was added dropwise to an acetone solution (50 ml) containing an equi-molar amount of 3-chloroacetylacetone and ammonium thiocyanate in a two-necked round-bottomed flask. The solution was refluxed for about 1 h. The light-yellow solution was filtered and some colourless crystals were obtained after 5 d of evaporation (yield 80%, m.p. 442.8–442.1 K).1H NMR:2.34 (3H,s, H-7), 2.46 (3H,s, H-13), 2.40 (3H,s, H-12), 10.10 (H,s, NH-2), 7.22–7.50 (CH aromatic, 2–5);13C NMR: 17.8 (C13), 18.3 (C7), 29.9 (C12), 131.6 (C1), 133.6 (C2), 125.3 (C3), 127.6 (C4), 121.5 (C5), 137.8 (C6), 157.5 (C11), 171.5 (C9), 189.3 (C8).

(2)

Crystal data

C13H14N2OS

Mr= 246.32

Monoclinic,P21=c

a= 10.797 (2) A˚ b= 11.571 (2) A˚ c= 12.0982 (16) A˚

= 123.576 (11) V= 1259.3 (4) A˚3 Z= 4

Dx= 1.299 Mg m

3

MoKradiation Cell parameters from 871

reflections

= 2.2–26.5 = 0.24 mm1

T= 273 (2) K Block, colourless 0.410.400.33 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.907,Tmax= 0.924

6884 measured reflections

2610 independent reflections 2343 reflections withI> 2(I) Rint= 0.020

max= 26.5

h=13!8 k=14!14 l=14!15

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.044 wR(F2) = 0.122

S= 1.08 2610 reflections 157 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0659P)2

+ 0.3401P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.28 e A˚

3

min=0.22 e A˚

[image:2.610.312.569.73.231.2]

3

Table 1

Selected geometric parameters (A˚ ,).

S1—C8 1.7269 (16) S1—C9 1.7527 (19) O1—C11 1.219 (3)

N1—C8 1.349 (2)

N2—C8 1.317 (2)

N2—C10 1.368 (2) C9—C10 1.370 (2)

C8—S1—C9 88.65 (8) C10—C9—C11 128.87 (18)

[image:2.610.315.566.268.448.2]

C9—C10—C13 126.24 (17)

Table 2

Hydrogen-bonding geometry (A˚ ,).

D—H A D—H H A D A D—H A

C13—H13B O1 0.96 2.50 2.982 (4) 111 N1—H1A N2i

0.86 2.17 2.958 (3) 153

Symmetry code: (i)x;y;z.

After their location in a difference Fourier map, all H atoms were positioned geometrically and allowed to ride on the parent C or N atoms, with C—H = 0.93–0.96 A˚ , N—H = 0.86 A˚ and Uiso = 1.2– 1.5Ueq(parent atom).

Data collection:SMART(Siemens, 1996); cell refinement:SAINT

(Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL (Sheldrick, 1997); molecular graphics:

SHELXTL; software used to prepare material for publication:

SHELXTL, PARST(Nardelli, 1995) andPLATON(Spek, 2003).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for research grant IRPA No. 09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans.2, pp. S1–19.

Kennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004).Acta Cryst. E60, o1510–o1512.

Nardelli, M. (1995).J. Appl. Cryst.28, 659.

Sheldrick, G. M. (1996).SADABS.University of Go¨ttingen, Germany. Sheldrick, G. M. (1997).SHELXTL.Version 5.1. Bruker AXS Inc., Madison,

Wisconsin, USA.

Siemens (1996).SMARTandSAINT.Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Figure 1

View of (I) with 50% probability displacement ellipsoids.

Figure 2

[image:2.610.43.296.499.541.2]
(3)

supporting information

sup-1 Acta Cryst. (2005). E61, o1478–o1479

supporting information

Acta Cryst. (2005). E61, o1478–o1479 [https://doi.org/10.1107/S160053680501250X]

5-Acetyl-4-methyl-2-(

o

-toluidinyl)-1,3-thiazole

Bohari M. Yamin, Noor Azilah Kasim and Ezuanita Akhiar

5-acetyl-4-methyl-2-(o-toluidinyl)-1,3-thiazole

Crystal data

C13H14N2OS

Mr = 246.32

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 10.797 (2) Å

b = 11.571 (2) Å

c = 12.0982 (16) Å

β = 123.576 (11)°

V = 1259.3 (4) Å3

Z = 4

F(000) = 520

Dx = 1.299 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 871 reflections

θ = 2.2–26.5°

µ = 0.24 mm−1

T = 273 K Block, colourless 0.41 × 0.40 × 0.33 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 83.66 pixels mm-1

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.907, Tmax = 0.924

6884 measured reflections 2610 independent reflections 2343 reflections with I > 2σ(I)

Rint = 0.020

θmax = 26.5°, θmin = 2.2°

h = −13→8

k = −14→14

l = −14→15

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.044

wR(F2) = 0.122

S = 1.08 2610 reflections 157 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0659P)2 + 0.3401P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.28 e Å−3

Δρmin = −0.22 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(4)

H1A 0.0377 −0.0165 −0.0963 0.057* N2 0.18362 (15) 0.04675 (12) 0.14127 (14) 0.0400 (3) C1 0.0342 (2) 0.14303 (15) −0.27556 (18) 0.0450 (4)

C2 0.0492 (3) 0.1663 (2) −0.3802 (2) 0.0599 (5)

H2B −0.0124 0.2212 −0.4431 0.072*

C3 0.1522 (3) 0.1106 (2) −0.3932 (2) 0.0691 (6)

H3A 0.1592 0.1275 −0.4647 0.083*

C4 0.2453 (3) 0.0300 (2) −0.3014 (3) 0.0683 (6)

H4A 0.3172 −0.0061 −0.3090 0.082*

C5 0.2314 (2) 0.00262 (18) −0.1972 (2) 0.0548 (5)

H5A 0.2928 −0.0530 −0.1353 0.066*

C6 0.12603 (19) 0.05827 (15) −0.18549 (16) 0.0415 (4)

C7 −0.0755 (3) 0.2078 (2) −0.2597 (2) 0.0646 (6)

H7A −0.1535 0.1564 −0.2754 0.097*

H7B −0.1171 0.2703 −0.3223 0.097*

H7C −0.0260 0.2381 −0.1712 0.097*

C8 0.20538 (17) 0.06492 (14) 0.04581 (16) 0.0385 (4) C9 0.4052 (2) 0.14896 (15) 0.25331 (18) 0.0444 (4) C10 0.29605 (19) 0.09372 (15) 0.25821 (17) 0.0417 (4) C11 0.5305 (2) 0.21665 (18) 0.3561 (2) 0.0554 (5)

C12 0.6173 (3) 0.2869 (2) 0.3164 (3) 0.0784 (7)

H12A 0.7008 0.3222 0.3937 0.118*

H12B 0.5544 0.3459 0.2549 0.118*

H12C 0.6520 0.2375 0.2753 0.118*

C13 0.2875 (2) 0.0832 (2) 0.37681 (19) 0.0589 (5)

H13A 0.1870 0.0666 0.3486 0.088*

H13B 0.3187 0.1545 0.4255 0.088*

H13C 0.3514 0.0218 0.4326 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, o1478–o1479

C13 0.0619 (12) 0.0750 (14) 0.0470 (10) −0.0110 (11) 0.0347 (10) −0.0091 (10)

Geometric parameters (Å, º)

S1—C8 1.7269 (16) C4—H4A 0.9300

S1—C9 1.7527 (19) C5—C6 1.381 (3)

O1—C11 1.219 (3) C5—H5A 0.9300

N1—C8 1.349 (2) C7—H7A 0.9600

N1—C6 1.427 (2) C7—H7B 0.9600

N1—H1A 0.8600 C7—H7C 0.9600

N2—C8 1.317 (2) C9—C10 1.370 (2)

N2—C10 1.368 (2) C9—C11 1.459 (3)

C1—C2 1.389 (3) C10—C13 1.493 (2)

C1—C6 1.392 (3) C11—C12 1.506 (3)

C1—C7 1.500 (3) C12—H12A 0.9600

C2—C3 1.367 (3) C12—H12B 0.9600

C2—H2B 0.9300 C12—H12C 0.9600

C3—C4 1.370 (4) C13—H13A 0.9600

C3—H3A 0.9300 C13—H13B 0.9600

C4—C5 1.387 (3) C13—H13C 0.9600

C8—S1—C9 88.65 (8) H7A—C7—H7C 109.5

C8—N1—C6 122.38 (14) H7B—C7—H7C 109.5

C8—N1—H1A 118.8 N2—C8—N1 122.80 (15)

C6—N1—H1A 118.8 N2—C8—S1 115.32 (13)

C8—N2—C10 110.92 (14) N1—C8—S1 121.89 (13)

C2—C1—C6 117.26 (18) C10—C9—C11 128.87 (18)

C2—C1—C7 121.21 (19) C10—C9—S1 109.45 (13)

C6—C1—C7 121.53 (17) C11—C9—S1 121.41 (14)

C3—C2—C1 121.7 (2) N2—C10—C9 115.67 (16)

C3—C2—H2B 119.1 N2—C10—C13 118.07 (16)

C1—C2—H2B 119.1 C9—C10—C13 126.24 (17)

C2—C3—C4 120.42 (19) O1—C11—C9 121.89 (19)

C2—C3—H3A 119.8 O1—C11—C12 120.4 (2)

C4—C3—H3A 119.8 C9—C11—C12 117.72 (19)

C3—C4—C5 119.5 (2) C11—C12—H12A 109.5

C3—C4—H4A 120.3 C11—C12—H12B 109.5

C5—C4—H4A 120.3 H12A—C12—H12B 109.5

C6—C5—C4 119.8 (2) C11—C12—H12C 109.5

C6—C5—H5A 120.1 H12A—C12—H12C 109.5

C4—C5—H5A 120.1 H12B—C12—H12C 109.5

C5—C6—C1 121.29 (17) C10—C13—H13A 109.5

C5—C6—N1 119.26 (17) C10—C13—H13B 109.5

C1—C6—N1 119.45 (16) H13A—C13—H13B 109.5

C1—C7—H7A 109.5 C10—C13—H13C 109.5

C1—C7—H7B 109.5 H13A—C13—H13C 109.5

H7A—C7—H7B 109.5 H13B—C13—H13C 109.5

(6)

C6—C1—C2—C3 −1.6 (3) C6—N1—C8—S1 −7.2 (2)

C7—C1—C2—C3 177.8 (2) C9—S1—C8—N2 −0.46 (14)

C1—C2—C3—C4 −0.5 (4) C9—S1—C8—N1 179.65 (16)

C2—C3—C4—C5 1.9 (4) C8—S1—C9—C10 0.56 (14)

C3—C4—C5—C6 −1.2 (3) C8—S1—C9—C11 −173.98 (16)

C4—C5—C6—C1 −0.9 (3) C8—N2—C10—C9 0.3 (2)

C4—C5—C6—N1 178.55 (18) C8—N2—C10—C13 178.77 (16)

C2—C1—C6—C5 2.3 (3) C11—C9—C10—N2 173.43 (18)

C7—C1—C6—C5 −177.03 (18) S1—C9—C10—N2 −0.6 (2)

C2—C1—C6—N1 −177.21 (17) C11—C9—C10—C13 −4.9 (3)

C7—C1—C6—N1 3.5 (3) S1—C9—C10—C13 −178.96 (16)

C8—N1—C6—C5 77.9 (2) C10—C9—C11—O1 9.9 (3)

C8—N1—C6—C1 −102.6 (2) S1—C9—C11—O1 −176.69 (18)

C10—N2—C8—N1 −179.90 (16) C10—C9—C11—C12 −168.5 (2)

C10—N2—C8—S1 0.21 (19) S1—C9—C11—C12 4.9 (3)

C6—N1—C8—N2 172.96 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C13—H13B···O1 0.96 2.50 2.982 (4) 111

N1—H1A···N2i 0.86 2.17 2.958 (3) 153

Figure

Figure 1View of (I) with 50% probability displacement ellipsoids.

References

Related documents

(2014) A Review on Optimized Control Systems for Building Energy and Comfort Management of Smart Sustainable Buildings.. (2013) Energy Intelligent Buildings Based on User Ac- tivity:

Once TSI-CSF CBHs were identified and characterized, we investigated whether those lesions were associated with clini- cal or other MR imaging measures reflecting advanced disease.

CAPNON should be con- sidered in the imaging differential diagnosis when a heavily calcified lesion is found on CT, with hypointensity on T1- weighted and T2-weighted MR images,

In conclusion, in gliomas, which are characterized by their regional heterogeneity, this direct correlation study did not confirm the previously reported inverse correlation between

Our aim was to evaluate the pallidal signal intensity on T1-weighted images, to perform neurologic correlation based on an active search for symptoms related to manganism, and

Regarding the human capital variable, it is positive and statistically significant in the short and. long run at the

Taux de disponibilité en énergie : quotient de l'énergie qu'aurait pu produire, pendant la période considérée, la puissance disponible par l'énergie qu'aurait pu produire,

такая система отбора и найма неэффективна и вовсе обходится очень дорого. Специалисты в области трудовых ресурсов уже давно ощущают потребность в более надежных