• No results found

cis Di­chloro­bis­(1,10 phenanthroline)iron(II)

N/A
N/A
Protected

Academic year: 2020

Share "cis Di­chloro­bis­(1,10 phenanthroline)iron(II)"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m1221–m1222 doi:10.1107/S1600536805016156 Fuet al. [FeCl

2(C12H8N2)2]

m1221

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

cis

-Dichlorobis(1,10-phenanthroline)iron(II)

Xu-Cheng Fu,a,bMing-Tian Lia and Cheng-Gang Wanga*

a

Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People’s Republic of China, andbChemistry and

Biology Department, West Anhui University, Liuan, Anhui 237000, People’s Republic of China

Correspondence e-mail: wangcg23@yahoo.com.cn

Key indicators

Single-crystal X-ray study

T= 292 K

Mean(C–C) = 0.006 A˚

Rfactor = 0.067

wRfactor = 0.149

Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound,cis-[FeCl2(C12H8N2)2], the Fe atom has

a distorted octahedral coordination composed of four N atoms from two phenanthroline groups and two Cl atoms. The crystal packing is stabilized by weak – stacking of neighboring phenanthroline groups.

Comment

The title compound, cis-[Fe(phen)2Cl2], (I) (phen is

1,10-phenanthroline), was previously reported by Baker & Bobo-nich (1963), and its magnetic behavior has been studied (Ko¨niget al., 1967). However, its crystal structure has not yet been reported.cis-[Fe(phen)2Cl2], was unexpectedly obtained

while attempting to prepare [Fe(terephth)(phen)(H2O)]

(terephth is terephthalate). The FeII atom has a distorted

octahedral coordination composed of a pair of phen groups and two Cl atoms. The Cl1—Fe1—Cl2 angle is 100.09 (4). The

crystal packing of (I) is stabilized by extended–stacking of the conjugated phen ring systems, characterized by interplanar distances in the range 3.404 (6)–3.608 (6) A˚ . (see Fig.2).

Experimental

The title compound was prepared from a mixture of FeCl3, tereph-thalic acid, 1,10-phenanthroline (monohydrated), NaOH and EtOH with a molar ratio of 1:2:1:2:206. The mixture was stirred for 2 h, sealed in a 15 ml Teflon-lined stainless steel bomb, kept at 413 K for 96 h, and then cooled slowly to ambient temperature. The resulting black–red crystals of (I) were filtered and washed with acetone.

(2)

Crystal data

[FeCl2(C12H8N2)2] Mr= 487.16 Monoclinic,P21=n a= 10.1699 (18) A˚

b= 16.883 (3) A˚

c= 12.490 (2) A˚

= 100.126 (3)

V= 2111.1 (6) A˚3 Z= 4

Dx= 1.533 Mg m

3 MoKradiation Cell parameters from 3005

reflections

= 2.7–25.1 = 0.99 mm1 T= 292 (2) K Block, black–red 0.400.200.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin= 0.693,Tmax= 0.908 13352 measured reflections

4760 independent reflections 3251 reflections withI> 2(I)

Rint= 0.060

max= 27.5

h=10!13

k=21!21

l=15!14

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.067

wR(F2) = 0.149 S= 1.08 4760 reflections 280 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.059P)2 + 0.7354P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.66 e A˚

3

min=0.69 e A˚

3

Table 1

Selected geometric parameters (A˚ ,).

Fe1—N4 2.179 (3)

Fe1—N1 2.179 (3)

Fe1—N3 2.246 (3)

Fe1—N2 2.276 (3)

Fe1—Cl1 2.3604 (12)

Fe1—Cl2 2.4696 (11)

N4—Fe1—N1 156.32 (12)

N4—Fe1—N3 74.47 (11)

N1—Fe1—N3 87.65 (11)

N4—Fe1—N2 87.49 (11)

N1—Fe1—N2 73.94 (11)

N3—Fe1—N2 79.90 (11)

N4—Fe1—Cl1 100.19 (9)

N1—Fe1—Cl1 96.32 (9)

N3—Fe1—Cl1 93.85 (8)

N2—Fe1—Cl1 168.52 (8)

N4—Fe1—Cl2 93.00 (8)

N1—Fe1—Cl2 100.72 (9)

N3—Fe1—Cl2 162.77 (8)

N2—Fe1—Cl2 87.91 (8)

Cl1—Fe1—Cl2 100.09 (4)

H atoms were placed in calculated positions and refined using a riding model, withUiso(H) = 1.2Ueq(C) and C–H distances of 0.93 A˚ . Data collection:SMART(Bruker, 2000); cell refinement:SAINT (Bruker, 2000); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXTL.

The authors thank the Education Office of Anhui Province, People’s Republic of China, for research grant No. 200161.

References

Baker, W. A. & Bobonich, H. M. (1963).Inorg. Chem.2, 1071–1073. Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison,

Wisconsin, USA.

Bruker (2000).SMART,SAINTandSADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Ko¨nig, E., Charkravarty, A. S. & Madeja, K. (1967).Theor. Chim. Acta,9, 171– 173.

[image:2.610.45.293.72.241.2]

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Figure 2

A view of the–stacking. H atoms have been omitted. Figure 1

[image:2.610.42.297.305.534.2]
(3)

supporting information

sup-1 Acta Cryst. (2005). E61, m1221–m1222

supporting information

Acta Cryst. (2005). E61, m1221–m1222 [https://doi.org/10.1107/S1600536805016156]

cis

-Dichlorobis(1,10-phenanthroline)iron(II)

Xu-Cheng Fu, Ming-Tian Li and Cheng-Gang Wang

Dichlorobis(1,10-phenanthroline)iron(II)

Crystal data [FeCl2(C12H8N2)2] Mr = 487.16

Monoclinic, P21/n

Hall symbol: -P2yn a = 10.1699 (18) Å b = 16.883 (3) Å c = 12.490 (2) Å β = 100.126 (3)° V = 2111.1 (6) Å3 Z = 4

F(000) = 992 Dx = 1.533 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3005 reflections θ = 2.7–25.1°

µ = 0.99 mm−1 T = 292 K Block, black–red 0.40 × 0.20 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000) Tmin = 0.693, Tmax = 0.908

13352 measured reflections 4760 independent reflections 3251 reflections with I > 2σ(I) Rint = 0.060

θmax = 27.5°, θmin = 2.1° h = −10→13

k = −21→21 l = −15→14

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.067 wR(F2) = 0.149 S = 1.08 4760 reflections 280 parameters 3 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.059P)2 + 0.7354P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.66 e Å−3

Δρmin = −0.69 e Å−3

Special details

Experimental. Dichlorobis(1,10-phenanthroline)iron(II)

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Fe1 0.09953 (5) 0.23100 (3) 0.77849 (4) 0.02622 (17)

Cl1 0.25988 (12) 0.13361 (6) 0.84460 (9) 0.0499 (3)

Cl2 −0.09344 (10) 0.14563 (6) 0.70783 (8) 0.0363 (3)

N1 0.0526 (3) 0.26409 (18) 0.9362 (2) 0.0314 (7)

N2 −0.0404 (3) 0.33691 (18) 0.7473 (2) 0.0312 (7)

N3 0.2491 (3) 0.33013 (17) 0.7987 (2) 0.0290 (7)

N4 0.1475 (3) 0.25080 (17) 0.6173 (2) 0.0277 (7)

C1 0.0983 (4) 0.2276 (2) 1.0291 (3) 0.0379 (10)

H1 0.1510 0.1827 1.0278 0.045*

C2 0.0707 (5) 0.2538 (3) 1.1291 (3) 0.0526 (12)

H2 0.1052 0.2267 1.1927 0.063*

C3 −0.0062 (5) 0.3187 (3) 1.1329 (3) 0.0520 (12)

H3 −0.0266 0.3358 1.1989 0.062*

C4 −0.0555 (4) 0.3602 (3) 1.0365 (3) 0.0424 (11)

C5 −0.1361 (5) 0.4293 (3) 1.0320 (4) 0.0570 (13)

H5 −0.1587 0.4491 1.0958 0.068*

C6 −0.1801 (5) 0.4666 (3) 0.9377 (4) 0.0568 (13)

H6 −0.2311 0.5123 0.9374 0.068*

C7 −0.1499 (4) 0.4370 (2) 0.8377 (4) 0.0455 (11)

C8 −0.1958 (5) 0.4737 (3) 0.7367 (4) 0.0568 (13)

H8 −0.2465 0.5198 0.7325 0.068*

C9 −0.1639 (5) 0.4399 (3) 0.6449 (4) 0.0595 (14)

H9 −0.1937 0.4627 0.5772 0.071*

C10 −0.0878 (4) 0.3720 (3) 0.6531 (3) 0.0424 (10)

H10 −0.0685 0.3495 0.5896 0.051*

C11 −0.0722 (4) 0.3692 (2) 0.8381 (3) 0.0328 (9)

C12 −0.0228 (4) 0.3297 (2) 0.9400 (3) 0.0327 (9)

C13 0.2995 (4) 0.3693 (2) 0.8890 (3) 0.0348 (9)

H13 0.2786 0.3519 0.9546 0.042*

C14 0.3817 (4) 0.4349 (2) 0.8901 (4) 0.0435 (11)

H14 0.4145 0.4605 0.9552 0.052*

C15 0.4141 (4) 0.4617 (2) 0.7949 (4) 0.0430 (11)

H15 0.4676 0.5063 0.7942 0.052*

C16 0.3657 (4) 0.4209 (2) 0.6979 (3) 0.0337 (9)

C17 0.3974 (4) 0.4423 (2) 0.5947 (4) 0.0441 (11)

H17 0.4512 0.4863 0.5900 0.053*

C18 0.3512 (4) 0.4005 (2) 0.5044 (3) 0.0434 (11)

H18 0.3760 0.4148 0.4388 0.052*

C19 0.2646 (4) 0.3342 (2) 0.5080 (3) 0.0323 (9)

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, m1221–m1222

H20 0.2311 0.3022 0.3480 0.052*

C21 0.1303 (4) 0.2275 (3) 0.4273 (3) 0.0454 (11)

H21 0.0950 0.1969 0.3672 0.054*

C22 0.0997 (4) 0.2095 (2) 0.5296 (3) 0.0359 (10)

H22 0.0437 0.1668 0.5358 0.043*

C23 0.2298 (3) 0.3123 (2) 0.6074 (3) 0.0268 (8)

C24 0.2834 (4) 0.3556 (2) 0.7049 (3) 0.0282 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Fe1 0.0297 (3) 0.0306 (3) 0.0190 (3) −0.0019 (2) 0.0058 (2) 0.0001 (2)

Cl1 0.0520 (7) 0.0503 (6) 0.0463 (7) 0.0141 (5) 0.0055 (5) 0.0075 (5)

Cl2 0.0352 (5) 0.0378 (5) 0.0381 (6) −0.0060 (4) 0.0126 (4) −0.0042 (4)

N1 0.0324 (18) 0.0357 (17) 0.0255 (16) −0.0026 (15) 0.0037 (14) 0.0003 (14)

N2 0.0266 (17) 0.0372 (17) 0.0285 (17) −0.0002 (14) 0.0011 (14) −0.0050 (14)

N3 0.0319 (17) 0.0327 (17) 0.0211 (15) −0.0016 (14) 0.0015 (14) −0.0035 (13)

N4 0.0286 (17) 0.0344 (16) 0.0206 (15) −0.0054 (14) 0.0055 (13) −0.0017 (12)

C1 0.037 (2) 0.053 (3) 0.0221 (19) 0.000 (2) 0.0020 (17) 0.0041 (18)

C2 0.060 (3) 0.076 (3) 0.022 (2) −0.009 (3) 0.008 (2) −0.001 (2)

C3 0.048 (3) 0.081 (4) 0.029 (2) −0.013 (3) 0.013 (2) −0.020 (2)

C4 0.042 (3) 0.054 (3) 0.034 (2) −0.004 (2) 0.017 (2) −0.013 (2)

C5 0.056 (3) 0.071 (3) 0.048 (3) 0.005 (3) 0.020 (2) −0.027 (3)

C6 0.056 (3) 0.052 (3) 0.065 (3) 0.014 (2) 0.017 (3) −0.014 (3)

C7 0.043 (3) 0.045 (2) 0.048 (3) 0.008 (2) 0.010 (2) −0.004 (2)

C8 0.060 (3) 0.048 (3) 0.060 (3) 0.024 (2) 0.006 (3) 0.005 (2)

C9 0.067 (3) 0.062 (3) 0.045 (3) 0.023 (3) −0.002 (3) 0.007 (2)

C10 0.045 (3) 0.052 (3) 0.028 (2) 0.014 (2) 0.0017 (19) 0.0002 (19)

C11 0.032 (2) 0.034 (2) 0.033 (2) 0.0004 (18) 0.0071 (17) −0.0057 (16)

C12 0.034 (2) 0.039 (2) 0.0254 (19) −0.0067 (18) 0.0067 (17) −0.0074 (17)

C13 0.030 (2) 0.044 (2) 0.029 (2) −0.0003 (19) −0.0002 (17) −0.0056 (17)

C14 0.042 (2) 0.044 (2) 0.043 (3) −0.005 (2) 0.003 (2) −0.018 (2)

C15 0.038 (2) 0.032 (2) 0.059 (3) −0.0125 (19) 0.007 (2) −0.005 (2)

C16 0.034 (2) 0.0258 (19) 0.042 (2) −0.0011 (17) 0.0069 (18) 0.0046 (16)

C17 0.045 (3) 0.041 (2) 0.048 (3) −0.010 (2) 0.013 (2) 0.014 (2)

C18 0.042 (2) 0.051 (3) 0.039 (2) −0.004 (2) 0.011 (2) 0.017 (2)

C19 0.031 (2) 0.040 (2) 0.028 (2) 0.0058 (18) 0.0105 (17) 0.0109 (17)

C20 0.043 (3) 0.066 (3) 0.023 (2) −0.002 (2) 0.0101 (19) 0.0062 (19)

C21 0.048 (3) 0.068 (3) 0.021 (2) −0.014 (2) 0.0082 (19) −0.009 (2)

C22 0.037 (2) 0.048 (2) 0.025 (2) −0.0145 (19) 0.0108 (18) −0.0082 (17)

C23 0.0226 (19) 0.034 (2) 0.0235 (18) 0.0045 (16) 0.0026 (15) 0.0051 (15)

C24 0.0255 (19) 0.0295 (19) 0.029 (2) 0.0012 (16) 0.0033 (16) 0.0013 (15)

Geometric parameters (Å, º)

Fe1—N4 2.179 (3) C7—C8 1.410 (6)

Fe1—N1 2.179 (3) C8—C9 1.370 (7)

(6)

Fe1—N2 2.276 (3) C9—C10 1.378 (6)

Fe1—Cl1 2.3604 (12) C9—H9 0.9300

Fe1—Cl2 2.4696 (11) C10—H10 0.9300

N1—C1 1.324 (5) C11—C12 1.446 (5)

N1—C12 1.352 (5) C13—C14 1.386 (5)

N2—C10 1.330 (5) C13—H13 0.9300

N2—C11 1.348 (5) C14—C15 1.366 (6)

N3—C13 1.330 (4) C14—H14 0.9300

N3—C24 1.350 (5) C15—C16 1.405 (6)

N4—C22 1.318 (4) C15—H15 0.9300

N4—C23 1.352 (4) C16—C24 1.397 (5)

C1—C2 1.400 (6) C16—C17 1.429 (5)

C1—H1 0.9300 C17—C18 1.344 (6)

C2—C3 1.352 (7) C17—H17 0.9300

C2—H2 0.9300 C18—C19 1.430 (5)

C3—C4 1.407 (6) C18—H18 0.9300

C3—H3 0.9300 C19—C23 1.399 (5)

C4—C12 1.404 (5) C19—C20 1.404 (6)

C4—C5 1.421 (6) C20—C21 1.354 (6)

C5—C6 1.341 (7) C20—H20 0.9300

C5—H5 0.9300 C21—C22 1.400 (5)

C6—C7 1.429 (6) C21—H21 0.9300

C6—H6 0.9300 C22—H22 0.9300

C7—C11 1.389 (5) C23—C24 1.443 (5)

N4—Fe1—N1 156.32 (12) C7—C8—H8 120.8

N4—Fe1—N3 74.47 (11) C8—C9—C10 119.8 (4)

N1—Fe1—N3 87.65 (11) C8—C9—H9 120.1

N4—Fe1—N2 87.49 (11) C10—C9—H9 120.1

N1—Fe1—N2 73.94 (11) N2—C10—C9 123.2 (4)

N3—Fe1—N2 79.90 (11) N2—C10—H10 118.4

N4—Fe1—Cl1 100.19 (9) C9—C10—H10 118.4

N1—Fe1—Cl1 96.32 (9) N2—C11—C7 123.4 (4)

N3—Fe1—Cl1 93.85 (8) N2—C11—C12 117.1 (3)

N2—Fe1—Cl1 168.52 (8) C7—C11—C12 119.6 (4)

N4—Fe1—Cl2 93.00 (8) N1—C12—C4 123.5 (4)

N1—Fe1—Cl2 100.72 (9) N1—C12—C11 117.3 (3)

N3—Fe1—Cl2 162.77 (8) C4—C12—C11 119.2 (4)

N2—Fe1—Cl2 87.91 (8) N3—C13—C14 123.2 (4)

Cl1—Fe1—Cl2 100.09 (4) N3—C13—H13 118.4

C1—N1—C12 117.7 (3) C14—C13—H13 118.4

C1—N1—Fe1 125.0 (3) C15—C14—C13 119.6 (4)

C12—N1—Fe1 117.2 (2) C15—C14—H14 120.2

C10—N2—C11 117.5 (3) C13—C14—H14 120.2

C10—N2—Fe1 128.3 (3) C14—C15—C16 119.1 (4)

C11—N2—Fe1 114.2 (2) C14—C15—H15 120.5

C13—N3—C24 117.2 (3) C16—C15—H15 120.5

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, m1221–m1222

C24—N3—Fe1 114.4 (2) C24—C16—C17 119.3 (4)

C22—N4—C23 118.2 (3) C15—C16—C17 123.5 (4)

C22—N4—Fe1 125.3 (3) C18—C17—C16 121.5 (4)

C23—N4—Fe1 116.4 (2) C18—C17—H17 119.2

N1—C1—C2 122.7 (4) C16—C17—H17 119.2

N1—C1—H1 118.7 C17—C18—C19 120.7 (4)

C2—C1—H1 118.7 C17—C18—H18 119.6

C3—C2—C1 119.7 (4) C19—C18—H18 119.6

C3—C2—H2 120.1 C23—C19—C20 117.7 (4)

C1—C2—H2 120.1 C23—C19—C18 119.3 (4)

C2—C3—C4 119.7 (4) C20—C19—C18 123.1 (4)

C2—C3—H3 120.2 C21—C20—C19 118.8 (4)

C4—C3—H3 120.2 C21—C20—H20 120.6

C12—C4—C3 116.7 (4) C19—C20—H20 120.6

C12—C4—C5 119.3 (4) C20—C21—C22 120.1 (4)

C3—C4—C5 124.0 (4) C20—C21—H21 119.9

C6—C5—C4 121.4 (4) C22—C21—H21 119.9

C6—C5—H5 119.3 N4—C22—C21 122.3 (4)

C4—C5—H5 119.3 N4—C22—H22 118.8

C5—C6—C7 120.9 (4) C21—C22—H22 118.8

C5—C6—H6 119.5 N4—C23—C19 122.8 (3)

C7—C6—H6 119.5 N4—C23—C24 117.3 (3)

C11—C7—C8 117.7 (4) C19—C23—C24 119.9 (3)

C11—C7—C6 119.6 (4) N3—C24—C16 123.7 (3)

C8—C7—C6 122.7 (4) N3—C24—C23 117.0 (3)

C9—C8—C7 118.4 (4) C16—C24—C23 119.3 (3)

C9—C8—H8 120.8

N4—Fe1—N1—C1 −140.7 (3) C10—N2—C11—C7 −0.7 (6)

N3—Fe1—N1—C1 −100.2 (3) Fe1—N2—C11—C7 176.1 (3)

N2—Fe1—N1—C1 179.6 (3) C10—N2—C11—C12 178.7 (4)

Cl1—Fe1—N1—C1 −6.6 (3) Fe1—N2—C11—C12 −4.5 (4)

Cl2—Fe1—N1—C1 95.0 (3) C8—C7—C11—N2 −0.7 (7)

N4—Fe1—N1—C12 35.3 (4) C6—C7—C11—N2 179.2 (4)

N3—Fe1—N1—C12 75.8 (3) C8—C7—C11—C12 179.9 (4)

N2—Fe1—N1—C12 −4.4 (3) C6—C7—C11—C12 −0.2 (6)

Cl1—Fe1—N1—C12 169.4 (3) C1—N1—C12—C4 −0.6 (6)

Cl2—Fe1—N1—C12 −89.1 (3) Fe1—N1—C12—C4 −176.8 (3)

N4—Fe1—N2—C10 16.0 (3) C1—N1—C12—C11 179.9 (3)

N1—Fe1—N2—C10 −178.9 (4) Fe1—N1—C12—C11 3.7 (4)

N3—Fe1—N2—C10 90.7 (3) C3—C4—C12—N1 −0.4 (6)

Cl1—Fe1—N2—C10 148.4 (4) C5—C4—C12—N1 −179.6 (4)

Cl2—Fe1—N2—C10 −77.1 (3) C3—C4—C12—C11 179.1 (4)

N4—Fe1—N2—C11 −160.4 (3) C5—C4—C12—C11 −0.1 (6)

N1—Fe1—N2—C11 4.7 (3) N2—C11—C12—N1 0.7 (5)

N3—Fe1—N2—C11 −85.8 (3) C7—C11—C12—N1 −179.8 (4)

Cl1—Fe1—N2—C11 −28.1 (6) N2—C11—C12—C4 −178.8 (4)

(8)

N4—Fe1—N3—C13 −179.9 (3) C24—N3—C13—C14 1.4 (5)

N1—Fe1—N3—C13 15.8 (3) Fe1—N3—C13—C14 −173.4 (3)

N2—Fe1—N3—C13 89.9 (3) N3—C13—C14—C15 −0.1 (6)

Cl1—Fe1—N3—C13 −80.4 (3) C13—C14—C15—C16 −1.4 (6)

Cl2—Fe1—N3—C13 135.5 (3) C14—C15—C16—C24 1.5 (6)

N4—Fe1—N3—C24 5.1 (2) C14—C15—C16—C17 −177.8 (4)

N1—Fe1—N3—C24 −159.2 (3) C24—C16—C17—C18 −0.9 (6)

N2—Fe1—N3—C24 −85.1 (3) C15—C16—C17—C18 178.4 (4)

Cl1—Fe1—N3—C24 104.6 (2) C16—C17—C18—C19 2.2 (6)

Cl2—Fe1—N3—C24 −39.4 (5) C17—C18—C19—C23 −1.1 (6)

N1—Fe1—N4—C22 −140.0 (3) C17—C18—C19—C20 178.6 (4)

N3—Fe1—N4—C22 177.7 (3) C23—C19—C20—C21 −0.5 (6)

N2—Fe1—N4—C22 −102.1 (3) C18—C19—C20—C21 179.8 (4)

Cl1—Fe1—N4—C22 86.5 (3) C19—C20—C21—C22 0.8 (7)

Cl2—Fe1—N4—C22 −14.3 (3) C23—N4—C22—C21 −0.6 (6)

N1—Fe1—N4—C23 37.8 (4) Fe1—N4—C22—C21 177.2 (3)

N3—Fe1—N4—C23 −4.5 (2) C20—C21—C22—N4 −0.2 (7)

N2—Fe1—N4—C23 75.7 (3) C22—N4—C23—C19 0.8 (5)

Cl1—Fe1—N4—C23 −95.7 (2) Fe1—N4—C23—C19 −177.1 (3)

Cl2—Fe1—N4—C23 163.5 (2) C22—N4—C23—C24 −178.6 (3)

C12—N1—C1—C2 0.6 (6) Fe1—N4—C23—C24 3.4 (4)

Fe1—N1—C1—C2 176.5 (3) C20—C19—C23—N4 −0.3 (6)

N1—C1—C2—C3 0.4 (7) C18—C19—C23—N4 179.4 (3)

C1—C2—C3—C4 −1.4 (7) C20—C19—C23—C24 179.1 (3)

C2—C3—C4—C12 1.3 (6) C18—C19—C23—C24 −1.2 (5)

C2—C3—C4—C5 −179.4 (4) C13—N3—C24—C16 −1.3 (5)

C12—C4—C5—C6 −0.9 (7) Fe1—N3—C24—C16 174.3 (3)

C3—C4—C5—C6 179.9 (5) C13—N3—C24—C23 179.3 (3)

C4—C5—C6—C7 1.4 (8) Fe1—N3—C24—C23 −5.2 (4)

C5—C6—C7—C11 −0.9 (7) C15—C16—C24—N3 −0.2 (6)

C5—C6—C7—C8 179.1 (5) C17—C16—C24—N3 179.2 (4)

C11—C7—C8—C9 1.3 (7) C15—C16—C24—C23 179.3 (3)

C6—C7—C8—C9 −178.6 (5) C17—C16—C24—C23 −1.4 (5)

C7—C8—C9—C10 −0.6 (8) N4—C23—C24—N3 1.3 (5)

C11—N2—C10—C9 1.6 (6) C19—C23—C24—N3 −178.1 (3)

Fe1—N2—C10—C9 −174.7 (3) N4—C23—C24—C16 −178.2 (3)

Figure

Figure 2

References

Related documents

The designated centre has all of the written operational policies as required by Schedule 5 of the Health Act 2007 (Care and Support of Residents in Designated Centres for

Under Regulation 23 (1) (c) you are required to: Put management systems in place in the designated centre to ensure that the service provided is safe, appropriate to residents'

Thirty-six grazing dairy cows were used to determine the effect of combina- tions of soybean (SO), and linseed (LO) oils on milk production, composition and milk fatty acid

In Proceedings of the 53rd Annual Meeting of the Association for Computational Lin- guistics and the 7th International Joint Conference on Natural Language Processing , pages

(2) Education levels have significant effect on the probability of getting divorced: having high school degree increases the probability of getting divorced compared

aking into account the information presented above and the classical view that people show their attitudes towards different aspects of a language (Malallah, 2000; Marley,

While we do not observe gender differences in the levels of risk aversion and prudence, the transmission of preferences differs by gender: The correlation in the

The objective of this study was to evaluate the opinion of students from a Brazilian Dental School about the inclusion of social media (Facebook, WhatsApp, and Instagram)