• No results found

Bis­(adeninium) hexa­chloro­stannate(IV) dichloride tetrahydrate

N/A
N/A
Protected

Academic year: 2020

Share "Bis­(adeninium) hexa­chloro­stannate(IV) dichloride tetrahydrate"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m1153–m1155 doi:10.1107/S1600536805015163 Bouacidaet al. (C

5H7N5)2[SnCl6]Cl24H2O

m1153

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Bis(adeninium) hexachlorostannate(IV)

dichloride tetrahydrate

Sofiane Bouacida,a,b* Hocine Merazig,bAdel Beghidjacand Chahrazed Beghidjac

aDe´partement de Chimie, Faculte´ des Sciences

et Sciences de l’Inge´nieur, Universite´ A. Mira de Be´jaia, Route Targua Ouzmour, 06000 Be´jaia, Algeria,bLaboratoire de Chimie Mole´culaire, du

Controˆle de l’Environnement et de Mesures Physico-Chimiques, Faculte´ des Sciences, De´partement de Chimie, Universite´ Mentouri, 25000 Constantine, Algeria, andcLaboratoire DECMET, ILB, Universite´ Louis Pasteur Strasbourg I, 4 rue Blaise Pascal, 67000 Strasbourg, France

Correspondence e-mail: bouacida_sofiane@yahoo.fr

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.027

wRfactor = 0.061

Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The structure of the title compound, (C5H7N5)2[SnCl6]Cl2 -4H2O, can be described as alternating layers of C5H7N5

2+ and [SnCl6]

2

ions along the b axis, the SnIVatom lying on a

twofold axis. The chloride ions are located between the organic entities, forming hydrogen bonds with the N atoms and water molecules. Layers of adeninium cations and hexachlorostannate anions are linked by anion–cation, cation–water and water–water hydrogen bonds. This three-dimensional complex network of hydrogen bonds ensures the cohesion of the ionic structure.

Comment

Studies of organic–inorganic hybrid materials have received great attention in recent years, because of their ionic, elec-trical, magnetic and optical properties (Hill, 1998; Kaganet al.,

1999; Raptopoulou et al., 2002). Adenine is one of the

precursors of DNA and RNA nucleotides, and the adeninium cation (1+ or 2+) is known to form a variety of inorganic salts, such as chloride (Kistenmacher & Shigematsu, 1974), bromide (Langer & Huml, 1978a), bistriiodide (Cheng et al., 2002),

sulfate (Langer & Huml, 1978b), phosphate (Langer et al.,

1979) and nitrate (Hingerty et al., 1981; Bendjeddou et al.,

2003; Zelenˇa´ket al., 2004).

In the present study, we present a new organic–inorganic hybrid compound, (I), based on tin and adenine, and examine the hydrogen bonding in the crystal structure.

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. Two imino groups of the adenine base are protoned at N1 and N7, as reported previously for the sulfate and dinitrate. The internal angles at N1 and N7 [C6—

N1—C2 = 123.8 (2) and C8—N7—C5 = 107.4 (2)] have

increased from the values of 119.8 and 104.4 reported in

unprotonated adenine (Voet & Rich, 1970). The imidazole and pyridine rings of the adeninium ion are coplanar.

In (I), the adeninium cations form layers parallel to the

(010) plane. The SnIVatom, lying on a twofold axis, is

six-coordinated and forms a quasi-regular octahedral

arrange-ment (Bouacida et al., 2005). The [SnCl6]2 octahedra form

anionic sheets parallel to the (010) plane, which alternate with

the cationic layers along thebaxis. The tilted octahedra and

(2)

layered packing are illustrated in Fig. 2. The crystal packing is mostly governed by classical hydrogen bonds (Fig. 3). Atoms N1, N6, N7, N9 and C8 of the adeninium ion participate in the

formation of intermolecular and intramolecular (N—H Cl,

N—H O and C—H Cl) hydrogen bonds (Table 2). In this

structure, we observe three types of hydrogen bonds, viz.

cation–anion, cation–water and water–water, which form a three-dimensional network.

Experimental

The title compound was crystallized by slow evaporation of an aqueous solution of adenine, tin(II) oxalate and hydrochloric acid in a 10:5:1 molar ratio. Colourless prismatic crystals were obtained after one month and were manually separated for single-crystal X-ray analysis.

Crystal data

(C5H7N5)2[SnCl6]Cl24H2O

Mr= 748.67

Orthorhombic,Fdd2

a= 18.033 (5) A˚

b= 39.553 (5) A˚

c= 7.265 (5) A˚

V= 5182 (4) A˚3

Z= 8

Dx= 1.919 Mg m3

MoKradiation

Cell parameters from 3316 reflections

= 2.1–30.0

= 1.85 mm1

T= 295 K

Prism, colourless

0.070.060.05 mm

Data collection

Nonius KappaCCD diffractometer

’scans, and!scans withoffsets

Absorption correction: none 10 885 measured reflections 3316 independent reflections 3155 reflections withI> 2(I)

Rint= 0.045

max= 30.0

h=25!25

k=55!37

l=10!6

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.027

wR(F2) = 0.061

S= 1.09

3316 reflections 191 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2(F

o2) + (0.0293P)2 + 1.3984P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.95 e A˚3

min=1.06 e A˚3

Extinction correction:SHELXL97

Extinction coefficient: 0.00075 (5) Absolute structure: Flack (1983),

with 1278 Friedel pairs

Flack parameter =0.026 (17)

Table 1

Selected geometric parameters (A˚ ,).

Sn—Cl1 2.4419 (12)

Sn—Cl2 2.4252 (18)

Sn—Cl3 2.4172 (12)

Cl1—Sn—Cl2 90.13 (3)

Cl1—Sn—Cl3 176.64 (4)

Cl2—Sn—Cl3 90.73 (3)

C6—N1—C2 123.8 (2)

C8—N7—C5 107.4 (2)

metal-organic papers

m1154

Bouacidaet al. (C

[image:2.610.61.291.68.232.2]

5H7N5)2[SnCl6]Cl24H2O Acta Cryst.(2005). E61, m1153–m1155 Figure 2

[image:2.610.314.567.72.226.2]

Packing diagram of (I), viewed down thecaxis. H atoms, Clions and water molecules have been omitted.

Figure 3

Part of the three-dimensional network of hydrogen bonds, shown as thin dashed lines.

Figure 1

ORTEP-3 (Farrugia, 1997) drawing of (I) with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (vii)3

[image:2.610.50.297.281.582.2]
(3)
[image:3.610.46.296.110.218.2]

Table 2

Hydrogen-bonding geometry (A˚ ,).

D—H A D—H H A D A D—H A

N1—H1 Cl4i

0.86 2.50 3.273 (2) 150

O1W—H1W O2Wii

0.71 (6) 2.08 (6) 2.782 (5) 172 (6)

O2W—H3W Cl4 0.88 (4) 2.49 (4) 3.337 (4) 162 (3)

O2W—H4W N3iii

0.74 (6) 2.53 (6) 3.189 (5) 148 (3)

N6—H5 Cl1iv 0.82 (3) 2.76 (3) 3.100 (3) 107 (2)

N6—H5 O1W 0.82 (3) 2.21 (3) 2.993 (5) 159 (3)

N6—H6 Cl4i

0.92 (4) 2.33 (4) 3.205 (4) 160 (3)

N7—H7 O1W 0.82 (3) 2.01 (3) 2.766 (4) 154 (3)

N9—H9 Cl4v

0.92 (4) 2.17 (4) 3.089 (3) 176 (5)

C8—H8 Cl1vi

0.89 (3) 2.63 (3) 3.410 (4) 148 (3)

Symmetry codes: (i)x1 4;

1 4y;

3

4þz; (ii) 1x; 1 2y;

1

2þz; (iii)x 1 4;

1 4y;z

1 4; (iv)

x1 2;y;z

1 2; (v)

1 4þx;

1 4y;

1

4þz; (vi)x;y;z1.

All H atoms except H1 were located in a difference Fourier map and refined isotropically. Atom H1 was placed at a calculated posi-tion, and refined using a riding model with N—H = 0.86 A˚ and Uiso(H) = 1.2Ueq(N).

Data collection:KappaCCD Reference Manual(Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction:DENZOandSCALEPACK; program(s) used to solve structure:SIR2002(Burlaet al., 2003); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997), PLUTON (Spek, 2003) and ATOMS (Dowty, 1995); software used to prepare material for publication: WinGX(Farrugia, 1999).

The authors thank Hane´ne Bensmira (Faculte´ des Sciences, De´partement de Physique, Universite´ Mentouri de

Con-stantine 25000 ConCon-stantine, Algeria) for his technical assis-tance.

References

Bendjeddou, L., Cherouana, A., Dahaoui, S., Benali-Cherif, N. & Lecomte, C.

(2003).Acta Cryst.E59, o649–o651.

Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005).Acta Cryst.E61, m577–m579.

Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003).J. Appl. Cryst.36, 1103.

Cheng, Y. J.,Wang, Z. M., Liao, C. S. & Yan, C. (2002).New J. Chem.26, 1360– 1364.

Dowty, E. (1995). ATOMS. Shape Software, 521 Hidden Valley Road,

Kingsport, TN 37663, USA.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Hill, C. L. (1998).Chem. Rev.98, 1–2.

Hingerty, B. E., Einstein, J. R. & Wei, C. H. (1981).Acta Cryst.B37, 140–

147.

Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. (1999).Science,286, 945– 947.

Kistenmacher, T. J. & Shigematsu, T. (1974).Acta Cryst.B30, 166–168. Langer, V. & Huml, K. (1978a).Acta Cryst.B34, 1881–1884.

Langer, V. & Huml, K. (1978b).Acta Cryst.B34, 1157–1163.

Langer, V., Huml, K. & Zachova, J. (1979).Acta Cryst.B35, 1148–1152.

Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft The

Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Raptopoulou, C. P., Terzis, A., Mousdis, G. A. & Papavassiliou, G. C. (2002).Z. Naturforsch. Teil B,57, 645–650.

Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Voet, D. & Rich, A. (1970).Prog. Nucleic Acid Res. Mol. Biol.10, 183–265. Zelenˇa´k, V., Vargov´, Z. & Cı´sarova´, I. (2004).Acta Cryst.E60, o742–o744.

metal-organic papers

Acta Cryst.(2005). E61, m1153–m1155 Bouacidaet al. (C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, m1153–m1155

supporting information

Acta Cryst. (2005). E61, m1153–m1155 [https://doi.org/10.1107/S1600536805015163]

Bis(adeninium) hexachlorostannate(IV) dichloride tetrahydrate

Sofiane Bouacida, Hocine Merazig, Adel Beghidja and Chahrazed Beghidja

(I)

Crystal data

(C5H7N5)2[SnCl6]Cl2·4H2O Mr = 748.67

Orthorhombic, Fdd2 Hall symbol: F 2 -2d a = 18.033 (5) Å b = 39.553 (5) Å c = 7.265 (5) Å V = 5182 (4) Å3 Z = 8

F(000) = 2960 Dx = 1.919 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3316 reflections θ = 2.1–30.0°

µ = 1.85 mm−1 T = 295 K Prism, colorless 0.07 × 0.06 × 0.05 mm

Data collection

Nonius KappaCCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ scans, and ω scans with κ offsets 10885 measured reflections 3316 independent reflections

3155 reflections with I > 2σ(I) Rint = 0.045

θmax = 30.0°, θmin = 2.1° h = −25→25

k = −55→37 l = −10→6

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.027 wR(F2) = 0.061 S = 1.09 3316 reflections 191 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0293P)2 + 1.3984P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.95 e Å−3 Δρmin = −1.06 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.00075 (5)

Absolute structure: Flack (1983), 1278 Friedel pairs

Absolute structure parameter: −0.026 (17)

Special details

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, m1153–m1155

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Sn 0.7500 0.2500 0.71310 (4) 0.02496 (7) Cl2 0.67862 (3) 0.198046 (16) 0.71907 (13) 0.03666 (15) Cl1 0.82991 (3) 0.228296 (18) 0.95737 (12) 0.03362 (14) Cl3 0.66748 (4) 0.27360 (2) 0.48454 (13) 0.04242 (18) Cl4 0.60547 (4) 0.11976 (2) −0.10760 (12) 0.04137 (18) O2W 0.50065 (16) 0.18894 (7) −0.0693 (7) 0.0637 (11) N1 0.52165 (11) 0.12873 (5) 0.4613 (4) 0.0319 (5)

H1 0.4811 0.1209 0.5064 0.038*

N6 0.46845 (13) 0.18193 (7) 0.4505 (5) 0.0389 (6) N9 0.70636 (12) 0.16417 (6) 0.2408 (3) 0.0326 (5) N3 0.64387 (12) 0.11504 (6) 0.3707 (4) 0.0344 (6) O1W 0.50308 (15) 0.24765 (9) 0.2653 (5) 0.0486 (8) N7 0.61720 (13) 0.20094 (6) 0.2601 (3) 0.0312 (5) C2 0.58002 (14) 0.10712 (7) 0.4407 (5) 0.0352 (6) C5 0.59110 (13) 0.17100 (7) 0.3293 (4) 0.0259 (5) C6 0.52393 (13) 0.16184 (7) 0.4147 (4) 0.0275 (5) C4 0.64686 (14) 0.14762 (7) 0.3167 (4) 0.0271 (5) C8 0.68665 (15) 0.19588 (8) 0.2079 (5) 0.0363 (6) H2 0.5737 (16) 0.0838 (8) 0.482 (5) 0.032 (8)* H9 0.752 (2) 0.1548 (9) 0.214 (10) 0.068 (11)* H5 0.4708 (17) 0.2020 (8) 0.421 (5) 0.030 (9)* H8 0.7170 (18) 0.2118 (9) 0.168 (5) 0.037 (8)* H6 0.4314 (19) 0.1719 (9) 0.518 (5) 0.041 (10)* H4W 0.465 (3) 0.1826 (14) −0.031 (10) 0.091 (19)* H3W 0.536 (2) 0.1742 (11) −0.089 (6) 0.053 (12)* H7 0.5944 (16) 0.2188 (9) 0.252 (5) 0.033 (9)* H2W 0.462 (4) 0.250 (2) 0.214 (17) 0.15 (3)* H1W 0.506 (3) 0.2634 (14) 0.311 (9) 0.08 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, m1153–m1155

N9 0.0238 (9) 0.0364 (12) 0.0377 (13) −0.0008 (9) 0.0075 (9) −0.0011 (11) N3 0.0278 (11) 0.0314 (13) 0.0441 (15) 0.0046 (10) 0.0028 (10) 0.0038 (11) O1W 0.0413 (14) 0.0381 (15) 0.066 (2) 0.0033 (9) 0.0001 (10) 0.0004 (16) N7 0.0301 (11) 0.0252 (11) 0.0383 (15) 0.0001 (9) 0.0048 (9) 0.0022 (10) C2 0.0316 (12) 0.0276 (13) 0.0466 (19) −0.0019 (10) −0.0013 (12) 0.0056 (14) C5 0.0235 (11) 0.0259 (13) 0.0283 (13) −0.0005 (9) 0.0021 (9) −0.0017 (10) C6 0.0211 (10) 0.0323 (14) 0.0291 (14) −0.0022 (10) −0.0001 (9) −0.0020 (10) C4 0.0240 (11) 0.0284 (13) 0.0288 (13) −0.0006 (10) 0.0010 (9) −0.0015 (11) C8 0.0290 (12) 0.0387 (15) 0.0411 (16) −0.0062 (11) 0.0074 (14) 0.0024 (15)

Geometric parameters (Å, º)

Sn—Cl1 2.4419 (12) N9—C8 1.325 (4)

Sn—Cl1i 2.4419 (12) N9—C4 1.373 (3)

Sn—Cl2i 2.4251 (18) N9—H9 0.93 (4)

Sn—Cl2 2.4252 (18) N3—C2 1.297 (4)

Sn—Cl3 2.4172 (12) N3—C4 1.348 (4)

Sn—Cl3i 2.4172 (12) O1W—H2W 0.83 (9)

O2W—H4W 0.75 (5) O1W—H1W 0.71 (6)

O2W—H3W 0.87 (4) N7—C8 1.324 (4)

N1—C6 1.353 (3) N7—C5 1.370 (3)

N1—C2 1.364 (3) N7—H7 0.82 (3)

N1—H1 0.8600 C2—H2 0.98 (3)

N6—C6 1.304 (3) C5—C4 1.369 (4)

N6—H5 0.82 (3) C5—C6 1.409 (3)

N6—H6 0.92 (4) C8—H8 0.88 (4)

Cl1—Sn—Cl2 90.13 (3) C8—N9—H9 125 (3)

Cl1i—Sn—Cl1 86.77 (6) C4—N9—H9 126 (3)

Cl1—Sn—Cl3 176.64 (4) C2—N3—C4 112.4 (2)

Cl2i—Sn—Cl1i 90.13 (3) H2W—O1W—H1W 101 (7)

Cl2—Sn—Cl1i 88.38 (3) C8—N7—C5 107.4 (2)

Cl2i—Sn—Cl1 88.38 (3) C8—N7—H7 126 (2)

Cl2i—Sn—Cl2 177.95 (5) C5—N7—H7 127 (2)

Cl3—Sn—Cl1i 90.01 (5) N3—C2—N1 125.2 (3)

Cl3i—Sn—Cl1i 176.64 (4) N3—C2—H2 116.8 (17) Cl3i—Sn—Cl1 90.01 (5) N1—C2—H2 118.0 (18)

Cl3—Sn—Cl2i 90.68 (3) C4—C5—N7 107.9 (2)

Cl3i—Sn—Cl2i 90.73 (3) C4—C5—C6 119.1 (3) Cl3i—Sn—Cl2 90.68 (3) N7—C5—C6 132.8 (2)

Cl2—Sn—Cl3 90.73 (3) N6—C6—N1 121.1 (2)

Cl3—Sn—Cl3i 93.23 (6) N6—C6—C5 126.2 (3)

H4W—O2W—H3W 118 (5) N1—C6—C5 112.7 (2)

C6—N1—C2 123.8 (2) N3—C4—C5 126.6 (2)

C6—N1—H1 118.1 N3—C4—N9 127.2 (2)

C2—N1—H1 118.1 C5—C4—N9 106.2 (2)

C6—N6—H5 120 (2) N7—C8—N9 110.2 (3)

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, m1153–m1155

H5—N6—H6 126 (3) N9—C8—H8 125 (2)

C8—N9—C4 108.3 (2)

Sn—Cl2—Cl1—Cl3 2.28 (2) O1W—N7—C2—C5 −1.9 (7) Cl2—Cl1—Cl3—Cl4 −38.16 (2) N7—C2—C5—C6 −175.0 (8) Cl1—Cl3—Cl4—O2W 157.59 (9) C2—C5—C6—C4 3.1 (3) Cl3—Cl4—O2W—N1 −62.67 (7) C5—C6—C4—C8 3.9 (3)

Cl4—O2W—N1—H1 −118.9 C6—C4—C8—H2 1 (5)

O2W—N1—H1—N6 −52.6 H7—H5—H8—H6 −167 (6)

N1—H1—N6—N7 4.5 H5—H8—H6—H4W 74 (3)

H1—N6—N7—N3 −4.5 H8—H6—H4W—H3W 33 (3)

N6—N7—N3—O1W 8.30 (17) H6—H4W—H3W—H7 −47 (3)

N7—N3—O1W—N7 0.0 H4W—H3W—H7—H2W −25 (4)

N3—O1W—N7—C2 −1.83 (11) H3W—H7—H2W—H1W −168 (6)

Symmetry code: (i) −x+3/2, −y+1/2, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N1—H1···Cl4ii 0.86 2.50 3.273 (2) 150

O1W—H1W···O2Wiii 0.71 (6) 2.08 (6) 2.782 (5) 172 (6) O2W—H3W···Cl4 0.88 (4) 2.49 (4) 3.337 (4) 162 (3) O2W—H4W···N3iv 0.74 (6) 2.53 (6) 3.189 (5) 148 (3) N6—H5···Cl1v 0.82 (3) 2.76 (3) 3.100 (3) 107 (2) N6—H5···O1W 0.82 (3) 2.21 (3) 2.993 (5) 159 (3) N6—H6···Cl4ii 0.92 (4) 2.33 (4) 3.205 (4) 160 (3) N7—H7···O1W 0.82 (3) 2.01 (3) 2.766 (4) 154 (3) N9—H9···Cl4vi 0.92 (4) 2.17 (4) 3.089 (3) 176 (5) C8—H8···Cl1vii 0.89 (3) 2.63 (3) 3.410 (4) 148 (3)

Figure

Figure 2
Table 2Hydrogen-bonding geometry (A˚ , �).

References

Related documents

This study investigates the influence of the skip fire cycle method for applied CDA to small displacement engine on specific fuel consumption and exhaust emissions

In the study presented here, we selected three rep- resentative pathogenic PV mAbs cloned from 3 different PV patients: F706, an anti-Dsg3 IgG4 isolated by heterohybridoma, F779,

This result is in contrast with, Thapa & Pattanshetty, (2016) in study titled '' Effect of chair aerobics as low-intensity exercise training on heart rate, blood pressure

Almost half of the confirmed COVID-19 cases detected so far in the United Kingdom are part of a large cluster of 13 British nationals who tested positive for SARS-CoV-2 in the

pneumoniae in both

The total coliform count from this study range between 25cfu/100ml in Joju and too numerous to count (TNTC) in Oju-Ore, Sango, Okede and Ijamido HH water samples as

We experimentally test RSMDT algorithm in terms of classification accuracy, tree size and computing time, using the whole 36 UCI Machine Learning Repository data sets selected by

Use of Enums to Delineate Possible Parameter Values.. Generating Random