• No results found

3 Hydro­xy 3 (3 hy­droxy­phenyl) 1 phenyl­propan 1 one

N/A
N/A
Protected

Academic year: 2020

Share "3 Hydro­xy 3 (3 hy­droxy­phenyl) 1 phenyl­propan 1 one"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2004). E60, o1135±o1136 DOI: 10.1107/S1600536804013261 Zhifang Yuet al. C15H14O3

o1135

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

3-Hydroxy-3-(3-hydroxyphenyl)-1-phenyl-propan-1-one

Zhifang Yu,* Jianwei Sun, Bing Zhao, Xiuyan Gu and Zhongzhen Tian

Department of Chemistry, Tianjin University, Tianjin 300072, People's Repulic of China

Correspondence e-mail: zhifang@public.tpt.tj.cn

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.004 AÊ Disorder in main residue

Rfactor = 0.048

wRfactor = 0.145

Data-to-parameter ratio = 12.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C15H14O3, was synthesized by a

Reformatsky reaction in an aqueous medium. The two aromatic rings are approximately orthogonal. Intermolecular OÐH O hydrogen bonds are formed between the carbonyl and hydroxyl groups. The hydroxyl group in the central chain is disordered over two sites.

Comment

We have researched the Reformatsky reaction (Bieberet al., 1997) of -haloketones in an aqueous medium (Chanet al., 1994; Shen et al., 1997). A new compound has been syn-thesized by the reaction of 2-bromoacetophenone with 3-hydroxybenzaldehyde in the presence of zinc in an aqueous system (Yuet al., 2003).

The molecular structure of the title compound, (I), is illustrated in Fig. 1. The two aromatic rings are approximately orthogonal, forming a dihedral angle of 80.7 (1). The angle

C6ÐC7ÐC8 is 119.1 (2), indicating that atom C7 is sp2

-hybridized. The torsion angle C6ÐC7ÐC8ÐC9 is

ÿ165.5 (2), indicating these atoms are almost coplanar.

Experimental

3-Hydroxybenzaldehyde (3 mmol) and 2-bromoacetophenone (4.5 mmol) were added to a mixture of zinc (12 mmol), ammonium chloride (1.5 g), a trace amount of iodine, cetyltrimethylammonium bromide (0.005 g) and tetrahydrofuran (1 ml) in a saturated solution of calcium chloride (12 ml). The mixture was stirred at room temperature for 8 h and extracted with diethyl ether, evaporated and separated by ¯ash chromatography (ethyl acetate±petroleum ether). A yellow powder was obtained (yield 53%) and single crystals (m.p. 377±378 K) suitable for crystallographic analysis were obtained by slow evaporation of an ethyl acetate±petroleum ether solution. Spectroscopic analyses, IR [KBr, (cmÿ1)]: 3333, 1676; 1H NMR

(CDCl3):7.95±6.93 (m, 9H), 5.28 (t, 1H), 3.35 (d, 2H), 2.02(s, 1H).

Elemental analysis, required for C15H14O3: C 74.38, H 5.79%; found:

C 74.35, H 5.74%. Crystal data C15H14O3 Mr= 242.26

Monoclinic, P21=c a= 14.251 (5) AÊ

b= 9.984 (3) AÊ

c= 8.994 (3) AÊ

= 105.305 (5)

V= 1234.3 (7) AÊ3 Z= 4

Dx= 1.304 Mg mÿ3

MoKradiation Cell parameters from 877

re¯ections

= 3.2±23.4

= 0.09 mmÿ1 T= 293 (2) K Block, colourless 0.340.220.16 mm

(2)

Data collection

Bruker SMART CCD area-detector diffractometer

'and!scans

Absorption correction: none 6168 measured re¯ections 2173 independent re¯ections

1313 re¯ections withI> 2(I)

Rint= 0.035 max= 25.0 h=ÿ16!11

k=ÿ11!11

l=ÿ9!10 Re®nement

Re®nement onF2 R[F2> 2(F2)] = 0.048 wR(F2) = 0.145 S= 0.99 2173 re¯ections 176 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0648P)2

+ 0.3761P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.24 e AÊÿ3

min=ÿ0.20 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,). O1ÐC7 1.216 (3)

O3ÐC14 1.374 (3) C9ÐO2C7ÐC8 1.477 (3)1.506 (4)

O2ÐC9ÐC10 108.9 (2)

O1ÐC7ÐC8 120.6 (2) C15ÐC14ÐC13 120.4 (2) C6ÐC7ÐC8ÐC9 ÿ165.5 (2)

O2ÐC9ÐC8ÐC7 63.0 (3) O3ÐC14ÐC15ÐC10 179.9 (2)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O2ÐH2 O1i 0.82 2.15 2.960 (3) 171

O3ÐH3 O2i 0.82 2.03 2.818 (3) 161 Symmetry code: (i)x;3

2ÿy;zÿ12.

All H atoms were located in a difference Fourier map and were re®ned as riding [OÐH = 0.82 AÊ and CÐH = 0.93±0.98 AÊ;Uiso= 1.0

(disordered atoms) or 1.5Ueq(O) and 1.2Ueq(C)]. The torsion angles

about the CÐO bond of the hydroxyl groups were re®ned. The hydroxyl group attached to atom C9 is disordered over two sites [occupancies 0.72 (4) and 0.28 (4)].

Data collection:SMART(Bruker, 1997); cell re®nement:SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure:SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXTL.

The authors thank the State Key Laboratory of Elemento-Organic Chemistry, Nankai University. This research was supported by the Visiting Scholar Foundation of the Key Laboratory of Tianjin University. The work was also supported by the `985' Project of Tianjin University.

References

Bieber, L. W., Malvestiti, I. & Storch, E. C. (1997).J. Org. Chem.62, 9061± 9064.

Bruker (1997).SMART, SAINTandSHELXTL.Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Chan, T. H., Li, C. J. & Lee, M. C. (1994).Can. J. Chem.72, 1181±1192. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

GoÈttingen, Germany.

Shen, Z., Zhang, J. Q., Zou, H. X. & Yan, M. M. (1997).Tetrahedron Lett.38, 2733±2736.

Yu, Z. F., Zhao, B.,Tian, Z. Z. & Gu. X. Y. (2003).Acta Cryst.E59, o2020± o2021.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2004). E60, o1135–o1136

supporting information

Acta Cryst. (2004). E60, o1135–o1136 [https://doi.org/10.1107/S1600536804013261]

3-Hydroxy-3-(3-hydroxyphenyl)-1-phenylpropan-1-one

Zhifang Yu, Jianwei Sun, Bing Zhao, Xiuyan Gu and Zhongzhen Tian

3-Hydroxy-3-(3-hydroxyphenyl)-1-phenylpropan-1-one

Crystal data

C15H14O3

Mr = 242.26

Monoclinic, P21/c

Hall symbol: -P 2ybc a = 14.251 (5) Å b = 9.984 (3) Å c = 8.994 (3) Å β = 105.305 (5)° V = 1234.3 (7) Å3

Z = 4

F(000) = 512 Dx = 1.304 Mg m−3

Melting point: 377 K

Mo Kα radiation, λ = 0.71073 Å Cell parameters from 877 reflections θ = 3.2–23.4°

µ = 0.09 mm−1

T = 293 K Plate, colourless 0.34 × 0.22 × 0.16 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

6168 measured reflections 2173 independent reflections

1313 reflections with I > 2σ(I) Rint = 0.035

θmax = 25.0°, θmin = 1.5°

h = −16→11 k = −11→11 l = −9→10

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.048

wR(F2) = 0.145

S = 0.99 2173 reflections 176 parameters 3 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0648P)2 + 0.3761P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.24 e Å−3

Δρmin = −0.20 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

O1 0.86038 (15) 0.7149 (3) 0.9155 (2) 0.0939 (8)

O3 0.58108 (17) 0.5451 (2) 0.1076 (2) 0.0828 (7)

H3 0.6113 0.6151 0.1079 0.124*

C9 0.72482 (18) 0.6158 (2) 0.6580 (3) 0.0554 (7)

H9 0.6989 0.6080 0.7472 0.066* 0.726 (5)

H9′ 0.7186 0.7116 0.6342 0.066* 0.274 (5)

O2 0.72238 (18) 0.7572 (2) 0.6085 (3) 0.0592 (9) 0.726 (5)

H2 0.7549 0.7658 0.5463 0.089* 0.726 (5)

O2′ 0.6959 (5) 0.5813 (9) 0.8092 (7) 0.078 (3) 0.274 (5)

H2′ 0.6367 0.5864 0.7935 0.117* 0.274 (5)

C1 1.0625 (2) 0.7175 (3) 0.9674 (3) 0.0674 (8)

H1 1.0353 0.7780 1.0227 0.081*

C2 1.1623 (2) 0.7117 (3) 0.9931 (4) 0.0799 (9)

H2A 1.2017 0.7695 1.0638 0.096*

C3 1.2029 (2) 0.6219 (3) 0.9156 (4) 0.0815 (9)

H3A 1.2702 0.6179 0.9337 0.098*

C4 1.1451 (2) 0.5370 (3) 0.8106 (4) 0.0774 (9)

H4 1.1734 0.4753 0.7581 0.093*

C5 1.0452 (2) 0.5425 (3) 0.7822 (3) 0.0638 (7)

H5 1.0064 0.4845 0.7108 0.077*

C6 1.00237 (19) 0.6341 (2) 0.8600 (3) 0.0525 (6)

C7 0.8949 (2) 0.6454 (3) 0.8323 (3) 0.0573 (7)

C8 0.82974 (18) 0.5707 (3) 0.6989 (3) 0.0563 (7)

H8A 0.8323 0.4760 0.7238 0.068*

H8B 0.8548 0.5817 0.6093 0.068*

C10 0.66330 (17) 0.5331 (2) 0.5268 (3) 0.0489 (6)

C11 0.62129 (19) 0.4143 (3) 0.5545 (3) 0.0597 (7)

H11 0.6302 0.3841 0.6551 0.072*

C12 0.5662 (2) 0.3407 (3) 0.4334 (3) 0.0664 (8)

H12 0.5382 0.2608 0.4533 0.080*

C13 0.55157 (19) 0.3827 (3) 0.2840 (3) 0.0599 (7)

H13 0.5138 0.3326 0.2029 0.072*

C14 0.5942 (2) 0.5011 (3) 0.2564 (3) 0.0584 (7)

C15 0.64949 (19) 0.5753 (3) 0.3771 (3) 0.0571 (7)

H15 0.6778 0.6549 0.3572 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3 Acta Cryst. (2004). E60, o1135–o1136

O3 0.1096 (18) 0.0795 (15) 0.0551 (11) −0.0062 (13) 0.0143 (11) 0.0117 (10)

C9 0.0584 (17) 0.0526 (15) 0.0588 (16) 0.0020 (13) 0.0218 (13) −0.0034 (12)

O2 0.0698 (18) 0.0453 (15) 0.0684 (18) 0.0015 (12) 0.0284 (13) −0.0039 (12)

O2′ 0.067 (5) 0.110 (6) 0.063 (5) 0.007 (5) 0.028 (4) −0.003 (4)

C1 0.076 (2) 0.0650 (18) 0.0590 (16) 0.0021 (15) 0.0132 (14) −0.0048 (14)

C2 0.073 (2) 0.081 (2) 0.079 (2) −0.0080 (18) 0.0079 (17) −0.0038 (17)

C3 0.065 (2) 0.082 (2) 0.096 (2) 0.0025 (18) 0.0179 (18) 0.010 (2)

C4 0.073 (2) 0.0694 (19) 0.092 (2) 0.0155 (17) 0.0250 (17) 0.0014 (17)

C5 0.0639 (19) 0.0587 (17) 0.0669 (17) 0.0049 (14) 0.0138 (14) −0.0047 (14)

C6 0.0621 (17) 0.0498 (14) 0.0446 (14) 0.0038 (13) 0.0126 (12) 0.0056 (11)

C7 0.0678 (19) 0.0574 (16) 0.0472 (14) 0.0097 (14) 0.0163 (13) 0.0002 (12)

C8 0.0608 (17) 0.0523 (15) 0.0571 (15) 0.0031 (13) 0.0179 (12) −0.0029 (12)

C10 0.0465 (14) 0.0491 (14) 0.0544 (15) 0.0056 (12) 0.0190 (11) −0.0008 (12) C11 0.0659 (17) 0.0591 (16) 0.0569 (16) −0.0055 (14) 0.0213 (13) 0.0097 (13)

C12 0.0693 (19) 0.0561 (16) 0.076 (2) −0.0139 (14) 0.0224 (15) 0.0038 (15)

C13 0.0575 (17) 0.0604 (17) 0.0600 (17) 0.0008 (14) 0.0125 (13) −0.0084 (13) C14 0.0644 (17) 0.0599 (17) 0.0535 (16) 0.0143 (14) 0.0204 (13) 0.0079 (13) C15 0.0670 (18) 0.0473 (14) 0.0615 (17) 0.0002 (13) 0.0251 (14) 0.0046 (12)

Geometric parameters (Å, º)

O1—C7 1.216 (3) C3—H3A 0.9300

O3—C14 1.374 (3) C4—C5 1.380 (4)

O3—H3 0.8200 C4—H4 0.9300

C9—O2 1.477 (3) C5—C6 1.387 (3)

C9—O2′ 1.559 (6) C5—H5 0.9300

C9—C8 1.511 (4) C6—C7 1.490 (4)

C9—C10 1.516 (3) C7—C8 1.506 (4)

C9—H9 0.9708 C8—H8A 0.9700

C9—H9′ 0.9788 C8—H8B 0.9700

O2—H9′ 0.5193 C10—C15 1.374 (3)

O2—H2 0.8200 C10—C11 1.380 (3)

O2′—H9 0.6292 C11—C12 1.375 (4)

O2′—H2′ 0.8200 C11—H11 0.9300

C1—C2 1.380 (4) C12—C13 1.370 (4)

C1—C6 1.386 (4) C12—H12 0.9300

C1—H1 0.9300 C13—C14 1.381 (4)

C2—C3 1.356 (4) C13—H13 0.9300

C2—H2A 0.9300 C14—C15 1.377 (4)

C3—C4 1.371 (4) C15—H15 0.9300

C14—O3—H3 109.5 C4—C5—C6 120.2 (3)

O2—C9—O2′ 118.9 (4) C4—C5—H5 119.9

O2—C9—C8 107.5 (2) C6—C5—H5 119.9

O2′—C9—C8 101.2 (3) C5—C6—C1 118.3 (3)

O2—C9—C10 108.9 (2) C5—C6—C7 122.4 (2)

O2′—C9—C10 109.1 (3) C1—C6—C7 119.4 (2)

(6)

O2—C9—H9 110.0 O1—C7—C8 120.6 (2)

O2′—C9—H9 10.4 C6—C7—C8 119.1 (2)

C8—C9—H9 110.1 C7—C8—C9 114.1 (2)

C10—C9—H9 109.3 C7—C8—H8A 108.7

O2—C9—H9′ 7.0 C9—C8—H8A 108.7

O2′—C9—H9′ 112.2 C7—C8—H8B 108.7

C8—C9—H9′ 111.8 C9—C8—H8B 108.7

C10—C9—H9′ 111.2 H8A—C8—H8B 107.6

H9—C9—H9′ 103.1 C15—C10—C11 118.9 (2)

C9—O2—H9′ 13.2 C15—C10—C9 119.9 (2)

C9—O2—H2 109.5 C11—C10—C9 121.1 (2)

H9′—O2—H2 122.6 C12—C11—C10 120.0 (2)

C9—O2′—H9 16.1 C12—C11—H11 120.0

C9—O2′—H2′ 109.5 C10—C11—H11 120.0

C2—C1—C6 120.8 (3) C13—C12—C11 121.3 (3)

C2—C1—H1 119.6 C13—C12—H12 119.3

C6—C1—H1 119.6 C11—C12—H12 119.3

C3—C2—C1 120.2 (3) C12—C13—C14 118.6 (3)

C3—C2—H2A 119.9 C12—C13—H13 120.7

C1—C2—H2A 119.9 C14—C13—H13 120.7

C2—C3—C4 120.2 (3) O3—C14—C15 119.9 (2)

C2—C3—H3A 119.9 O3—C14—C13 119.7 (2)

C4—C3—H3A 119.9 C15—C14—C13 120.4 (2)

C3—C4—C5 120.4 (3) C10—C15—C14 120.7 (2)

C3—C4—H4 119.8 C10—C15—H15 119.6

C5—C4—H4 119.8 C14—C15—H15 119.6

C6—C1—C2—C3 −1.4 (5) O2—C9—C10—C15 26.2 (3)

C1—C2—C3—C4 0.4 (5) O2′—C9—C10—C15 157.4 (4)

C2—C3—C4—C5 0.3 (5) C8—C9—C10—C15 −92.0 (3)

C3—C4—C5—C6 0.0 (4) O2—C9—C10—C11 −154.5 (2)

C4—C5—C6—C1 −1.0 (4) O2′—C9—C10—C11 −23.3 (4)

C4—C5—C6—C7 179.2 (2) C8—C9—C10—C11 87.3 (3)

C2—C1—C6—C5 1.7 (4) C15—C10—C11—C12 −0.4 (4)

C2—C1—C6—C7 −178.5 (3) C9—C10—C11—C12 −179.7 (2)

C5—C6—C7—O1 170.9 (3) C10—C11—C12—C13 −0.1 (4)

C1—C6—C7—O1 −8.8 (4) C11—C12—C13—C14 0.5 (4)

C5—C6—C7—C8 −9.8 (4) C12—C13—C14—O3 179.7 (2)

C1—C6—C7—C8 170.5 (2) C12—C13—C14—C15 −0.4 (4)

O1—C7—C8—C9 13.8 (4) C11—C10—C15—C14 0.4 (4)

C6—C7—C8—C9 −165.5 (2) C9—C10—C15—C14 179.7 (2)

O2—C9—C8—C7 63.0 (3) O3—C14—C15—C10 179.9 (2)

O2′—C9—C8—C7 −62.4 (4) C13—C14—C15—C10 0.0 (4)

(7)

supporting information

sup-5 Acta Cryst. (2004). E60, o1135–o1136

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O2—H2···O1i 0.82 2.15 2.960 (3) 171

O3—H3···O2i 0.82 2.03 2.818 (3) 161

References

Related documents

The results show that (1) the shocks of good taxation contribute most in real economy than the shocks of other fiscal policy, and the size of contribution on macroeconomic

tic dominance and develop the theory of multivariate SD for the preferences of risk averters.. and risk seekers

For an indicative case of a Chenery-Moses model with 5 activities per region, when plotting the number of regions versus the number of trading relationships per trader.. and the

Results for Asymmetric Generalized Impulse Response Functions for Positive Chocks. Innovations ±

International taxation involves two basic principles about states’ exercising their economic sovereignty (Öz, 2015): the principle of territoriality and principle

Students in the control group did not show significant learn- ing for linked lists and binary search trees, and only marginally significant learning for stacks.. Means,

This study is sequential exploratory mixed method study with three strands [Table/Fig-1]. The first strand involves developing a questionnaire to measure the life

The results indicate that creating a collection used for the evaluation of transliteration systems, based on a “gold standard” created by only one human transliterator may lead to