• No results found

Aqua­(L aspartato κ2N,O)(2,2′ bi­pyridine κ2N,N)copper(II) penta­hydrate

N/A
N/A
Protected

Academic year: 2020

Share "Aqua­(L aspartato κ2N,O)(2,2′ bi­pyridine κ2N,N)copper(II) penta­hydrate"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2006). E62, m965–m967 doi:10.1107/S1600536806011585 Zhaoet al. [Cu(C

4H5NO4)(C10H8N2)(H2O)]5H2O

m965

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aqua(

L

-aspartato-

j

2

N

,

O

)(2,2

000

-bipyridine-j

2

N

,

N

)copper(II) pentahydrate

Hong-Jian Zhao,aMing-Xing Li,a* Min Shaob and Hong-Jiang Liua

a

Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, People’s Republic of China, andbResearch Center of

Analysis and Measurement, Shanghai University, Shanghai 200444, People’s Republic of China

Correspondence e-mail: mx_li@mail.shu.edu.cn

Key indicators

Single-crystal X-ray study

T= 273 K

Mean(C–C) = 0.003 A˚

Rfactor = 0.023

wRfactor = 0.063 Data-to-parameter ratio = 9.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 24 February 2006 Accepted 30 March 2006

#2006 International Union of Crystallography

All rights reserved

In the title compound, [Cu(C4H5NO4)(C10H8N2)(H2O)] -5H2O, the Cu

II

atom is coordinated by anN,O-bidentate l

-aspartate dianion, a bipyridine ligand and a water molecule in

a distorted square-pyramidal geometry. Intermolecular

hydrogen bonds involving the non-coordinated water mol-ecules help to consolidate the crystal packing.

Comment

There is great interest in the ability of amino acids to coor-dinate to metal ions containing hydrogen bonds in their complexes (Huet al., 2004). As a binary amino acid, aspartic acid is especially important from both a biological and a simple coordination point of view (Casellatoet al., 1991; Maet al., 2004). By hydrothermal synthesis, anl-aspartate–copper

complex [Cu(l-asp)(bipy)(H2O)]5H2O (l-asp is l-aspartate

and bipy is 2,20-bipyridine), (I), was prepared and its crystal structure is presented here. The asymmetric unit of (I) consists of a CuII ion, an l-aspartate dianion, a bipyridine ligand, a

coordinated water and five uncoordinated water molecules.

The molecular structure of (I) is shown in Fig. 1. The

coordination geometry around the CuII atom is

five-coord-inate distorted square-pyramidal. The l-aspartate dianion

(O1/N3) and bipyridine ligand (N1/N2) lie on the basal plane

and coordinate to the CuII ion, forming two five-membered

chelate rings. The apical position is occupied by a coordinated

water molecule (O5), with a Cu1—O5 distance of

2.2840 (15) A˚ (Table 1), slightly shorter than the coordinated water bond length (2.368 A˚ ) of the analogous complex [Cu(l

-asp)(bipy)(H2O)]3H2O (Brondinoet al., 1995; Antoliniet al., 1983).

An intramolecular hydrogen bond exists between O3 and N3 (Table 2), which causes the uncoordinated carboxylate group to bend markedly towards the amino group. The uncoordinated carboxylate O2 atom links to an uncoordinated water molecule, while the other uncoordinated carboxylate O

atom (O4) links to a neighboring l-aspartate ligand via an

(2)

Experimental

The title complex was synthesized by a hydrothermal synthesis method from a mixture ofl-aspartic acid (0.399 g, 3.0 mmol), CuCO3

(0.240 g, 2.0 mmol), 2,20-bipyridine (0.156 g, 1.0 mmol) and water

(30 ml) in a 40 ml Teflon-lined stainless steel reactor. The mixture was heated at 393 K for 2 d. After cooling to room temperature, dark-blue single crystals of (I) were obtained.

Crystal data

[Cu(C4H5NO4)(C10H8N2)-(H2O)]5H2O Mr= 458.91

Monoclinic,P21=c a= 9.0194 (3) A˚ b= 21.4430 (6) A˚ c= 10.0189 (3) A˚

= 93.088 (1)

V= 1934.9 (1) A˚3

Z= 4

Dx= 1.575 Mg m

3

MoKradiation

= 1.19 mm1 T= 273 (2) K Block, blue

0.200.100.08 mm

Data collection

Bruker SMART CCD area-detector diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.797,Tmax= 0.911

21692 measured reflections 3404 independent reflections 3100 reflections withI> 2(I) Rint= 0.022

max= 25.0

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.023 wR(F2) = 0.063 S= 1.06 3404 reflections 353 parameters

All H-atom parameters refined

w= 1/[2(F

o2) + (0.0343P)2 + 0.7615P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.25 e A˚ 3

min=0.24 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

C11—O2 1.237 (2)

C11—O1 1.274 (2)

C12—N3 1.478 (2)

C14—O3 1.242 (2)

C14—O4 1.259 (2)

Cu1—O1 1.9484 (12)

Cu1—N3 1.9722 (15)

Cu1—N1 1.9856 (14)

Cu1—N2 2.0130 (14)

Cu1—O5 2.2840 (15)

O2—C11—O1 123.55 (16)

O1—Cu1—N3 83.98 (6)

O1—Cu1—N1 93.66 (5)

N3—Cu1—N1 171.65 (6)

O1—Cu1—N2 164.41 (6)

N3—Cu1—N2 98.88 (6)

N1—Cu1—N2 81.30 (6)

O1—Cu1—O5 96.40 (6)

C12—N3—Cu1 108.31 (10)

C11—O1—Cu1 115.18 (11)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N3—H12 O4i

0.87 (2) 2.02 (2) 2.890 (2) 176.1 (19) O7—H24 O6i 0.82 (3) 1.98 (4) 2.799 (3) 173 (3) O7—H25 O4ii

0.77 (3) 1.89 (3) 2.652 (2) 173 (3) O10—H23 O8 0.84 (3) 1.96 (3) 2.762 (3) 159 (3) O10—H22 O3iii 0.79 (3) 1.95 (3) 2.738 (2) 170 (3) O8—H21 O7 0.63 (3) 2.21 (3) 2.836 (3) 170 (4) O8—H20 O2ii

0.82 (4) 1.99 (4) 2.814 (3) 178 (4) O9—H19 O10 0.73 (4) 2.05 (4) 2.779 (3) 172 (4) O9—H18 O8iv

0.85 (1) 2.51 (4) 3.287 (5) 153 (7) O6—H17 O9 0.87 (5) 1.93 (5) 2.789 (4) 166 (5) O6—H16 O2ii

0.67 (3) 2.14 (3) 2.799 (2) 170 (3) N3—H11 O10v 0.81 (2) 2.52 (2) 3.111 (2) 131.0 (17) N3—H11 O3 0.81 (2) 2.35 (2) 2.917 (2) 127.4 (17) O5—H10 O7iv

0.79 (3) 2.01 (3) 2.784 (2) 166 (2) O5—H9 O6vi

0.80 (3) 2.02 (3) 2.815 (3) 177 (3)

Symmetry codes: (i) x;yþ1

2;z12; (ii) x;y;z1; (iii) xþ1;y;z1; (iv)

x;yþ1

2;zþ12; (v)x1;yþ12;zþ12; (vi)xþ1;yþ1;zþ1.

The H atoms were identified in difference Fourier syntheses and refined freely.

metal-organic papers

m966

Zhaoet al. [Cu(C

[image:2.610.47.297.72.236.2]

4H5NO4)(C10H8N2)(H2O)]5H2O Acta Cryst.(2006). E62, m965–m967 Figure 1

[image:2.610.50.291.294.589.2]

The structure of (I). Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

(3)

Data collection:APEX2(Bruker, 2000); cell refinement:SAINT

(Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL(Sheldrick, 2000); software used to prepare material for publication:SHELXTL.

The project was supported by the Development Foundation of Shanghai Municipal Education Commission, China.

References

Antolini, L., Marcotriggiano, G., Menabue, L. & Pellacani, G. C. (1983).Inorg. Chem.22, 141–145.

Brondino, C. D., Calvo, R., Atria, A. M., Spodine, E. & Pena, O. (1995).Inorg. Chim. Acta,228, 261–266.

Bruker (2000).APEX2andSAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Casellato, U., Graziani, R., Bonomo, R. P. & Dibilio, A. J. (1991).J. Chem. Soc. Dalton Trans.pp. 23–31.

Hu, Z. Q., Xu, D. J., Xu, Y. Z., Wu, J. Y. & Chang, M. Y. (2004).Chin. J. Struct. Chem.23, 38–40.

Ma, L. F., Liang, F. P., Qin, H. C., Hu, R. X., Zhang, M. B. & Yu, K. B. (2004). Chin. J. Inorg. Chem.20, 1429–1432.

Sheldrick, G. M. (1996). SADABS. University of Go¨ttingen, Ger-many.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Sheldrick, G. M. (2000).SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic papers

Acta Cryst.(2006). E62, m965–m967 Zhaoet al. [Cu(C

(4)

supporting information

sup-1

Acta Cryst. (2006). E62, m965–m967

supporting information

Acta Cryst. (2006). E62, m965–m967 [https://doi.org/10.1107/S1600536806011585]

Aqua(

L

-aspartato-

κ

2

N

,

O

)(2,2

-bipyridine-

κ

2

N

,

N

)copper(II) pentahydrate

Hong-Jian Zhao, Ming-Xing Li, Min Shao and Hong-Jiang Liu

Aqua(L-aspartato-κ2N,O)(2,2-bipyridine-κ2N,N)copper(II) pentahydrate

Crystal data

[Cu(C4H5NO4)(C10H8N2)(H2O)]·5H2O Mr = 458.91

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 9.0194 (3) Å

b = 21.4430 (6) Å

c = 10.0189 (3) Å

β = 93.088 (1)°

V = 1934.9 (1) Å3 Z = 4

F(000) = 956

Dx = 1.575 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 5837 reflections

θ = 2.3–27.4°

µ = 1.19 mm−1 T = 273 K Block, blue

0.20 × 0.10 × 0.08 mm

Data collection

Bruker SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.797, Tmax = 0.911

21692 measured reflections 3404 independent reflections 3100 reflections with I > 2σ(I)

Rint = 0.022

θmax = 25.0°, θmin = 1.9° h = −10→10

k = −22→25

l = −11→11

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.023 wR(F2) = 0.063 S = 1.06 3404 reflections 353 parameters 1 restraint

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

All H-atom parameters refined

w = 1/[σ2(F

o2) + (0.0343P)2 + 0.7615P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.25 e Å−3

Δρmin = −0.24 e Å−3

Special details

(5)

supporting information

sup-2

Acta Cryst. (2006). E62, m965–m967

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is

used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.2834 (2) 0.54216 (9) 1.04546 (19) 0.0353 (4)

C2 0.2630 (2) 0.60181 (10) 1.0931 (2) 0.0422 (5)

C3 0.1498 (2) 0.63753 (10) 1.0363 (2) 0.0449 (5)

C4 0.0596 (2) 0.61347 (9) 0.9340 (2) 0.0397 (4)

C5 0.08520 (19) 0.55369 (8) 0.88975 (17) 0.0297 (4) C6 −0.00209 (19) 0.52279 (8) 0.77916 (17) 0.0303 (4) C7 −0.1235 (2) 0.54951 (11) 0.7105 (2) 0.0469 (5) C8 −0.1965 (3) 0.51606 (12) 0.6093 (2) 0.0534 (6) C9 −0.1480 (2) 0.45769 (11) 0.5779 (2) 0.0471 (5) C10 −0.0271 (2) 0.43364 (9) 0.6496 (2) 0.0391 (4) C11 0.39340 (18) 0.34863 (8) 1.00320 (17) 0.0302 (4) C12 0.35137 (18) 0.31592 (8) 0.87079 (17) 0.0271 (3) C13 0.3349 (2) 0.24565 (8) 0.88384 (19) 0.0296 (4) C14 0.22592 (19) 0.22565 (8) 0.98616 (17) 0.0300 (4) Cu1 0.21685 (2) 0.434252 (9) 0.867035 (19) 0.02695 (8)

H1 0.353 (2) 0.5168 (9) 1.0778 (19) 0.031 (5)*

H2 0.324 (3) 0.6152 (11) 1.160 (2) 0.053 (7)*

H3 0.137 (3) 0.6768 (12) 1.068 (2) 0.054 (6)*

H4 −0.014 (3) 0.6351 (11) 0.897 (2) 0.050 (6)*

H5 −0.154 (3) 0.5889 (12) 0.734 (2) 0.052 (6)*

H6 −0.280 (3) 0.5332 (13) 0.570 (3) 0.074 (8)*

H7 −0.196 (3) 0.4327 (10) 0.508 (3) 0.054 (7)*

H8 0.008 (2) 0.3932 (10) 0.632 (2) 0.044 (6)*

H9 0.404 (3) 0.5063 (14) 0.733 (3) 0.059 (8)*

H10 0.428 (3) 0.4529 (12) 0.678 (3) 0.051 (7)*

H11 0.147 (2) 0.3287 (10) 0.836 (2) 0.033 (6)*

H13 0.434 (2) 0.3241 (8) 0.8172 (18) 0.025 (4)*

H14 0.424 (2) 0.2274 (10) 0.908 (2) 0.042 (6)*

H15 0.304 (2) 0.2285 (9) 0.803 (2) 0.039 (5)*

H16 0.568 (3) 0.3841 (13) 0.240 (3) 0.053 (9)*

H17 0.685 (5) 0.377 (2) 0.301 (5) 0.16 (2)*

H19 0.885 (4) 0.3054 (19) 0.339 (4) 0.102 (14)*

H18 0.812 (8) 0.307 (3) 0.430 (6) 0.27 (4)*

H20 0.603 (4) 0.2469 (18) 0.115 (4) 0.110 (13)*

H21 0.615 (4) 0.1906 (16) 0.113 (3) 0.079 (12)*

H23 0.866 (4) 0.2227 (14) 0.174 (3) 0.080 (10)*

H22 0.997 (3) 0.2394 (13) 0.157 (3) 0.064 (9)*

H25 0.414 (3) 0.1274 (12) 0.027 (3) 0.056 (8)*

H24 0.515 (3) 0.1051 (14) −0.038 (3) 0.083 (10)*

(6)

supporting information

sup-3

Acta Cryst. (2006). E62, m965–m967

N2 0.04471 (16) 0.46506 (7) 0.74881 (14) 0.0300 (3) N3 0.21798 (17) 0.34646 (7) 0.80844 (16) 0.0274 (3) O1 0.34246 (15) 0.40355 (6) 1.01718 (12) 0.0363 (3) O2 0.47864 (15) 0.32287 (6) 1.08694 (13) 0.0412 (3) O3 0.13927 (15) 0.26540 (6) 1.02745 (15) 0.0435 (3) O4 0.23005 (16) 0.16948 (6) 1.02283 (14) 0.0441 (3) O5 0.40526 (18) 0.46956 (8) 0.74360 (17) 0.0463 (4) O6 0.6063 (3) 0.39998 (8) 0.28706 (18) 0.0540 (4) O7 0.4866 (2) 0.10876 (8) 0.03831 (18) 0.0480 (4) O8 0.6535 (3) 0.21492 (12) 0.1238 (3) 0.0993 (10) O9 0.8536 (4) 0.33075 (12) 0.3771 (3) 0.1023 (10) O10 0.9440 (2) 0.23383 (8) 0.21627 (17) 0.0490 (4)

H12 0.217 (2) 0.3420 (9) 0.722 (2) 0.038 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4

Acta Cryst. (2006). E62, m965–m967

Geometric parameters (Å, º)

C1—N1 1.337 (2) C12—H13 0.961 (19)

C1—C2 1.381 (3) C13—C14 1.520 (2)

C1—H1 0.88 (2) C13—H14 0.92 (2)

C2—C3 1.375 (3) C13—H15 0.92 (2)

C2—H2 0.89 (2) C14—O3 1.242 (2)

C3—C4 1.374 (3) C14—O4 1.259 (2)

C3—H3 0.91 (2) Cu1—O1 1.9484 (12)

C4—C5 1.380 (3) Cu1—N3 1.9722 (15)

C4—H4 0.87 (2) Cu1—N1 1.9856 (14)

C5—N1 1.350 (2) Cu1—N2 2.0130 (14)

C5—C6 1.481 (2) Cu1—O5 2.2840 (15)

C6—N2 1.348 (2) N3—H11 0.81 (2)

C6—C7 1.386 (3) N3—H12 0.87 (2)

C7—C8 1.380 (3) O5—H9 0.80 (3)

C7—H5 0.92 (2) O5—H10 0.79 (3)

C8—C9 1.368 (3) O6—H16 0.67 (3)

C8—H6 0.91 (3) O6—H17 0.87 (5)

C9—C10 1.373 (3) O7—H25 0.77 (3)

C9—H7 0.96 (2) O7—H24 0.82 (3)

C10—N2 1.339 (2) O8—H20 0.82 (4)

C10—H8 0.94 (2) O8—H21 0.63 (3)

C11—O2 1.237 (2) O9—H19 0.73 (4)

C11—O1 1.274 (2) O9—H18 0.846 (10)

C11—C12 1.530 (2) O10—H23 0.84 (3)

C12—N3 1.478 (2) O10—H22 0.79 (3)

C12—C13 1.521 (2)

N1—C1—C2 121.62 (19) C14—C13—H14 107.1 (13)

N1—C1—H1 115.0 (13) C12—C13—H14 110.9 (13)

C2—C1—H1 123.4 (13) C14—C13—H15 107.8 (13)

C3—C2—C1 118.88 (19) C12—C13—H15 110.2 (13)

C3—C2—H2 123.1 (15) H14—C13—H15 106.5 (18)

C1—C2—H2 118.0 (15) O3—C14—O4 124.64 (17)

C4—C3—C2 119.72 (19) O3—C14—C13 118.19 (15)

C4—C3—H3 121.6 (15) O4—C14—C13 117.17 (15)

C2—C3—H3 118.7 (15) O1—Cu1—N3 83.98 (6)

C3—C4—C5 119.1 (2) O1—Cu1—N1 93.66 (5)

C3—C4—H4 121.5 (15) N3—Cu1—N1 171.65 (6)

C5—C4—H4 119.4 (15) O1—Cu1—N2 164.41 (6)

N1—C5—C4 121.17 (17) N3—Cu1—N2 98.88 (6)

N1—C5—C6 114.44 (15) N1—Cu1—N2 81.30 (6)

C4—C5—C6 124.39 (17) O1—Cu1—O5 96.40 (6)

N2—C6—C7 121.10 (17) N3—Cu1—O5 98.01 (7)

N2—C6—C5 114.80 (15) N1—Cu1—O5 90.21 (6)

C7—C6—C5 124.10 (17) N2—Cu1—O5 98.36 (6)

(8)

supporting information

sup-5

Acta Cryst. (2006). E62, m965–m967

C8—C7—H5 121.7 (14) C1—N1—Cu1 125.23 (13)

C6—C7—H5 119.4 (15) C5—N1—Cu1 115.22 (11)

C9—C8—C7 119.91 (19) C10—N2—C6 119.00 (15)

C9—C8—H6 122.6 (18) C10—N2—Cu1 126.78 (12)

C7—C8—H6 117.4 (18) C6—N2—Cu1 114.18 (11)

C8—C9—C10 118.6 (2) C12—N3—Cu1 108.31 (10)

C8—C9—H7 122.4 (14) C12—N3—H11 107.0 (14)

C10—C9—H7 119.0 (14) Cu1—N3—H11 109.2 (14)

N2—C10—C9 122.55 (19) C12—N3—H12 109.6 (14)

N2—C10—H8 116.3 (13) Cu1—N3—H12 113.6 (14)

C9—C10—H8 121.1 (13) H11—N3—H12 109 (2)

O2—C11—O1 123.55 (16) C11—O1—Cu1 115.18 (11)

O2—C11—C12 119.94 (15) Cu1—O5—H9 113.4 (19)

O1—C11—C12 116.41 (14) Cu1—O5—H10 122.8 (18)

N3—C12—C13 113.23 (14) H9—O5—H10 110 (3)

N3—C12—C11 108.74 (13) H16—O6—H17 102 (4)

C13—C12—C11 113.60 (14) H25—O7—H24 103 (3)

N3—C12—H13 108.9 (10) H20—O8—H21 112 (4)

C13—C12—H13 108.2 (11) H19—O9—H18 94 (5)

C11—C12—H13 103.7 (11) H23—O10—H22 100 (3)

C14—C13—C12 114.03 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N3—H12···O4i 0.87 (2) 2.02 (2) 2.890 (2) 176.1 (19)

O7—H24···O6i 0.82 (3) 1.98 (4) 2.799 (3) 173 (3)

O7—H25···O4ii 0.77 (3) 1.89 (3) 2.652 (2) 173 (3)

O10—H23···O8 0.84 (3) 1.96 (3) 2.762 (3) 159 (3)

O10—H22···O3iii 0.79 (3) 1.95 (3) 2.738 (2) 170 (3)

O8—H21···O7 0.63 (3) 2.21 (3) 2.836 (3) 170 (4)

O8—H20···O2ii 0.82 (4) 1.99 (4) 2.814 (3) 178 (4)

O9—H19···O10 0.73 (4) 2.05 (4) 2.779 (3) 172 (4)

O9—H18···O8iv 0.85 (1) 2.51 (4) 3.287 (5) 153 (7)

O6—H17···O9 0.87 (5) 1.93 (5) 2.789 (4) 166 (5)

O6—H16···O2ii 0.67 (3) 2.14 (3) 2.799 (2) 170 (3)

N3—H11···O10v 0.81 (2) 2.52 (2) 3.111 (2) 131.0 (17)

N3—H11···O3 0.81 (2) 2.35 (2) 2.917 (2) 127.4 (17)

O5—H10···O7iv 0.79 (3) 2.01 (3) 2.784 (2) 166 (2)

O5—H9···O6vi 0.80 (3) 2.02 (3) 2.815 (3) 177 (3)

Figure

Figure 2

References

Related documents

(Bruker, 2001); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 1999); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 1999); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 2003); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 2002); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 1997); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 1999); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);

(Bruker, 2002); data reduction: SAINT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997);