• No results found

Tris(4,4′,5,5′ tetra­methyl 2,2′ bi­imidazole)­zinc(II) dinitrate

N/A
N/A
Protected

Academic year: 2020

Share "Tris(4,4′,5,5′ tetra­methyl 2,2′ bi­imidazole)­zinc(II) dinitrate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m1075–m1076 doi:10.1107/S1600536805013954 Zou and Xu [Zn(C

10H14N4)3](NO3)2

m1075

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(4,4

000

,5,5

000

-tetramethyl-2,2

000

-biimidazole)-zinc(II) dinitrate

Ru-Qiang Zoua,band Qiang Xua,b*

a

National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan, andbGraduate School of

Science and Technology, Kobe University, Nada Ku, Kobe, Hyogo 657-8501, Japan

Correspondence e-mail: q.xu@aist.go.jp

Key indicators Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.006 A˚

Rfactor = 0.043

wRfactor = 0.111

Data-to-parameter ratio = 16.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

A new six-coordinate monomeric ZnII complex, [Zn(L)3

]-(NO3)2, where L is 4,40,5,50-tetramethyl-2,20-biimidazole

(C10H14N4), has been synthesized and characterized by

X-ray diffraction techniques. The ZnII atom, on a twofold axis, has a ZnN6 distorted octahedral coordination

environ-ment. 4,40,5,50-Tetramethyl-2,20-biimidazole is bonded as a

chelating ligand through its unprotonated N atoms. These discrete monomeric units possesses excellent hydrogen-bonding sites which further self-assemble into a three-dimensional supramolecular architecture through intermole-cular N—H O and C—H O hydrogen bonds.

Comment

The unique strength, directionality and complementarity of non-covalent interactions, such as hydrogen bonding and coordination bonding, play an important role in the creation of a variety of molecular architectures (Tadokoroet al., 1999; Lehn, 1995). The building blocks possessing such non-covalent interaction sites can produce one-, two- and three-dimensional molecular arrangements with long-range order (Subramanian & Zaworotko, 1994; Ermer, 1988). We present here a new three-dimensional hydrogen-bonding network with discrete monomeric ZnIIbuilding blocks, [Zn(L)3](NO3)2, (I), whereL

is 4,40,5,50-tetramethyl-2,20-biimidazole.

X-ray structure analysis reveals that (I) is a monomeric ZnII complex (Fig. 1). The coordination geometry around the ZnII

atom, which lies on a twofold rotation axis, is octahedral, with Zn—N distances in the range 2.149 (3)–2.208 (2) A˚ . The 4,40,5,50-tetramethyl-2,20-biimidazole ligand is bonded as a

chelating ligand through its unprotonated N atoms. A striking structural feature of (I) is the formation of a three-dimen-sional supramolecular architecture through intermolecular N—H O and C—H O hydrogen-bonding interactions (Table 1).

(2)

Experimental

Complex (I) was prepared by reacting an acetonitrile solution (15 ml) of zinc(II) nitrate with 4,40,5,50-tetramethyl-2,20-biimidazole in a 1:3

ratio. Red block-shaped crystals were recovered by filtration and dried in air. The yield wasca78% (based on Zn). IR (KBr, cm1): 3232 (m), 2980 (m), 1696 (s), 1517 (s), 1456 (m), 1200 (m), 841 (m), 751 (w), 624 (w) cm1.

Crystal data

[Zn(C10H14N4)3](NO3)2

Mr= 760.15 Hexagonal,P64

a= 13.900 (2) A˚

c= 16.809 (3) A˚

V= 2812.7 (8) A˚3

Z= 3

Dx= 1.346 Mg m 3

MoKradiation Cell parameters from 6512

reflections

= 2.9–24.1

= 0.72 mm1

T= 293 (2) K Block, red

0.200.200.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1998)

Tmin= 0.868,Tmax= 0.898 17035 measured reflections

4093 independent reflections 3093 reflections withI> 2(I)

Rint= 0.116

max= 28.3

h=12!18

k=18!15

l=17!21

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.043

wR(F2) = 0.111

S= 0.96 4093 reflections 254 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0565P)2] whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.68 e A˚ 3

min=0.31 e A˚ 3

Absolute structure: Flack (1983), 1683 Friedel pairs

[image:2.610.309.567.67.227.2]

Flack parameter =0.027 (13)

Table 1

Hydrogen-bonding geometry (A˚ ,).

D—H A D—H H A D A D—H A

N3—H3A O1i

0.86 2.01 2.852 (4) 167 N4—H4A O3i

0.86 2.01 2.818 (5) 156 N6—H6A O2ii

0.86 2.03 2.849 (5) 157 N6—H6A O3ii

0.86 2.60 3.276 (5) 136 C9—H9A O3iii

0.96 2.47 3.403 (7) 163 C9—H9B O1iv

0.96 2.51 3.431 (7) 162 C10—H10C O2v

0.96 2.46 3.235 (6) 138

Symmetry codes: (i) xy;x;z1

3; (ii) y;1xþy; 1

3þz; (iii) 1x;1y;z; (iv) 1xþy;2x;z1

3; (v)x1;y;z.

All H atoms were placed in calculated positions and allowed to ride on their parent atoms [C—H = 0.93 A˚ andUiso(H) = 1.2Ueq(C)].

Data collection:SMART(Bruker, 1998); cell refinement:SAINT

(Bruker, 1998); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics:

SHELXTL(Sheldrick, 1997b); software used to prepare material for publication:SHELXTL.

The authors thank AIST and Kobe University for financial support.

References

Bruker (1998).SMARTandSAINT.Bruker AXS Inc., Madison, Wisconsin, USA.

Ermer, O. (1988).J. Am. Chem. Soc.110, 3747–3754. Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Lehn, J.-M. (1995).Supramolecular Chemistry. Weinheim: VCH. Sheldrick, G. M. (1998).SADABS.University of Go¨ttingen, Germany. Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Sheldrick, G. M. (1997b).SHELXTL.Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Subramanian, S. & Zaworotko, M. J. (1994).Coord. Chem. Rev.137, 357–401. Tadokoro, M., Isobe, K., Uekusa, H., Ohashi, Y., Toyoda, J., Tashiro, K. &

Nakasuji, K. (1999).Angew. Chem. Int. Ed.38, 95–98.

Figure 1

[image:2.610.44.293.470.553.2]
(3)

supporting information

sup-1

Acta Cryst. (2005). E61, m1075–m1076

supporting information

Acta Cryst. (2005). E61, m1075–m1076 [https://doi.org/10.1107/S1600536805013954]

Tris(4,4

,5,5

-tetramethyl-2,2

-biimidazole)zinc(II) dinitrate

Ru-Qiang Zou and Qiang Xu

Tris(4,4′,5,5′-tetramethyl-2,2′-biimidazole)zinc(II) dinitrate

Crystal data

[Zn(C10H14N4)3](NO3)2

Mr = 760.15

Hexagonal, P64

a = 13.900 (2) Å

c = 16.809 (3) Å

V = 2812.7 (8) Å3

Z = 3

F(000) = 1194

Dx = 1.346 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 6512 reflections

θ = 2.9–24.1°

µ = 0.72 mm−1

T = 293 K Block, red

0.20 × 0.20 × 0.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 8.366 pixels mm-1

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 1998)

Tmin = 0.868, Tmax = 0.898

17035 measured reflections 4093 independent reflections 3093 reflections with I > 2σ(I)

Rint = 0.116

θmax = 28.3°, θmin = 1.7°

h = −12→18

k = −18→15

l = −17→21

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.043

wR(F2) = 0.111

S = 0.96 4093 reflections 254 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0565P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.68 e Å−3

Δρmin = −0.31 e Å−3

Absolute structure: Flack (1983), 1683 Friedel pairs

Absolute structure parameter: −0.027 (13)

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Zn1 0.5000 0.5000 0.17471 (3) 0.05577 (14)

C1 0.6948 (2) 0.6142 (3) 0.0302 (2) 0.0631 (7)

C2 0.7235 (3) 0.7016 (3) −0.0192 (2) 0.0690 (8)

C3 0.5999 (2) 0.6903 (2) 0.06630 (18) 0.0547 (6)

C4 0.5190 (2) 0.7054 (2) 0.11051 (18) 0.0537 (6)

C5 0.4118 (3) 0.7647 (3) 0.1567 (2) 0.0660 (8)

C6 0.3870 (2) 0.6676 (3) 0.19359 (18) 0.0602 (7)

C7 0.7377 (4) 0.5361 (4) 0.0327 (3) 0.0853 (11)

H7A 0.6786 0.4624 0.0208 0.124 (18)*

H7B 0.7663 0.5371 0.0849 0.101 (15)*

H7C 0.7959 0.5580 −0.0058 0.110 (14)*

C8 0.7982 (4) 0.7433 (5) −0.0887 (3) 0.1006 (14)

H8A 0.8315 0.6981 −0.0971 0.19 (3)*

H8B 0.8553 0.8187 −0.0792 0.090 (13)*

H8C 0.7564 0.7404 −0.1350 0.18 (3)*

C9 0.3652 (4) 0.8406 (4) 0.1662 (3) 0.0975 (14)

H9A 0.2878 0.7978 0.1795 0.097 (12)*

H9B 0.3737 0.8797 0.1173 0.088 (12)*

H9C 0.4043 0.8931 0.2079 0.32 (6)*

C10 0.3023 (3) 0.6062 (3) 0.2551 (3) 0.0779 (10)

H10A 0.2674 0.6482 0.2702 0.092 (12)*

H10B 0.3370 0.5952 0.3008 0.13 (2)*

H10C 0.2473 0.5355 0.2343 0.118 (17)*

C11 0.2728 (3) 0.3279 (3) 0.3719 (3) 0.0809 (10)

C12 0.2826 (3) 0.3402 (3) 0.2912 (2) 0.0713 (9)

C13 0.4431 (3) 0.4572 (3) 0.3424 (2) 0.0676 (8)

C14 0.1718 (5) 0.2489 (5) 0.4200 (3) 0.1225 (18)

H14A 0.1899 0.2590 0.4756 0.184*

H14B 0.1489 0.1738 0.4051 0.184*

H14C 0.1125 0.2637 0.4097 0.184*

C15 0.1956 (3) 0.2814 (4) 0.2278 (3) 0.0860 (11)

H15A 0.1288 0.2240 0.2518 0.14 (2)*

H15B 0.2224 0.2491 0.1896 0.096 (13)*

H15C 0.1803 0.3337 0.2017 0.096 (14)*

N1 0.6162 (2) 0.6072 (2) 0.08389 (16) 0.0578 (6)

N2 0.45547 (18) 0.63124 (19) 0.16345 (16) 0.0554 (5)

N3 0.4953 (2) 0.7866 (2) 0.10390 (16) 0.0618 (6)

H3A 0.5266 0.8426 0.0723 0.060 (9)*

N4 0.6626 (2) 0.7494 (2) 0.00532 (17) 0.0624 (6)

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, m1075–m1076

N5 0.3904 (2) 0.4200 (2) 0.27343 (17) 0.0642 (6)

N6 0.3722 (3) 0.4018 (3) 0.4034 (2) 0.0811 (9)

H6A 0.3879 0.4121 0.4533 0.16 (3)*

N7 0.9754 (2) 0.3546 (3) 0.2781 (2) 0.0815 (9)

O1 0.9869 (3) 0.3607 (4) 0.3503 (2) 0.1347 (15)

O2 1.0435 (2) 0.4214 (3) 0.2309 (2) 0.1163 (11)

O3 0.8911 (3) 0.2796 (2) 0.2513 (2) 0.1055 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Zn1 0.0570 (3) 0.0602 (3) 0.0561 (2) 0.0338 (2) 0.000 0.000

C1 0.0560 (15) 0.0766 (18) 0.0615 (17) 0.0366 (15) 0.0040 (14) −0.0008 (15)

C2 0.0590 (16) 0.086 (2) 0.0663 (19) 0.0395 (16) 0.0103 (15) 0.0047 (17)

C3 0.0489 (14) 0.0591 (15) 0.0550 (15) 0.0262 (12) −0.0049 (13) −0.0024 (13)

C4 0.0545 (14) 0.0557 (14) 0.0536 (15) 0.0297 (12) −0.0026 (13) −0.0034 (13)

C5 0.0655 (17) 0.0639 (17) 0.074 (2) 0.0368 (14) 0.0057 (16) −0.0038 (16)

C6 0.0574 (15) 0.0658 (16) 0.0626 (18) 0.0348 (13) 0.0053 (13) −0.0056 (15)

C7 0.086 (2) 0.106 (3) 0.088 (3) 0.067 (2) 0.021 (2) 0.009 (2)

C8 0.101 (3) 0.125 (4) 0.098 (3) 0.074 (3) 0.035 (3) 0.029 (3)

C9 0.114 (3) 0.092 (3) 0.115 (4) 0.073 (2) 0.043 (3) 0.023 (3)

C10 0.0674 (19) 0.071 (2) 0.098 (3) 0.0369 (18) 0.025 (2) 0.0087 (19)

C11 0.082 (2) 0.080 (2) 0.089 (3) 0.047 (2) 0.024 (2) 0.020 (2)

C12 0.076 (2) 0.071 (2) 0.080 (2) 0.0462 (18) 0.0135 (18) 0.0096 (18)

C13 0.090 (2) 0.0718 (17) 0.0630 (18) 0.0565 (16) 0.0125 (18) 0.0107 (17)

C14 0.129 (4) 0.117 (4) 0.100 (4) 0.046 (3) 0.037 (3) 0.034 (3)

C15 0.079 (2) 0.082 (2) 0.098 (3) 0.041 (2) 0.004 (2) 0.009 (2)

N1 0.0575 (13) 0.0668 (14) 0.0560 (13) 0.0363 (11) 0.0043 (11) −0.0020 (11)

N2 0.0530 (11) 0.0583 (12) 0.0586 (14) 0.0307 (10) −0.0009 (11) −0.0061 (11)

N3 0.0693 (15) 0.0602 (14) 0.0623 (15) 0.0373 (12) 0.0063 (12) 0.0047 (12)

N4 0.0618 (13) 0.0696 (14) 0.0608 (14) 0.0365 (12) 0.0081 (13) 0.0129 (14)

N5 0.0745 (16) 0.0661 (14) 0.0636 (16) 0.0439 (14) 0.0054 (13) 0.0063 (13)

N6 0.103 (2) 0.094 (2) 0.0638 (19) 0.062 (2) 0.0129 (17) 0.0149 (16)

N7 0.0563 (16) 0.099 (2) 0.075 (2) 0.0273 (16) −0.0004 (16) −0.0075 (18)

O1 0.0894 (19) 0.212 (4) 0.068 (2) 0.049 (2) −0.0029 (16) −0.022 (2)

O2 0.0803 (17) 0.119 (2) 0.099 (2) 0.0118 (17) 0.0190 (18) −0.0052 (19)

O3 0.100 (2) 0.0918 (19) 0.087 (2) 0.0202 (17) −0.0072 (17) 0.0084 (16)

Geometric parameters (Å, º)

Zn1—N5i 2.149 (3) C9—H9A 0.9600

Zn1—N5 2.149 (3) C9—H9B 0.9600

Zn1—N1i 2.180 (3) C9—H9C 0.9600

Zn1—N1 2.180 (3) C10—H10A 0.9600

Zn1—N2 2.208 (2) C10—H10B 0.9600

Zn1—N2i 2.208 (2) C10—H10C 0.9600

C1—C2 1.356 (5) C11—N6 1.351 (6)

(6)

C1—C7 1.477 (5) C11—C14 1.512 (6)

C2—N4 1.375 (4) C12—N5 1.380 (5)

C2—C8 1.476 (6) C12—C15 1.509 (6)

C3—N1 1.318 (4) C13—N5 1.331 (5)

C3—N4 1.330 (4) C13—N6 1.363 (5)

C3—C4 1.448 (4) C13—C13i 1.426 (7)

C4—N2 1.313 (4) C14—H14A 0.9600

C4—N3 1.329 (4) C14—H14B 0.9600

C5—C6 1.364 (5) C14—H14C 0.9600

C5—N3 1.370 (4) C15—H15A 0.9600

C5—C9 1.497 (5) C15—H15B 0.9600

C6—N2 1.378 (4) C15—H15C 0.9600

C6—C10 1.476 (5) N3—H3A 0.8600

C7—H7A 0.9600 N4—H4A 0.8600

C7—H7B 0.9600 N6—H6A 0.8600

C7—H7C 0.9600 N7—O3 1.202 (4)

C8—H8A 0.9600 N7—O1 1.221 (5)

C8—H8B 0.9600 N7—O2 1.228 (4)

C8—H8C 0.9600

N5i—Zn1—N5 78.88 (16) H9B—C9—H9C 109.5

N5i—Zn1—N1i 170.31 (10) C6—C10—H10A 109.5

N5—Zn1—N1i 95.51 (10) C6—C10—H10B 109.5

N5i—Zn1—N1 95.51 (10) H10A—C10—H10B 109.5

N5—Zn1—N1 170.31 (10) C6—C10—H10C 109.5

N1i—Zn1—N1 91.09 (14) H10A—C10—H10C 109.5

N5i—Zn1—N2 93.33 (9) H10B—C10—H10C 109.5

N5—Zn1—N2 94.26 (9) N6—C11—C12 107.1 (4)

N1i—Zn1—N2 94.97 (9) N6—C11—C14 124.6 (4)

N1—Zn1—N2 78.07 (9) C12—C11—C14 128.3 (5)

N5i—Zn1—N2i 94.26 (9) C11—C12—N5 108.5 (4)

N5—Zn1—N2i 93.33 (9) C11—C12—C15 129.1 (4)

N1i—Zn1—N2i 78.07 (9) N5—C12—C15 122.4 (3)

N1—Zn1—N2i 94.97 (9) N5—C13—N6 109.5 (3)

N2—Zn1—N2i 170.17 (14) N5—C13—C13i 119.3 (2)

C2—C1—N1 109.3 (3) N6—C13—C13i 131.2 (2)

C2—C1—C7 129.1 (3) C11—C14—H14A 109.5

N1—C1—C7 121.6 (3) C11—C14—H14B 109.5

C1—C2—N4 105.9 (3) H14A—C14—H14B 109.5

C1—C2—C8 132.1 (3) C11—C14—H14C 109.5

N4—C2—C8 122.0 (3) H14A—C14—H14C 109.5

N1—C3—N4 111.6 (3) H14B—C14—H14C 109.5

N1—C3—C4 119.9 (3) C12—C15—H15A 109.5

N4—C3—C4 128.5 (3) C12—C15—H15B 109.5

N2—C4—N3 111.6 (3) H15A—C15—H15B 109.5

N2—C4—C3 120.0 (2) C12—C15—H15C 109.5

N3—C4—C3 128.3 (3) H15A—C15—H15C 109.5

(7)

supporting information

sup-5

Acta Cryst. (2005). E61, m1075–m1076

C6—C5—C9 131.7 (3) C3—N1—C1 105.5 (3)

N3—C5—C9 122.0 (3) C3—N1—Zn1 111.30 (19)

C5—C6—N2 108.5 (3) C1—N1—Zn1 142.6 (2)

C5—C6—C10 128.6 (3) C4—N2—C6 106.1 (2)

N2—C6—C10 122.9 (3) C4—N2—Zn1 110.51 (18)

C1—C7—H7A 109.5 C6—N2—Zn1 143.3 (2)

C1—C7—H7B 109.5 C4—N3—C5 107.4 (3)

H7A—C7—H7B 109.5 C4—N3—H3A 126.3

C1—C7—H7C 109.5 C5—N3—H3A 126.3

H7A—C7—H7C 109.5 C3—N4—C2 107.7 (3)

H7B—C7—H7C 109.5 C3—N4—H4A 126.1

C2—C8—H8A 109.5 C2—N4—H4A 126.1

C2—C8—H8B 109.5 C13—N5—C12 106.8 (3)

H8A—C8—H8B 109.5 C13—N5—Zn1 111.2 (2)

C2—C8—H8C 109.5 C12—N5—Zn1 142.0 (3)

H8A—C8—H8C 109.5 C11—N6—C13 108.1 (4)

H8B—C8—H8C 109.5 C11—N6—H6A 125.9

C5—C9—H9A 109.5 C13—N6—H6A 125.9

C5—C9—H9B 109.5 O3—N7—O1 118.0 (4)

H9A—C9—H9B 109.5 O3—N7—O2 117.5 (4)

C5—C9—H9C 109.5 O1—N7—O2 124.4 (4)

H9A—C9—H9C 109.5

N1—C1—C2—N4 0.7 (4) C5—C6—N2—Zn1 177.1 (3)

C7—C1—C2—N4 −177.6 (4) C10—C6—N2—Zn1 −3.3 (5)

N1—C1—C2—C8 −176.6 (4) N5i—Zn1—N2—C4 94.5 (2)

C7—C1—C2—C8 5.1 (7) N5—Zn1—N2—C4 173.5 (2)

N1—C3—C4—N2 −5.6 (4) N1i—Zn1—N2—C4 −90.6 (2)

N4—C3—C4—N2 172.3 (3) N1—Zn1—N2—C4 −0.48 (19)

N1—C3—C4—N3 176.5 (3) N5i—Zn1—N2—C6 −82.4 (3)

N4—C3—C4—N3 −5.6 (5) N5—Zn1—N2—C6 −3.3 (3)

N3—C5—C6—N2 0.3 (3) N1i—Zn1—N2—C6 92.6 (3)

C9—C5—C6—N2 −179.4 (4) N1—Zn1—N2—C6 −177.3 (3)

N3—C5—C6—C10 −179.3 (3) N2—C4—N3—C5 0.8 (3)

C9—C5—C6—C10 1.1 (7) C3—C4—N3—C5 178.8 (3)

N6—C11—C12—N5 2.1 (4) C6—C5—N3—C4 −0.6 (3)

C14—C11—C12—N5 −178.6 (4) C9—C5—N3—C4 179.0 (4)

N6—C11—C12—C15 −177.6 (3) N1—C3—N4—C2 0.4 (3)

C14—C11—C12—C15 1.8 (7) C4—C3—N4—C2 −177.6 (3)

N4—C3—N1—C1 0.0 (3) C1—C2—N4—C3 −0.7 (4)

C4—C3—N1—C1 178.3 (3) C8—C2—N4—C3 177.0 (4)

N4—C3—N1—Zn1 −173.5 (2) N6—C13—N5—C12 1.0 (3)

C4—C3—N1—Zn1 4.7 (3) C13i—C13—N5—C12 −178.9 (3)

C2—C1—N1—C3 −0.5 (4) N6—C13—N5—Zn1 −177.79 (18)

C7—C1—N1—C3 178.0 (3) C13i—C13—N5—Zn1 2.4 (4)

C2—C1—N1—Zn1 169.6 (3) C11—C12—N5—C13 −1.9 (4)

C7—C1—N1—Zn1 −11.9 (6) C15—C12—N5—C13 177.8 (3)

(8)

N1i—Zn1—N1—C3 92.6 (2) C15—C12—N5—Zn1 −4.1 (5)

N2—Zn1—N1—C3 −2.3 (2) N5i—Zn1—N5—C13 −0.8 (3)

N2i—Zn1—N1—C3 170.7 (2) N1i—Zn1—N5—C13 171.2 (2)

N5i—Zn1—N1—C1 95.8 (4) N2—Zn1—N5—C13 −93.4 (2)

N1i—Zn1—N1—C1 −77.1 (3) N2i—Zn1—N5—C13 92.9 (2)

N2—Zn1—N1—C1 −172.0 (4) N5i—Zn1—N5—C12 −178.9 (4)

N2i—Zn1—N1—C1 1.0 (4) N1i—Zn1—N5—C12 −6.9 (3)

N3—C4—N2—C6 −0.6 (3) N2—Zn1—N5—C12 88.5 (3)

C3—C4—N2—C6 −178.8 (3) N2i—Zn1—N5—C12 −85.2 (3)

N3—C4—N2—Zn1 −178.7 (2) C12—C11—N6—C13 −1.4 (4)

C3—C4—N2—Zn1 3.1 (3) C14—C11—N6—C13 179.2 (4)

C5—C6—N2—C4 0.2 (3) N5—C13—N6—C11 0.3 (3)

C10—C6—N2—C4 179.8 (3) C13i—C13—N6—C11 −179.9 (4)

Symmetry code: (i) −x+1, −y+1, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N3—H3A···O1ii 0.86 2.01 2.852 (4) 167

N4—H4A···O3ii 0.86 2.01 2.818 (5) 156

N6—H6A···O2iii 0.86 2.03 2.849 (5) 157

N6—H6A···O3iii 0.86 2.60 3.276 (5) 136

C9—H9A···O3i 0.96 2.47 3.403 (7) 163

C9—H9B···O1iv 0.96 2.51 3.431 (7) 162

C10—H10C···O2v 0.96 2.46 3.235 (6) 138

Figure

Figure 1

References

Related documents

• Taxpayers subject to the provisions of Title II of the Income Tax Law (ITL) which have declared taxable income of $644,599,005 or more in the immediately preceding tax

If for any reason the Artist is unable to take possession of sold Works and arrange transportation to the non-local buyer, the Artist and Buyer may make arrangements with OSA

• Our goal is to make Pittsburgh Public Schools First Choice by offering a portfolio of quality school options that promote high student achievement in the most equitable and

Parr and Shanks [18] classify ERP implementations to three broad categories (comprehensive, middle road, and vanilla) and according to them ERP implementations differ with respect

q w e r t y Description Rod cover Head cover Cylinder tube Piston rod Piston Bushing Cushion valve Snap ring Tie rod Tie rod nut Wear rod Rod end nut Back up O ring Rod seal Piston

Electron micrographs of mannonamide aggregates from water (a-e) or xylene (f): (a and b) details of aged fiber aggregates of D-mannonamide 2 negatively stained

During the thesis work, I measured six different parameters: the number of emergency processes, hash table entry number, caching replacement policy, cache entry

Comments This can be a real eye-opener to learn what team members believe are requirements to succeed on your team. Teams often incorporate things into their “perfect team