• No results found

5 Methyl 2,3 di­phenyl 1 benzo­furan

N/A
N/A
Protected

Academic year: 2020

Share "5 Methyl 2,3 di­phenyl 1 benzo­furan"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o2335–o2336 doi:10.1107/S1600536806017454 Choiet al. C

21H16O

o2335

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Methyl-2,3-diphenyl-1-benzofuran

Hong Dae Choi,aPil Ja Seo,a Byeng Wha Sonband Uk Leeb*

a

Department of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-ku, Busan 614-714, Republic of Korea, andbDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon-3dong Nam-ku, Busan 608-737, Republic of Korea

Correspondence e-mail: uklee@pknu.ac.kr

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C–C) = 0.005 A˚

Rfactor = 0.083

wRfactor = 0.184

Data-to-parameter ratio = 17.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 11 May 2006 Accepted 11 May 2006

#2006 International Union of Crystallography

All rights reserved

The title compound, C21H16O, was synthesized by the Lewis

acid-catalysed reaction of p-cresol with 2-chloro-2-methyl-sulfanyl-2-phenylacetophenone. The 1-benzofuran ring system is almost planar. The structure is stabilized by —CH2—H

interactions.

Comment

1-Benzofuran derivatives occur widely in synthetic substances, as well as in natural products, and numerous examples are known to exhibit interesting pharmacological properties (Ward, 1997; Howlett et al., 1999). The chemistry of 1-benzofuran ring derivatives has been extensively studied and discussed elsewhere (Cagniant & Cagniant, 1975). Although there are several different methods for preparing the 2,3-diphenyl-1-benzofuran analogue (Koenigkramer & Zimmer, 1980; Brady & Giang, 1986; Morrison & Musgrave, 2002), the crystal structures of these compounds have not been investi-gated.

With our ongoing interest in the syntheses and structures of 1-benzofuran derivatives (Choiet al., 2001, 2003, 2006; Seoet al., 2004), we report here the crystal structure of the title compound, (I) (Fig. 1 and Table 1), which was directly prepared by the one-pot reaction ofp-cresol with 2-chloro-2-methylsulfanyl-2-phenylacetophenone in the presence of a Lewis acid.

The 1-benzofuran ring system A (O/C1–C4/C17–C20) is planar with a puckering amplitudeQT= 0.038 (1) A˚ (Cremer

& Pople, 1975). The dihedral angles between the planar rings

B(C5–C10),C(C11–C16) and Aare A/B= 30.9 (1),A/C=

57.95 (9)andB/C= 63.43 (9).

The packing of the molecules (Fig. 2) is stabilized by —CH2—H interations between adjacent molecules, with a

—C21H2—H21C Cg i

distance of 2.99 A˚ [Symmery code: (i)

x+ 1,y,z;Cgis the centroid of the C1–C4/O ring]. As a result of the conformational hindrance of the two phenyl rings, no aromatic–stacking interactions were found in (I).

Experimental

(2)

Friedel–Crafts reaction intermediater under Lewis acid conditions (Choiet al., 2001). Crystals suitable for X-ray analysis were grown by slow evaporation of a chloroform solution.

Crystal data

C21H16O

Mr= 284.34

Triclinic,P1

a= 6.047 (1) A˚

b= 7.591 (2) A˚

c= 17.112 (3) A˚

= 94.46 (3) = 94.22 (3) = 98.86 (3)

V= 770.8 (3) A˚3

Z= 2

Dx= 1.225 Mg m 3

MoKradiation

= 0.07 mm 1

T= 298 (2) K Plate, colorless 0.620.580.21 mm

Data collection

Stoe Stadi-4 diffractometer

!/2scans

Absorption correction: none 3532 measured reflections 3532 independent reflections

1778 reflections withI> 2(I)

max= 27.5

3 standard reflections frequency: 60 min intensity decay: 3.2%

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.083

wR(F2) = 0.184

S= 1.19 3532 reflections 200 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0474P)2

+ 0.194P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.21 e A˚ 3

min= 0.22 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

O—C4 1.380 (4) O—C1 1.398 (3)

C1—C5 1.460 (4) C2—C11 1.479 (4) C4—O—C1 106.0 (2)

C2—C1—O 110.8 (3) C2—C1—C5 134.3 (3)

O—C1—C5 114.8 (3) C1—C2—C11 127.9 (3)

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 A˚ for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, withUiso(H) =xUeq(C), wherex= 1.2 for aromatic H andx= 1.5 for methyl H atoms.

Data collection: STADI4 (Stoe & Cie, 1996); cell refinement: STADI4; data reduction:X-RED32(Stoe & Cie, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:ORTEP-3(Farrugia, 1997) andDIAMOND(Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

References

Brady, W. T. & Giang, Y. F. (1986).J. Org. Chem.51, 2145–2147.

Brandenburg, K. (1998).DIAMOND. Crystal Impact GbR, Bonn, Germany. Cagniant, P. & Cagniant, D. (1975).Adv. Heterocycl. Chem.18, 337–486.

Choi, H. D., Kang, B. W., Seo, P. J., Son, B. W. & Lee, U. (2006).Acta Cryst.

E62, o2092–o2094.

Choi, H. D., Seo, P. J. & Son, B. W. (2001).J. Korean Chem. Soc.45, 500–504. Choi, H. D., Seo, P. J., Son, B. W. & Kang, B. W. (2003).Arch. Pharm. Res.26,

985–989.

Cremer, D. & Pople, J. A. (1975).J. Am. Chem. Soc.97, 1354–1358. Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999).

Biochem. J.340, 283–289.

Koenigkramer, R. E. & Zimmer, H. (1980).J. Org. Chem.45, 3994–3998. Morrison, B. J. & Musgrave, O. C. (2002).Tetrahedron,58, 4255–4260. Seo, P. J., Choi, H. D. & Son, B. W. (2004).Arch. Pharm. Res.27, 1189–1193. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

Go¨ttingen, Germany.

Stoe & Cie (1996).STADI4(Version 1.09) andX-RED32(Version 1.09). Stoe & Cie Gmbh, Hilpertstrasse 10, D64295 Darmstadt, Germany.

[image:2.610.314.566.69.260.2]

Ward, R. S. (1997).Nat. Prod. Rep.14, 43–74.

Figure 2

A packing diagram of (I). —CH2—H interactions are shown as dashed lines.Cgis the centroid of the C1–C4/O ring. [Symmetry codes: (i) x+ 1,y,z; (ii)x 1,y,z.]

Figure 1

[image:2.610.316.563.302.458.2]
(3)

supporting information

sup-1

Acta Cryst. (2006). E62, o2335–o2336

supporting information

Acta Cryst. (2006). E62, o2335–o2336 [https://doi.org/10.1107/S1600536806017454]

5-Methyl-2,3-diphenyl-1-benzofuran

Hong Dae Choi, Pil Ja Seo, Byeng Wha Son and Uk Lee

2,3-Diphenyl-5-methyl-1-benzofuran

Crystal data C21H16O

Mr = 284.34 Triclinic, P1 Hall symbol: -P 1 a = 6.047 (1) Å b = 7.591 (2) Å c = 17.112 (3) Å α = 94.46 (3)° β = 94.22 (3)° γ = 98.86 (3)° V = 770.8 (3) Å3

Z = 2 F(000) = 300 Dx = 1.225 Mg m−3

Mo radiation, λ = 0.71069 Å Cell parameters from 27 reflections θ = 9.6–10.7°

µ = 0.07 mm−1

T = 298 K Plate, colorless 0.62 × 0.58 × 0.21 mm

Data collection Stoe Stadi-4

diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω/2–θ scans

3532 measured reflections 3532 independent reflections 1778 reflections with I > 2σ(I)

Rint = 0.000

θmax = 27.5°, θmin = 2.4°

h = 0→7 k = −9→9 l = −22→22

3 standard reflections every 60 min intensity decay: 3.2%

Refinement Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.083

wR(F2) = 0.184

S = 1.19 3532 reflections 200 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0474P)2 + 0.194P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.21 e Å−3

Δρmin = −0.22 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O 0.4649 (4) 0.4985 (3) 0.36925 (12) 0.0560 (6)

C1 0.4028 (5) 0.5015 (4) 0.28908 (18) 0.0509 (8)

C2 0.5577 (5) 0.6132 (4) 0.25539 (17) 0.0487 (8)

C3 0.7339 (5) 0.6841 (4) 0.31637 (17) 0.0482 (8)

C4 0.6687 (5) 0.6106 (4) 0.38437 (19) 0.0533 (8)

C5 0.1958 (5) 0.3818 (4) 0.25961 (18) 0.0503 (8)

C6 0.0212 (6) 0.3422 (5) 0.3071 (2) 0.0609 (9)

H6 0.0354 0.3914 0.3590 0.073*

C7 −0.1738 (6) 0.2295 (5) 0.2772 (3) 0.0761 (11)

H7 −0.2900 0.2037 0.3093 0.091*

C8 −0.1974 (7) 0.1550 (5) 0.2001 (3) 0.0824 (13)

H8 −0.3296 0.0806 0.1802 0.099*

C9 −0.0244 (8) 0.1915 (5) 0.1531 (3) 0.0822 (12)

H9 −0.0389 0.1400 0.1015 0.099*

C10 0.1706 (6) 0.3041 (5) 0.1820 (2) 0.0681 (10)

H10 0.2862 0.3285 0.1495 0.082*

C11 0.5491 (5) 0.6617 (4) 0.17328 (17) 0.0466 (8)

C12 0.3739 (6) 0.7399 (5) 0.1423 (2) 0.0590 (9)

H12 0.2573 0.7588 0.1729 0.071*

C13 0.3707 (7) 0.7902 (5) 0.0667 (2) 0.0720 (11)

H13 0.2524 0.8434 0.0468 0.086*

C14 0.5389 (8) 0.7628 (5) 0.0206 (2) 0.0755 (12)

H14 0.5341 0.7962 −0.0306 0.091*

C15 0.7145 (7) 0.6863 (5) 0.0495 (2) 0.0705 (11)

H15 0.8295 0.6678 0.0181 0.085*

C16 0.7209 (6) 0.6361 (5) 0.12634 (19) 0.0590 (9)

H16 0.8411 0.5850 0.1462 0.071*

C17 0.9379 (5) 0.8009 (4) 0.31973 (18) 0.0510 (8)

H17 0.9833 0.8535 0.2750 0.061*

C18 1.0720 (5) 0.8379 (4) 0.3902 (2) 0.0560 (9)

C19 0.9968 (6) 0.7605 (5) 0.4569 (2) 0.0665 (10)

H19 1.0867 0.7870 0.5041 0.080*

C20 0.7943 (6) 0.6460 (5) 0.45594 (19) 0.0649 (10)

H20 0.7461 0.5961 0.5009 0.078*

C21 1.2956 (6) 0.9614 (5) 0.3946 (2) 0.0756 (11)

H21A 1.3154 1.0081 0.3446 0.113*

H21B 1.4149 0.8958 0.4076 0.113*

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, o2335–o2336

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O 0.0574 (14) 0.0658 (15) 0.0434 (13) 0.0019 (12) 0.0048 (10) 0.0115 (10)

C1 0.054 (2) 0.059 (2) 0.0412 (18) 0.0136 (16) 0.0025 (15) 0.0085 (15)

C2 0.0494 (19) 0.055 (2) 0.0416 (17) 0.0077 (15) 0.0015 (14) 0.0076 (14)

C3 0.052 (2) 0.0516 (19) 0.0420 (18) 0.0125 (16) 0.0021 (15) 0.0053 (14)

C4 0.052 (2) 0.057 (2) 0.051 (2) 0.0097 (16) −0.0002 (16) 0.0045 (16)

C5 0.0487 (19) 0.0486 (19) 0.053 (2) 0.0058 (15) 0.0008 (15) 0.0110 (16)

C6 0.054 (2) 0.058 (2) 0.071 (2) 0.0058 (18) 0.0054 (18) 0.0130 (18)

C7 0.059 (2) 0.065 (3) 0.105 (3) 0.003 (2) 0.010 (2) 0.021 (2)

C8 0.068 (3) 0.056 (2) 0.114 (4) −0.009 (2) −0.023 (3) 0.017 (2)

C9 0.093 (3) 0.064 (3) 0.077 (3) −0.013 (2) −0.017 (2) 0.002 (2)

C10 0.073 (3) 0.065 (2) 0.061 (2) −0.001 (2) 0.0009 (19) 0.0049 (19)

C11 0.0452 (18) 0.0460 (18) 0.0450 (18) −0.0017 (14) −0.0010 (14) 0.0048 (14)

C12 0.053 (2) 0.066 (2) 0.058 (2) 0.0071 (17) −0.0016 (16) 0.0117 (17)

C13 0.077 (3) 0.074 (3) 0.062 (2) 0.008 (2) −0.015 (2) 0.018 (2)

C14 0.099 (3) 0.072 (3) 0.048 (2) −0.005 (2) −0.008 (2) 0.0145 (19)

C15 0.082 (3) 0.076 (3) 0.050 (2) −0.003 (2) 0.020 (2) 0.0050 (19)

C16 0.057 (2) 0.063 (2) 0.055 (2) 0.0065 (17) 0.0035 (17) 0.0051 (17)

C17 0.0504 (19) 0.053 (2) 0.0501 (19) 0.0106 (16) 0.0033 (15) 0.0047 (15)

C18 0.052 (2) 0.055 (2) 0.059 (2) 0.0103 (16) −0.0053 (17) −0.0005 (17)

C19 0.065 (2) 0.080 (3) 0.050 (2) 0.012 (2) −0.0151 (17) −0.0025 (19)

C20 0.072 (3) 0.076 (3) 0.044 (2) 0.011 (2) −0.0034 (17) 0.0041 (18)

C21 0.059 (2) 0.076 (3) 0.086 (3) 0.004 (2) −0.012 (2) −0.004 (2)

Geometric parameters (Å, º)

O—C4 1.380 (4) C11—C16 1.387 (4)

O—C1 1.398 (3) C12—C13 1.378 (5)

C1—C2 1.356 (4) C12—H12 0.9300

C1—C5 1.460 (4) C13—C14 1.363 (5)

C2—C3 1.444 (4) C13—H13 0.9300

C2—C11 1.479 (4) C14—C15 1.367 (5)

C3—C4 1.386 (4) C14—H14 0.9300

C3—C17 1.399 (4) C15—C16 1.396 (5)

C4—C20 1.378 (4) C15—H15 0.9300

C5—C6 1.390 (4) C16—H16 0.9300

C5—C10 1.399 (4) C17—C18 1.388 (4)

C6—C7 1.384 (5) C17—H17 0.9300

C6—H6 0.9300 C18—C19 1.397 (5)

C7—C8 1.382 (6) C18—C21 1.516 (5)

C7—H7 0.9300 C19—C20 1.386 (5)

C8—C9 1.374 (6) C19—H19 0.9300

C8—H8 0.9300 C20—H20 0.9300

C9—C10 1.379 (5) C21—H21A 0.9600

C9—H9 0.9300 C21—H21B 0.9600

(6)

C11—C12 1.384 (4)

C4—O—C1 106.0 (2) C13—C12—C11 120.6 (4)

C2—C1—O 110.8 (3) C13—C12—H12 119.7

C2—C1—C5 134.3 (3) C11—C12—H12 119.7

O—C1—C5 114.8 (3) C14—C13—C12 120.8 (4)

C1—C2—C3 106.8 (3) C14—C13—H13 119.6

C1—C2—C11 127.9 (3) C12—C13—H13 119.6

C3—C2—C11 125.3 (3) C13—C14—C15 120.0 (3)

C4—C3—C17 118.9 (3) C13—C14—H14 120.0

C4—C3—C2 106.1 (3) C15—C14—H14 120.0

C17—C3—C2 135.1 (3) C14—C15—C16 119.8 (4)

C20—C4—O 126.0 (3) C14—C15—H15 120.1

C20—C4—C3 123.6 (3) C16—C15—H15 120.1

O—C4—C3 110.4 (3) C11—C16—C15 120.5 (3)

C6—C5—C10 118.6 (3) C11—C16—H16 119.8

C6—C5—C1 121.5 (3) C15—C16—H16 119.8

C10—C5—C1 119.9 (3) C18—C17—C3 119.5 (3)

C7—C6—C5 120.2 (4) C18—C17—H17 120.2

C7—C6—H6 119.9 C3—C17—H17 120.2

C5—C6—H6 119.9 C17—C18—C19 119.0 (3)

C8—C7—C6 120.6 (4) C17—C18—C21 120.2 (3)

C8—C7—H7 119.7 C19—C18—C21 120.8 (3)

C6—C7—H7 119.7 C20—C19—C18 123.0 (3)

C9—C8—C7 119.6 (4) C20—C19—H19 118.5

C9—C8—H8 120.2 C18—C19—H19 118.5

C7—C8—H8 120.2 C4—C20—C19 116.0 (3)

C8—C9—C10 120.5 (4) C4—C20—H20 122.0

C8—C9—H9 119.8 C19—C20—H20 122.0

C10—C9—H9 119.8 C18—C21—H21A 109.5

C9—C10—C5 120.5 (4) C18—C21—H21B 109.5

C9—C10—H10 119.7 H21A—C21—H21B 109.5

C5—C10—H10 119.7 C18—C21—H21C 109.5

C12—C11—C16 118.3 (3) H21A—C21—H21C 109.5

C12—C11—C2 120.9 (3) H21B—C21—H21C 109.5

Figure

Figure 1

References

Related documents

Most companies recruit for full-time and internship positions, but some indicate Co-Op as a recruiting priority, while not attending Professional Practice

[r]

• Taxpayers subject to the provisions of Title II of the Income Tax Law (ITL) which have declared taxable income of $644,599,005 or more in the immediately preceding tax

Electron micrographs of mannonamide aggregates from water (a-e) or xylene (f): (a and b) details of aged fiber aggregates of D-mannonamide 2 negatively stained

The distributor may seek to limit the producer’s right to terminate until distributor has recouped its advance (assuming it has given the producer an advance.) Another

• Storage node - node that runs Account, Container, and Object services • ring - a set of mappings of OpenStack Object Storage data to physical devices To increase reliability, you

In the previous sections, we dis- cuss the expectation that a neural network exploiting the fractional convolution should perform slightly worse than a pure binary (1-bit weights