• No results found

Aqua(1,10 phenanthroline)(thio­diglycolato)­cobalt(II)

N/A
N/A
Protected

Academic year: 2020

Share "Aqua(1,10 phenanthroline)(thio­diglycolato)­cobalt(II)"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

m568

Jian-Yi Wuet al. [Co(C

4H4O4S)(C12H8N2)(H2O)] doi:10.1107/S1600536805005076 Acta Cryst.(2005). E61, m568–m570

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aqua(1,10-phenanthroline)(thiodiglycolato)cobalt(II)

Jian-Yi Wu,aLin-Ming Xie,a Hong-Yin He,aXia Zhouaand Long-Guan Zhub*

aDepartment of Chemical Engineering, Jiaxing

College, Jiaxing 314001, People’s Republic of China, andbDepartment of Chemistry, Zhejiang

University, Hangzhou 310007, People’s Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C–C) = 0.004 A˚

Rfactor = 0.038

wRfactor = 0.091

Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title cobalt compound, [Co(C4H4O4S)(C12H8N2

)-(H2O)], the distorted octahedron around the Co atom is

formed by the O atom from a water molecule, two N atoms from the heterocycle, two carboxyl O atoms and an S atom from the dianion. Hydrogen bonds extend the structure into a two-dimensional network.

Comment

The S atom of thiodiglycolic acid may be coordinated to metal atoms. However, only a few metal–thiodiglycolate complexes have been reported (Bonomo et al., 1982; Baggioet al., 1996, 1999; Kopelet al., 2003; Grirraneet al., 2003).

In the title compound, (I), the coordination polyhedron around the Co atom can be described as a distorted octa-hedron consisting of two N-atom donors from a 1,10-phen-anthroline, one O atom from the water molecule and three donors from the thiodiglycolate ligand (Fig. 1 and Table 1). The flexible dicarboxylate dianion is converted to a rigid ligand when the S-atom donor coordinates to the CoIIatom, giving rise to the formation of two five-membered chelate rings. Both rings display a twist conformation. Each carboxyl group is coordinated in monodentate fashion to the cobalt centre. Both uncoordinated carboxyl O atoms form hydrogen bonds with water molecules, resulting in a two-dimensional hydrogen-bonding network (Fig. 2 and Table 2).

Experimental

A mixture of cobalt(II) acetate tetrahydrate (0.0747 g, 0.30 mmol), thiodiglycolic acid (0.0452 g, 0.30 mmol), 1,10-phenanthroline (0.0595 g, 0.30 mmol) and water (10 ml) was heated at 393 K for 24 h in a 20 ml Teflon-lined stainless steel autoclave. After cooling, blue block-shaped crystals of (I) were obtained.

(2)

Crystal data

[Co(C4H4O4S)(C12H8N2)(H2O)]

Mr= 405.28

Monoclinic, P21=n a= 8.0127 (9) A˚

b= 22.524 (3) A˚

c= 9.733 (1) A˚

= 113.420 (1)

V= 1611.9 (3) A˚3

Z= 4

Dx= 1.670 Mg m

3

MoKradiation Cell parameters from 3581

reflections

= 2.8–24.7 = 1.23 mm1

T= 295 (2) K Block, blue

0.140.140.09 mm

Data collection

Bruker SMART APEX area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2002)

Tmin= 0.784,Tmax= 0.898

18 142 measured reflections

3688 independent reflections 2997 reflections withI> 2(I)

Rint= 0.050 max= 27.5

h=10!10

k=29!29

l=12!12

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.038

wR(F2) = 0.091

S= 1.02 3688 reflections 232 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2

(Fo2) + (0.0432P)2

+ 0.4148P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.38 e A˚ 3

min=0.27 e A˚ 3

Table 1

Selected geometric parameters (A˚ ,).

Co1—O1 2.033 (2)

Co1—O3 2.038 (2)

Co1—O1W 2.084 (2)

Co1—N1 2.114 (2)

Co1—N2 2.149 (2)

Co1—S1 2.5191 (7)

O1—Co1—O3 94.78 (8)

O1—Co1—O1W 92.07 (8)

O3—Co1—O1W 166.26 (8)

O1—Co1—N1 91.64 (7)

O3—Co1—N1 100.60 (7)

O1W—Co1—N1 91.08 (7)

O1—Co1—N2 169.55 (7)

O3—Co1—N2 87.07 (7)

O1W—Co1—N2 88.34 (8)

N1—Co1—N2 77.91 (7)

O1—Co1—S1 80.51 (5)

O3—Co1—S1 81.51 (5)

O1W—Co1—S1 87.90 (5)

N1—Co1—S1 172.03 (5)

[image:2.610.95.247.76.291.2]

N2—Co1—S1 109.95 (5)

Table 2

Hydrogen-bonding geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1W—H1W1 O2i

0.84 (1) 1.93 (1) 2.764 (3) 170 (3)

O1W—H1W2 O4ii

0.85 (3) 1.82 (3) 2.662 (3) 179 (3)

Symmetry codes: (i)x1 2;

3 2y;z

1

2; (ii)x1;y;z.

The H atoms bonded to C atoms were positioned geometrically and included in the refinement using the riding-model approximation [C—H = 0.93 A˚ for CH and C—H = 0.97 A˚ for CH2, andUiso(H) = 1.2Ueq(C)]. The water H atoms were located in a difference Fourier map and refined with distance restraints of O—H = 0.85 (1) A˚ and with fixed isotropic displacement parameters ofUiso(H) = 0.05 A˚

2 . Data collection:SMART(Bruker, 2002); cell refinement:SAINT

(Bruker, 2002); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEP-3 for Windows(Farrugia, 1997); software used to prepare material for publication:WinGX(Farrugia, 1999).

We thank Professor Seik Weng Ng for his kind help in the single-crystal structure analysis and reference information and the National Natural Science Foundation of China (grant No. 50073019).

References

Baggio, R., Perec, M. & Garland, M. T. (1996).Acta Cryst.C52, 2457–2460. Baggio, R., Garland, M. T., Manzur, J. Pena, O., Perec, M., Spodine, E. & Vega,

A. (1999).Inorg. Chim. Acta,286, 74–79.

Bonomo, R. P., Rizzarelli, E., Bresciani-Pahor, N. & Nardin, G. (1982).J. Chem. Soc. Dalton Trans.pp. 681–685.

Bruker (2002).SMART,SAINTandSADABS.Bruker AXS Inc., Madison, Wisconsin, USA.

metal-organic papers

Acta Cryst.(2005). E61, m568–m570 Jian-Yi Wuet al. [Co(C

4H4O4S)(C12H8N2)(H2O)]

m569

Figure 1

ORTEP-3view (Farrugia, 1997) of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

[image:2.610.44.298.353.506.2]
(3)

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565. Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Grirrane, A., Pastor, A., Galindo, A., Ienco, A., Mealli, C. & Rosa, P. (2003).

Chem. Commun.pp. 512–513.

Kopel, P., Travnicek, Z., Marek, J., Korabik, M. & Mrozinski, J. (2003).

Polyhedron,22, 411–418.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

metal-organic papers

m570

Jian-Yi Wuet al. [Co(C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, m568–m570

supporting information

Acta Cryst. (2005). E61, m568–m570 [https://doi.org/10.1107/S1600536805005076]

Aqua(1,10-phenanthroline)(thiodiglycolato)cobalt(II)

Jian-Yi Wu, Lin-Ming Xie, Hong-Yin He, Xia Zhou and Long-Guan Zhu

Aqua(1,10-phenanthroline)(thiodiglycolato)cobalt(II)

Crystal data

[Co(C4H4O4S)(C12H8N2)(H2O)]

Mr = 405.28 Monoclinic, P21/n Hall symbol: -P 2yn a = 8.0127 (9) Å b = 22.524 (3) Å c = 9.733 (1) Å β = 113.420 (1)° V = 1611.9 (3) Å3

Z = 4

F(000) = 828 Dx = 1.670 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 3581 reflections θ = 2.8–24.7°

µ = 1.23 mm−1

T = 295 K Block, blue

0.14 × 0.14 × 0.09 mm

Data collection

Bruker APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2002) Tmin = 0.784, Tmax = 0.898

18142 measured reflections 3688 independent reflections 2997 reflections with I > 2σ(I) Rint = 0.050

θmax = 27.5°, θmin = 1.8°

h = −10→10 k = −29→29 l = −12→12

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.038

wR(F2) = 0.091

S = 1.02 3688 reflections 232 parameters 2 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0432P)2 + 0.4148P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.38 e Å−3 Δρmin = −0.27 e Å−3

Special details

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, m568–m570

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Co1 0.44105 (4) 0.657445 (13) 0.73224 (3) 0.0260 (1)

S1 0.49229 (8) 0.71389 (3) 0.52895 (7) 0.0307 (2)

O1 0.5329 (2) 0.73547 (7) 0.84119 (18) 0.0353 (4)

O2 0.5421 (3) 0.83347 (8) 0.8371 (2) 0.0545 (6)

O3 0.6934 (2) 0.62578 (8) 0.7685 (2) 0.0397 (4)

O4 0.9588 (3) 0.63361 (10) 0.7525 (3) 0.0566 (6)

O1W 0.1734 (2) 0.68777 (9) 0.6415 (2) 0.0387 (4)

H1W1 0.123 (4) 0.6839 (13) 0.548 (1) 0.050*

H1W2 0.104 (3) 0.6705 (11) 0.676 (3) 0.050*

N1 0.4044 (3) 0.62143 (8) 0.9190 (2) 0.0276 (4)

N2 0.3401 (3) 0.57003 (9) 0.6543 (2) 0.0316 (4)

C1 0.4337 (4) 0.64808 (11) 1.0481 (3) 0.0363 (6)

H1 0.4873 0.6855 1.0660 0.044*

C2 0.3871 (4) 0.62209 (13) 1.1578 (3) 0.0474 (7)

H2 0.4075 0.6423 1.2464 0.057*

C3 0.3116 (4) 0.56696 (13) 1.1348 (3) 0.0462 (7)

H3 0.2801 0.5494 1.2076 0.055*

C4 0.2813 (3) 0.53677 (11) 1.0015 (3) 0.0347 (6)

C5 0.2045 (4) 0.47843 (12) 0.9680 (3) 0.0448 (7)

H5 0.1744 0.4584 1.0385 0.054*

C6 0.1753 (4) 0.45217 (12) 0.8360 (3) 0.0433 (7)

H6 0.1244 0.4144 0.8164 0.052*

C7 0.2214 (3) 0.48165 (10) 0.7249 (3) 0.0332 (5)

C8 0.1943 (4) 0.45607 (12) 0.5857 (3) 0.0438 (7)

H8 0.1450 0.4182 0.5615 0.053*

C9 0.2411 (4) 0.48749 (12) 0.4870 (3) 0.0473 (7)

H9 0.2260 0.4710 0.3951 0.057*

C10 0.3122 (4) 0.54466 (12) 0.5248 (3) 0.0433 (7)

H10 0.3413 0.5659 0.4553 0.052*

C11 0.2966 (3) 0.53850 (10) 0.7548 (2) 0.0271 (5)

C12 0.3293 (3) 0.56654 (10) 0.8958 (2) 0.0271 (5)

C13 0.5170 (3) 0.78437 (10) 0.7742 (3) 0.0315 (5)

C14 0.4632 (4) 0.78457 (10) 0.6054 (3) 0.0339 (6)

H14A 0.5353 0.8142 0.5816 0.041*

H14B 0.3366 0.7963 0.5568 0.041*

C15 0.7362 (3) 0.70339 (12) 0.6152 (3) 0.0387 (6)

H15A 0.7808 0.6990 0.5366 0.046*

H15B 0.7909 0.7390 0.6712 0.046*

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, m568–m570 Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Co1 0.02576 (18) 0.02661 (18) 0.02795 (18) −0.00360 (12) 0.01311 (14) −0.00112 (13)

S1 0.0311 (3) 0.0337 (3) 0.0279 (3) −0.0011 (2) 0.0121 (3) −0.0002 (2)

O1 0.0444 (10) 0.0290 (9) 0.0273 (9) −0.0062 (8) 0.0088 (8) −0.0015 (7)

O2 0.0804 (16) 0.0294 (10) 0.0393 (11) 0.0079 (10) 0.0085 (11) −0.0037 (8)

O3 0.0327 (10) 0.0391 (10) 0.0543 (12) 0.0058 (8) 0.0247 (9) 0.0179 (9)

O4 0.0317 (11) 0.0696 (14) 0.0757 (15) 0.0152 (10) 0.0292 (11) 0.0302 (12)

O1W 0.0279 (9) 0.0537 (12) 0.0348 (10) −0.0003 (8) 0.0129 (8) 0.0060 (9)

N1 0.0279 (10) 0.0274 (10) 0.0283 (10) 0.0002 (8) 0.0119 (9) −0.0016 (8)

N2 0.0363 (11) 0.0325 (11) 0.0309 (11) −0.0055 (9) 0.0186 (9) −0.0045 (9)

C1 0.0430 (15) 0.0345 (13) 0.0305 (13) 0.0010 (11) 0.0136 (12) −0.0050 (11)

C2 0.063 (2) 0.0507 (17) 0.0313 (15) 0.0040 (14) 0.0218 (14) −0.0041 (12)

C3 0.0597 (18) 0.0545 (18) 0.0316 (14) 0.0030 (14) 0.0259 (14) 0.0098 (13)

C4 0.0361 (13) 0.0385 (14) 0.0315 (13) 0.0015 (11) 0.0156 (11) 0.0080 (11)

C5 0.0541 (17) 0.0371 (15) 0.0455 (16) −0.0028 (13) 0.0223 (14) 0.0140 (13)

C6 0.0472 (16) 0.0284 (13) 0.0551 (18) −0.0058 (11) 0.0213 (14) 0.0062 (12)

C7 0.0319 (13) 0.0280 (12) 0.0385 (14) 0.0003 (10) 0.0125 (11) 0.0002 (10)

C8 0.0463 (16) 0.0307 (14) 0.0496 (17) −0.0054 (12) 0.0138 (14) −0.0113 (12)

C9 0.0575 (19) 0.0450 (16) 0.0395 (16) −0.0077 (14) 0.0194 (14) −0.0173 (13)

C10 0.0549 (17) 0.0459 (16) 0.0349 (14) −0.0084 (13) 0.0240 (13) −0.0078 (12)

C11 0.0244 (11) 0.0298 (12) 0.0283 (12) 0.0019 (9) 0.0119 (10) 0.0008 (10)

C12 0.0233 (11) 0.0297 (12) 0.0282 (12) 0.0033 (9) 0.0102 (10) 0.0026 (9)

C13 0.0277 (12) 0.0291 (13) 0.0309 (13) 0.0023 (10) 0.0044 (10) −0.0001 (10)

C14 0.0359 (14) 0.0292 (13) 0.0331 (13) 0.0048 (10) 0.0101 (11) 0.0033 (10)

C15 0.0305 (13) 0.0399 (14) 0.0536 (17) 0.0034 (11) 0.0251 (13) 0.0115 (12)

C16 0.0321 (13) 0.0320 (13) 0.0364 (14) −0.0001 (10) 0.0164 (11) 0.0020 (11)

Geometric parameters (Å, º)

Co1—O1 2.033 (2) C3—C4 1.398 (4)

Co1—O3 2.038 (2) C3—H3 0.9300

Co1—O1W 2.084 (2) C4—C12 1.404 (3)

Co1—N1 2.114 (2) C4—C5 1.433 (4)

Co1—N2 2.149 (2) C5—C6 1.348 (4)

Co1—S1 2.5191 (7) C5—H5 0.9300

S1—C15 1.810 (3) C6—C7 1.437 (4)

S1—C14 1.811 (2) C6—H6 0.9300

O1—C13 1.260 (3) C7—C11 1.396 (3)

O2—C13 1.241 (3) C7—C8 1.407 (3)

O3—C16 1.257 (3) C8—C9 1.361 (4)

O4—C16 1.234 (3) C8—H8 0.9300

O1W—H1W1 0.84 (1) C9—C10 1.397 (4)

O1W—H1W2 0.85 (3) C9—H9 0.9300

N1—C1 1.327 (3) C10—H10 0.9300

N1—C12 1.354 (3) C11—C12 1.437 (3)

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, m568–m570

N2—C11 1.361 (3) C14—H14A 0.9700

C1—C2 1.393 (4) C14—H14B 0.9700

C1—H1 0.9300 C15—C16 1.528 (3)

C2—C3 1.360 (4) C15—H15A 0.9700

C2—H2 0.9300 C15—H15B 0.9700

O1—Co1—O3 94.78 (8) C6—C5—H5 119.5

O1—Co1—O1W 92.07 (8) C4—C5—H5 119.5

O3—Co1—O1W 166.26 (8) C5—C6—C7 121.0 (2)

O1—Co1—N1 91.64 (7) C5—C6—H6 119.5

O3—Co1—N1 100.60 (7) C7—C6—H6 119.5

O1W—Co1—N1 91.08 (7) C11—C7—C8 117.7 (2)

O1—Co1—N2 169.55 (7) C11—C7—C6 119.1 (2)

O3—Co1—N2 87.07 (7) C8—C7—C6 123.2 (2)

O1W—Co1—N2 88.34 (8) C9—C8—C7 119.1 (2)

N1—Co1—N2 77.91 (7) C9—C8—H8 120.4

O1—Co1—S1 80.51 (5) C7—C8—H8 120.4

O3—Co1—S1 81.51 (5) C8—C9—C10 119.4 (3)

O1W—Co1—S1 87.90 (5) C8—C9—H9 120.3

N1—Co1—S1 172.03 (5) C10—C9—H9 120.3

N2—Co1—S1 109.95 (5) N2—C10—C9 123.2 (3)

C15—S1—C14 102.5 (1) N2—C10—H10 118.4

C15—S1—Co1 93.02 (8) C9—C10—H10 118.4

C14—S1—Co1 91.88 (8) N2—C11—C7 122.8 (2)

C13—O1—Co1 123.0 (2) N2—C11—C12 117.1 (2)

C16—O3—Co1 124.2 (2) C7—C11—C12 120.1 (2)

Co1—O1W—H1W1 113 (2) N1—C12—C4 123.1 (2)

Co1—O1W—H1W2 114 (2) N1—C12—C11 117.4 (2)

H1W1—O1W—H1W2 106 (3) C4—C12—C11 119.4 (2)

C1—N1—C12 118.1 (2) O2—C13—O1 124.1 (2)

C1—N1—Co1 127.4 (2) O2—C13—C14 116.7 (2)

C12—N1—Co1 114.3 (2) O1—C13—C14 119.2 (2)

C10—N2—C11 117.8 (2) C13—C14—S1 114.4 (2)

C10—N2—Co1 129.1 (2) C13—C14—H14A 108.7

C11—N2—Co1 113.1 (2) S1—C14—H14A 108.7

N1—C1—C2 122.4 (2) C13—C14—H14B 108.7

N1—C1—H1 118.8 S1—C14—H14B 108.7

C2—C1—H1 118.8 H14A—C14—H14B 107.6

C3—C2—C1 119.7 (2) C16—C15—S1 115.4 (2)

C3—C2—H2 120.2 C16—C15—H15A 108.4

C1—C2—H2 120.2 S1—C15—H15A 108.4

C2—C3—C4 119.9 (2) C16—C15—H15B 108.4

C2—C3—H3 120.0 S1—C15—H15B 108.4

C4—C3—H3 120.0 H15A—C15—H15B 107.5

C3—C4—C12 116.8 (2) O4—C16—O3 124.0 (2)

C3—C4—C5 123.9 (2) O4—C16—C15 116.5 (2)

C12—C4—C5 119.3 (2) O3—C16—C15 119.5 (2)

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, m568–m570

O1—Co1—S1—C15 77.1 (1) C12—C4—C5—C6 −1.0 (4)

O3—Co1—S1—C15 −19.2 (1) C4—C5—C6—C7 0.5 (4)

O1W—Co1—S1—C15 169.5 (1) C5—C6—C7—C11 −0.4 (4)

N2—Co1—S1—C15 −103.0 (1) C5—C6—C7—C8 179.7 (3)

O1—Co1—S1—C14 −25.6 (1) C11—C7—C8—C9 −0.3 (4)

O3—Co1—S1—C14 −121.9 (1) C6—C7—C8—C9 179.6 (3)

O1W—Co1—S1—C14 66.9 (1) C7—C8—C9—C10 −1.0 (4)

N2—Co1—S1—C14 154.4 (1) C11—N2—C10—C9 −0.1 (4)

O3—Co1—O1—C13 106.6 (2) Co1—N2—C10—C9 −178.4 (2)

O1W—Co1—O1—C13 −61.4 (2) C8—C9—C10—N2 1.3 (5)

N1—Co1—O1—C13 −152.6 (2) C10—N2—C11—C7 −1.3 (4)

N2—Co1—O1—C13 −153.5 (4) Co1—N2—C11—C7 177.2 (2)

S1—Co1—O1—C13 26.1 (2) C10—N2—C11—C12 179.5 (2)

O1—Co1—O3—C16 −61.9 (2) Co1—N2—C11—C12 −2.0 (2)

O1W—Co1—O3—C16 57.7 (4) C8—C7—C11—N2 1.5 (4)

N1—Co1—O3—C16 −154.5 (2) C6—C7—C11—N2 −178.4 (2)

N2—Co1—O3—C16 128.4 (2) C8—C7—C11—C12 −179.3 (2)

S1—Co1—O3—C16 17.7 (2) C6—C7—C11—C12 0.8 (3)

O1—Co1—N1—C1 1.6 (2) C1—N1—C12—C4 0.0 (3)

O3—Co1—N1—C1 96.8 (2) Co1—N1—C12—C4 −175.1 (2)

O1W—Co1—N1—C1 −90.5 (2) C1—N1—C12—C11 179.4 (2)

N2—Co1—N1—C1 −178.5 (2) Co1—N1—C12—C11 4.2 (3)

O1—Co1—N1—C12 176.2 (2) C3—C4—C12—N1 1.1 (4)

O3—Co1—N1—C12 −88.6 (2) C5—C4—C12—N1 −179.2 (2)

O1W—Co1—N1—C12 84.1 (2) C3—C4—C12—C11 −178.2 (2)

N2—Co1—N1—C12 −3.96 (18) C5—C4—C12—C11 1.4 (4)

O1—Co1—N2—C10 −177.6 (4) N2—C11—C12—N1 −1.5 (3)

O3—Co1—N2—C10 −77.0 (2) C7—C11—C12—N1 179.3 (2)

O1W—Co1—N2—C10 90.0 (2) N2—C11—C12—C4 177.9 (2)

N1—Co1—N2—C10 −178.5 (2) C7—C11—C12—C4 −1.4 (3)

S1—Co1—N2—C10 2.9 (2) Co1—O1—C13—O2 166.8 (2)

O1—Co1—N2—C11 4.1 (5) Co1—O1—C13—C14 −13.0 (3)

O3—Co1—N2—C11 104.7 (2) O2—C13—C14—S1 163.0 (2)

O1W—Co1—N2—C11 −88.3 (2) O1—C13—C14—S1 −17.2 (3)

N1—Co1—N2—C11 3.2 (2) C15—S1—C14—C13 −64.6 (2)

S1—Co1—N2—C11 −175.5 (1) Co1—S1—C14—C13 28.9 (2)

C12—N1—C1—C2 −1.2 (4) C14—S1—C15—C16 116.0 (2)

Co1—N1—C1—C2 173.2 (2) Co1—S1—C15—C16 23.4 (2)

N1—C1—C2—C3 1.2 (4) Co1—O3—C16—O4 173.8 (2)

C1—C2—C3—C4 0.0 (4) Co1—O3—C16—C15 −6.2 (3)

C2—C3—C4—C12 −1.1 (4) S1—C15—C16—O4 163.5 (2)

C2—C3—C4—C5 179.3 (3) S1—C15—C16—O3 −16.5 (3)

(9)

supporting information

sup-6

Acta Cryst. (2005). E61, m568–m570 Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1W—H1W1···O2i 0.84 (1) 1.93 (1) 2.764 (3) 170 (3)

O1W—H1W2···O4ii 0.85 (3) 1.82 (3) 2.662 (3) 179 (3)

Figure

Figure 1

References

Related documents

This section describes how to effectively opti- mize neural network detection models via dy- namic cost-sensitive learning. Specifically, we first propose a marginal utility

To test the performance of DFG, we use a similar recurrent architecture to Memory Fusion Network (MFN). MFN is a recurrent neural model with three main components 1) System of LSTMs:

Samples were analysed for 119 disorders including amino acid disorders, fatty acid disorders, organic acid disorders, carbohydrate disorders, peroxisomal disorders

We wish to express our gratitude to CJK Institute (Japan), Institute for Infocomm Research (Singapore), National University of Singapore (NUS), Artificial Intelligence Laboratory at

Each row reports the coefficients from separate regressions of the effect of the corresponding treatment on natives’ average test scores.Controls for grade-level

In this study, almost half of the sample showed statistically significant relations between electricity consumption and exports income resembling economic growth

In addition, the causality test shows that South Africa, India and China induce Brazil’s economic growth.. The results of this study carry implications for future world

In this paper, we have presented a neural model for POS tagging and language identification on CS data. The neural network is a state-of-the- art bidirectional LSTM with prefix,