• No results found

Triamminetri­chloro­indium(III), [InCl3(NH3)3]

N/A
N/A
Protected

Academic year: 2020

Share "Triamminetri­chloro­indium(III), [InCl3(NH3)3]"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

inorganic papers

i110

Bremm and Meyer [InCl3(NH3)3] DOI: 10.1107/S1600536803013539 Acta Cryst.(2003). E59, i110±i111

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Triamminetrichloroindium(III), [InCl

3

(NH

3

)

3

]

Stephan Bremm and Gerd Meyer*

Institut fuÈr Anorganische Chemie, UniversitaÈt zu KoÈln, Greinstraûe 6, D-50939 KoÈln, Germany

Correspondence e-mail: gerd.meyer@uni-koeln.de

Key indicators

Single-crystal X-ray study T= 293 K

Mean(In±N) = 0.004 AÊ Rfactor = 0.028 wRfactor = 0.073

Data-to-parameter ratio = 18.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2003 International Union of Crystallography Printed in Great Britain ± all rights reserved

The triammoniate of indium(III) chloride has been obtained as single crystals from the reaction of indium metal and ammonium chloride in a sealed Monel metal container. It crystallizes as a salt with [In(NH3)4Cl2]+and [In(NH3)2Cl4]ÿ

ions, both of which lie on inversion centers.

Comment

The triammoniate of indium(III) chloride, In(NH3)3Cl3,

crys-tallizes as a salt containing the complex ions [In(NH3)4Cl2]+

and [In(NH3)2Cl4]ÿ. Both the cations and anions are distorted

octahedra. In the cations, In3+is surrounded equatorially by

four ammine ligands, with InÐN distances around 2.25 AÊ, and axially by two chloride ligands, at distances of 2.51 AÊ. In the anions, In3+ is surrounded equatorially by four chloride

ligands, with InÐCl distances around 2.53 AÊ, and axially by two ammine ligands, at distances of 2.23 AÊ (precise bond lengths are given in Table 1). The complex cations and anions are arranged in a pseudo-body-centered fashion. The crystal structure of the analogous complex Al(NH3)3Cl3 was ®rst

determined by Jacobs & NoÈcker (1992, 1993) and was recently redetermined by Bremm & Meyer (2001).

Experimental

Ammonium chloride, NH4Cl, and indium metal were sealed under

inert conditions (argon dry-box) in 1:1 to 3:1 molar ratios in Monel metal (Cu32Ni68) containers which were jacketed with silica

ampoules. The reaction mixtures were heated for 4±7 d at tempera-tures between 673 and 773 K. The ampoules were opened in a dry-box. Colourless single crystals of In(NH3)3Cl3were thus obtained.

Received 6 May 2003 Accepted 17 June 2003 Online 17 July 2003

Figure 1

(2)

Crystal data

[In(NH3)4Cl2]+[In(NH3)2Cl4]ÿ

Mr= 544.54

Triclinic,P1

a= 5.8652 (15) AÊ

b= 6.8130 (18) AÊ

c= 9.794 (2) AÊ

= 86.14 (3)

= 86.68 (3)

= 85.26 (3)

V= 388.59 (17) AÊ3

Z= 1

Dx= 2.327 Mg mÿ3

MoKradiation Cell parameters from 1719

re¯ections

= 1.9±26

= 3.98 mmÿ1

T= 293 (2) K Irregular, colourless 0.250.150.10 mm

Data collection

Stoe IPDS diffractometer

'scans

Absorption correction: none 1719 measured re¯ections 1234 independent re¯ections 1049 re¯ections withI> 2(I)

Rint= 0.023

max= 26.0

h=ÿ6!7

k=ÿ8!7

l=ÿ12!12

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.028

wR(F2) = 0.073

S= 0.96 1234 re¯ections 68 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0559P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.81 e AÊÿ3

min=ÿ0.75 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.023 (3)

Table 1

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N1ÐH1A Cl2i 0.89 2.61 3.415 (4) 150

N1ÐH1B Cl2ii 0.89 2.74 3.470 (4) 141

N1ÐH1C Cl3ii 0.89 2.52 3.349 (4) 156

N2ÐH2A Cl2i 0.89 2.72 3.476 (5) 144

N2ÐH2B Cl1ii 0.89 2.85 3.659 (5) 151

N2ÐH2C Cl3iii 0.89 2.73 3.376 (5) 131

N3ÐH3A Cl1iv 0.89 2.82 3.484 (5) 132

N3ÐH3B Cl2 0.89 2.74 3.602 (4) 163 N3ÐH3C Cl1v 0.89 2.69 3.504 (5) 153 Symmetry codes: (i) 1‡x;y;z; (ii) 1ÿx;1ÿy;1ÿz; (iii) x;y;1‡z; (iv) ÿx;1ÿy;1ÿz; (v)ÿx;ÿy;1ÿz.

Atomic parameters were obtained for the H atoms using the HFIX 133 instruction in SHELXL97 (Sheldrick, 1997). Interatomic distances and angles for the hydrogen bonding were generated using the HTAB instruction.

Data collection: IPDS Software (Stoe & Cie, 1996±1997); cell re®nement: IPDS Software; data reduction: IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97 (Sheldrick, 1997); molecular graphics:DIAMOND(Brandenburg, 2001); software used to prepare material for publication:SHELXL97.

This work was supported by the Deutsche Forschungsge-meinschaft (DFG), Bonn, within the frame of the special programme `ReaktivitaÈt von FestkoÈrpern'. We are equally grateful to the State of Nordrhein-Westfalen and the UniversitaÈt zu KoÈln for excellent equipment and conditions for our research.

References

Brandenburg, K. (2001). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.

Bremm, S. & Meyer, G. (2001).Z. Anorg. Allg. Chem.627, 407±410. Jacobs, H. & NoÈcker, B. (1992).Z. Anorg. Allg. Chem.614, 25±29. Jacobs, H. & NoÈcker, B. (1993).Z. Anorg. Allg. Chem.619, 73±76.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Stoe & Cie (1996±1997).IPDS Software. Stoe & Cie, Darmstadt, Germany.

Figure 2

The [In(NH3)4Cl2]+and [In(NH3)2Cl4]ÿions in In(NH3)3Cl3.

(3)

supporting information

sup-1

Acta Cryst. (2003). E59, i110–i111

supporting information

Acta Cryst. (2003). E59, i110–i111 [https://doi.org/10.1107/S1600536803013539]

Triamminetrichloroindium(III), [InCl3(NH3)3]

Stephan Bremm and Gerd Meyer

(I)

Crystal data

2[InCl3(NH3)3] Mr = 544.54

Triclinic, P1 a = 5.8652 (15) Å b = 6.8130 (18) Å c = 9.794 (2) Å α = 86.14 (3)° β = 86.68 (3)° γ = 85.26 (3)° V = 388.59 (17) Å3

Z = 1 F(000) = 260 Dx = 2.327 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1719 reflections θ = 1.9–26°

µ = 3.98 mm−1 T = 293 K

Irregular, colourless 0.25 × 0.15 × 0.1 mm

Data collection

Stoe Imaging Plate Diffraction System diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ scans

1719 measured reflections 1234 independent reflections

1049 reflections with I > 2σ(I) Rint = 0.023

θmax = 26.0°, θmin = 3.5° h = −6→7

k = −8→7 l = −12→12

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.028 wR(F2) = 0.073 S = 0.96 1234 reflections 68 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0559P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.81 e Å−3 Δρmin = −0.75 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.023 (3)

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

In1 0.0000 0.5000 0.0000 0.02408 (19)

In2 0.5000 0.0000 0.5000 0.02292 (18)

Cl1 −0.2706 (2) 0.00305 (19) 0.27341 (11) 0.0342 (3)

Cl2 −0.2624 (2) 0.69134 (17) 0.58217 (13) 0.0361 (3)

Cl3 0.28373 (19) 0.70997 (17) 0.08736 (12) 0.0326 (3)

N1 0.7470 (7) 0.1896 (6) 0.5817 (4) 0.0301 (8)

H1A 0.7116 0.3152 0.5545 0.045*

H1B 0.8884 0.1528 0.5502 0.045*

H1C 0.7395 0.1763 0.6728 0.045*

N2 0.7969 (7) 0.7762 (6) 0.9238 (5) 0.0342 (8)

H2A 0.7155 0.7495 0.8544 0.051*

H2B 0.8920 0.8676 0.8956 0.051*

H2C 0.7027 0.8209 0.9914 0.051*

N3 0.1954 (7) 0.4972 (6) 0.7946 (4) 0.0333 (8)

H3A 0.2994 0.5857 0.7905 0.050*

H3B 0.0986 0.5271 0.7282 0.050*

H3C 0.2652 0.3777 0.7841 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

In1 0.0245 (2) 0.0224 (3) 0.0253 (3) −0.00095 (17) −0.00252 (15) −0.00183 (16) In2 0.0231 (2) 0.0210 (2) 0.0250 (3) −0.00240 (16) −0.00260 (15) −0.00150 (16) Cl1 0.0376 (6) 0.0348 (6) 0.0299 (5) −0.0048 (5) 0.0052 (4) −0.0026 (5) Cl2 0.0360 (6) 0.0267 (5) 0.0448 (6) 0.0026 (5) −0.0098 (5) 0.0024 (5) Cl3 0.0313 (5) 0.0334 (6) 0.0351 (5) −0.0077 (5) −0.0045 (4) −0.0071 (4) N1 0.0292 (18) 0.0283 (19) 0.0341 (18) −0.0049 (16) −0.0037 (15) −0.0067 (16) N2 0.0328 (19) 0.0251 (18) 0.043 (2) 0.0031 (17) −0.0014 (17) −0.0001 (17) N3 0.0342 (19) 0.032 (2) 0.0326 (19) 0.0001 (17) 0.0031 (16) −0.0048 (17)

Geometric parameters (Å, º)

In1—N2i 2.250 (4) Cl2—In2xi 2.5355 (15)

In1—N2ii 2.250 (4) N1—H1A 0.8900

In1—N3iii 2.258 (4) N1—H1B 0.8900

In1—N3iv 2.258 (4) N1—H1C 0.8900

In1—Cl3v 2.5043 (12) N2—In1xii 2.250 (4)

In1—Cl3 2.5043 (12) N2—H2A 0.8900

In2—N1vi 2.234 (3) N2—H2B 0.8900

(5)

supporting information

sup-3

Acta Cryst. (2003). E59, i110–i111

In2—Cl1vii 2.5276 (14) N3—In1xiii 2.258 (4)

In2—Cl1viii 2.5276 (14) N3—H3A 0.8900

In2—Cl2ix 2.5355 (15) N3—H3B 0.8900

In2—Cl2iv 2.5355 (15) N3—H3C 0.8900

Cl1—In2x 2.5276 (14)

N2i—In1—N2ii 180.0 Cl1viii—In2—Cl2ix 90.12 (5)

N2i—In1—N3iii 88.70 (17) N1vi—In2—Cl2iv 90.69 (12)

N2ii—In1—N3iii 91.30 (17) N1—In2—Cl2iv 89.31 (12)

N2i—In1—N3iv 91.30 (17) Cl1vii—In2—Cl2iv 90.12 (5)

N2ii—In1—N3iv 88.70 (17) Cl1viii—In2—Cl2iv 89.88 (5)

N3iii—In1—N3iv 180.0 (2) Cl2ix—In2—Cl2iv 180.00 (6)

N2i—In1—Cl3v 90.97 (11) In2—N1—H1A 109.5

N2ii—In1—Cl3v 89.03 (11) In2—N1—H1B 109.5

N3iii—In1—Cl3v 89.59 (11) H1A—N1—H1B 109.5

N3iv—In1—Cl3v 90.41 (11) In2—N1—H1C 109.5

N2i—In1—Cl3 89.03 (11) H1A—N1—H1C 109.5

N2ii—In1—Cl3 90.97 (11) H1B—N1—H1C 109.5

N3iii—In1—Cl3 90.41 (11) In1xii—N2—H2A 109.5

N3iv—In1—Cl3 89.59 (11) In1xii—N2—H2B 109.5

Cl3v—In1—Cl3 180.00 (5) H2A—N2—H2B 109.5

N1vi—In2—N1 180.000 (1) In1xii—N2—H2C 109.5

N1vi—In2—Cl1vii 90.33 (11) H2A—N2—H2C 109.5

N1—In2—Cl1vii 89.67 (11) H2B—N2—H2C 109.5

N1vi—In2—Cl1viii 89.67 (11) In1xiii—N3—H3A 109.5

N1—In2—Cl1viii 90.33 (11) In1xiii—N3—H3B 109.5

Cl1vii—In2—Cl1viii 180.0 H3A—N3—H3B 109.5

N1vi—In2—Cl2ix 89.31 (12) In1xiii—N3—H3C 109.5

N1—In2—Cl2ix 90.69 (12) H3A—N3—H3C 109.5

Cl1vii—In2—Cl2ix 89.88 (5) H3B—N3—H3C 109.5

Symmetry codes: (i) x−1, y, z−1; (ii) −x+1, −y+1, −z+1; (iii) x, y, z−1; (iv) −x, −y+1, −z+1; (v) −x, −y+1, −z; (vi) −x+1, −y, −z+1; (vii) x+1, y, z; (viii) −x, −y, −z+1; (ix) x+1, y−1, z; (x) x−1, y, z; (xi) x−1, y+1, z; (xii) x+1, y, z+1; (xiii) x, y, z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1A···Cl2vii 0.89 2.61 3.415 (4) 150

N1—H1B···Cl2ii 0.89 2.74 3.470 (4) 141

N1—H1C···Cl3ii 0.89 2.52 3.349 (4) 156

N2—H2A···Cl2vii 0.89 2.72 3.476 (5) 144

N2—H2B···Cl1ii 0.89 2.85 3.659 (5) 151

N2—H2C···Cl3xiii 0.89 2.73 3.376 (5) 131

N3—H3A···Cl1iv 0.89 2.82 3.484 (5) 132

N3—H3B···Cl2 0.89 2.74 3.602 (4) 163

N3—H3C···Cl1viii 0.89 2.69 3.504 (5) 153

References

Related documents

Therefore, the bran d’s notes are determined by a religious building and by a sense of belonging to Bukovina region characterized by the following features: historical

In this work, we presented an approach to perform frame annotation with crowdsourcing techniques, based on a single annotation step and on manu- ally simplified FE definitions..

The main issue may be there are many conceptual rules that govern sentiment, and there are even more clues (possibly unlimited) that can convey these concepts from

Future areas for further work on payment security mechanisms include: the impact of payment security mechanisms on the cost of debt for a renewable energy project;

The decision tree classifier that we built for the textual language identification in Section 4.2 out- performs all three models that we implemented in Section 4.1, for all

From Proposition 5, it is clear that even in the alternative formulation, two-sided malice may cause the proposer’s share to either increase or dec rease

RSBC based Smart Contracts (on Controlled Blockchain) provide the safety and security that Ether or Bitcoin cannot provide and that feature is mainly because of

Reduced BMD values (measured by Dual-Energy X-ray Absorptiometry) in the spastic quadriplegic group as compared to the healthy controls in the study,