Given: ABC CD bisects AB CD AB Prove: ACD BCD Statement 1. ABC CD bisects AB CD AB 2. AD DB Side
3. CDA and CDB are right 4. CDA CDB Angle 5. CD CD Side
6. ACD BCD
Reasons 1. Given
2. A bisector cuts a segment into 2 parts.
3. lines form right . 4. All rt are .
5. Reflexive post. 6. SAS SAS
#2
Given: ABC and DBE bisect each other.
Prove: ABD CBD Statement
1. ABC and DBE bisect each other. 2. AB BC Side
BD BE Side
3. ABD and BEC are vertical 4. ABD BEC Angle
5. ABD CBD
Reasons 1. Given
2. A bisector cuts a segment into 2 parts.
3. Intersecting lines form vertical . 4. Vertical are .
#3
Given: AB CD and BC DA DAB, ABC, BCD and CDA
are rt
Prove: ABC ADC Statement
1. AB CD Side BC DA Side
2. DAB, ABC, BCD and CDA are rt
3. ABC ADC Angle 4. ABC ADC Reasons 1. Given 2. Given 3. All rt are . 4. SAS SAS #4 Given: PQR RQS PQ QS Prove: PQR RQS Statement 1. PQR RQS Angle PQ QS Side 2. RQ RQ Side 3. PQR RQS Reasons 1. Given 2. Reflexive Post. 3. SAS SAS
#5
Given: AEB & CED intersect at E E is the midpoint AEB
AC AE & BD BE Prove: AEC BED
Statement 1. AEB & CED intersect at E E is the midpoint AEB AC AE & BD BE 2. AEC and BED are vertical 3. AEC BED Angle 4. AE EB Side
5. A & B are rt. 6. A B Angle 7. AEC BED
Reasons 1. Given
2. Intersecting lines form vertical . 3. Vertical are .
4. A midpoint cut a segment into 2 parts
5. lines form right . 6. All rt are .
7. ASA ASA #6
Given: AEB bisects CED AC CED & BD CED Prove: EAC EBD
Statement 1. AEB bisects CED
AC CED & BD CED 2. CE ED Side
3. ACE & EDB are rt
4. ACE EDB Angle
Reasons 1. Given
2. A bisector cuts an angle into 2 parts.
3. Lines form rt . 4. All rt are
5. AEC & DEB are vertical 6. AEC DEB Angle 7. EAC EBD
5. Intersect lines form vertical 6. Vertical are
7. ASA ASA #7
Given: ABC is equilateral D midpoint of AB Prove: ACD BCD Statement 1. ABC is equilateral D midpoint of AB 2. AC BC Side 3. AD DB Side 4. CD CD Side 5. ACD BCD Reasons 1. Given
2. All sides of an equilateral are 3. A midpoint cuts a segment into 2 parts. 4. Reflexive Post 5. SSS SSS #8 Given: mA = 50, mB = 45, AB = 10cm, mD = 50 mE = 45 and DE = 10cm Prove: ABC DEF
Statement 1. mA = 50, mB = 45, AB = 10cm, mD = 50 mE = 45 and DE = 10cm 2. A = D Angle and B = E Angle AB = DE Side 3. ABC DEF Reasons 1. Given 2. Transitive Prop 3. ASA ASA
#9
Given: GEH bisects DEF mD = mF
Prove: GFE DEH
Statement 1. GEH bisects DEF mD = mF Angle 2. DE EF Side 3. 1 & 2 are vertical 4. 1 2 Angle 5. GFE DEH
Reasons 1. Given
2. Bisector cut a segment into 2 parts.
3. Intersect lines form vertical 4. Vertical are 5. ASA ASA #10 Given: PQ bisects RS at M R S Prove: RMQ SMP Statement 1. PQ bisects RS at M R S Angle 2. RM MS Side Reasons 1. Given
3. 1 & 2 are vertical angles 4. 1 2 Angle
5. RMQ SMP
parts
3. Intersect lines form vertical 4. Vertical are 5. ASA ASA #11 Given: DE DG EF GF Prove: DEF DFG Statement 1. DE DG Side EF GF Side 2. DF DF Side 3. DEF DFG Reasons 1. Given 2. Reflexive Post 3. SSS SSS #12 Given: KM bisects LKJ LK JK Prove: JKM LKM Statement 1. KM bisects LKJ LK JK Side 2. 1 2 Angle Reasons 1. Given
2. An bisectors cuts the into 2 parts
3. KM KM Side 4. JKM LKM 3. Reflexive Post 4. SAS SAS #13 Given: . PR QR P Q RS is a median Prove: PSR QSR Statement 1. PR QR Side P Q Angle RS is a median Side 2. PS SQ 3. PSR QSR Reasons 1. Given
2. A median cuts the side into 2 parts
3. SAS SAS
#14
Given: EG is bisector EG is an altitude Prove: DEG GEF
Statement 1. EG is bisector EG is an altitude 2. 3 4 Angle Reasons 1. Given
2. An bisector cuts an into 2 parts.
3. EG DF
4. 1 & 2 are rt 5. 1 2 Angle 6. GE GE Side 7. DEG GEF
3. An altitude form lines. 4. lines form right angles. 5. All right angles are 6. Reflexive Post
7. ASA ASA
#15
Given: A and D are a rt AE DF
AB CD Prove: EC FB
Statement 1. A and D are a rt AE DF Side AB CD 2. A D Angle 3. BC BC 4. AB + BC CD + BC or AC BD Side 5. AEC DFB 6. EC FB Reasons 1. Given
2. All right angles are . 3. Reflexive Post.
4. Addition Prop. 5. SAS SAS
6. Corresponding parts of are .
#16 Given: CA CB D midpoint of AB Prove: A B Statement 1. CA CB Side D midpoint of AB Reasons 1. Given
2. AD DB Side 3. CD CD Side 4. ADC DBC 5. A B
2. A midpoint cuts a segment into 2 parts
3. Reflexive Post 4. SSS SSS
5. Corresponding parts of are .
#17 Given: . AB CD CAB ACD Prove: AD CB Statement 1. AB CD Side
CAB ACD Angle 2. AC AC Side 3. ACD ABC 4. AD CB Reasons 1. Given 2. Reflexive Post 3. SAS SAS
4. Corresponding parts of are .
#18
Given: AEB & CED bisect each Other
Prove: C D
Statement
1. AEB & CED bisect each other 2. CE ED Side & AE EB Side 3. 1 and 2 are vertical
Reasons 1. Given
2. A bisector cuts segments into 2 parts.
4. 1 2 Angle 5. AEC DEB 6. C D
4. Vertical are 5. SAS SAS
6. Corresponding parts of are
#19
Given: KLM & NML are rt KL NM Prove: K N Statement 1. KLM & NML are rt KL NM Side 2. KLM NML Angle 3. LM LM Side 4. KLM LNM 5. K N Reasons 1. Given 2. All rt are 3. Reflexive Post. 4. SAS SAS
5. Corresponding parts of are .
#20 Given: AB BC CD PA PD & PB PC Prove: a) APB DPC b) APC DPB Statement 1. AB BC CD Side
PA PD Side & PB PC Side 2. ABP CDP
3. APB DPC
Reasons 1. Given
2. SSS SSS
4. BPC BPC 5. APB + BPC DPC + BPC or APC DPB 4. Reflexive Post. 5. Addition Prop. #21 Given: PM is Altitude PM is median Prove: a) LNP is isosceles b) PM is bisector Statement
1. PM is Altitude & PM is median 2. PM LN 3. 1 and 2 are rt 4. 1 2 5. LM MN 6. PM PM 7. LMP PMN 8. PL PN 9. LNP is isosceles 10. LPN MPN 11. PM is bisector Reasons 1. Given
2. An altitude form lines. 3. lines form right angles. 4. All right angles are
5. A median cuts the side into 2 parts
6. Reflexive Post. 7. SAS SAS
8. Corresponding parts of are . 9. An Isosceles is a with2 sides 10.Corresponding parts of are . 11. A bisector cuts an into
2 parts #22
Given: CA CB
Prove: CAD CBE
Statement 1. CA CB
2. 2 3
3. 1 & 2 are supplementary 3 & 4 are supplementary 4. 1 4 or CAD CBE
Reasons 1. Given
2. If 2 sides are then the opposite are .
3. Supplementary are form by a linear pair. 4. Supplement of are . #23 Given: AB CB & AD CD Prove: BAD BCD Statement 1. AB CB & AD CD 2. 1 2 3 4 3. 1 + 3 2 + 4 or BAD BCD Reasons 1. Given
2. If 2 sides are then the opposite are .
3. Addition Post.
Given: ΔABC ΔDEF M is midpoint of AB N is midpoint DE Prove: ΔAMC ΔDNF Statement 1. ΔABC ΔDEF 2. M is midpoint of AB N is midpoint DE
3. D A Angle and DF AC Side 4. AM MB and DN NE Side
5. ΔAMC ΔDNF
Reasons 1. Given
2. Given
3. Corresponding parts of Δ are 4. A midpoint cuts a segment into 2 parts
5. SAS SAS
#25
Given: ΔABC ΔDEF CG bisects ACB FH bisects DFE Prove: CG FH Statement 1. ΔABC ΔDEF CG bisects ACB FH bisects DFE Reasons
#26 Given: ΔAME ΔBMF DE CF Prove: AD BC Statement 1. ΔAME ΔBMF DE CF 2. EM MF AM MB Side 1 2 Angle 3. DE + EM CF + MF or DM MC Side 4. ΔADM ΔBCM 5. AD BC Reasons 1. Given
2. Corresponding parts of Δ are 3. Addition Post.
4. SAS SAS
5. Corresponding parts of Δ are
Given: AEC & DEB bisect each other
Prove: E is midpoint of FEG
Statement
1. AEC & DEB bisect each other
Reasons 1. Given
2. DE BE Side and AE EC Side 3. AEB & DEC are vertical 4. AEB DEC Angle
5. ΔAEB ΔDEC 6. D B
7. 1 & 2 are vertical angles 8. 1 2
9. ΔGEB ΔDEF 10. GE FE
11. E is midpoint of FEG
2. A bisector cuts a segment into 2 parts.
3. Intersecting lines form vertical 4. Vertical are .
5. SAS SAS
6. Corresponding parts of Δ are 7. Intersecting lines form vertical 8. Vertical are .
9. ASA ASA
10. Corresponding parts of Δ are 11. A midpoint divides a segment into 2 parts.
#28
Given: BC BA BD bisects CBA Prove: DB bisects CDA
1. BC BA Side BD bisects CBA 2. 1 2 Angle 3. BD BD Side 4. ΔABD ΔBCD 5. 3 4 6. DB bisects CDA 1. Given
2. A bisector cuts an angle into 2 parts.
3. Reflexive Post. 4. SAS SAS
5. Corresponding parts of Δ are 6. A angle bisector cuts an angle into 2 parts.
#29
Given: AE FB DA CB
A and B are Rt. Prove: ADF CBE
DF CE Statement
1. AE FB
DA CB Side A and B are Rt. 2. EF EF 3. AE + EF FB + EF or AF EB Side Reasons 1. Given 2. Reflexive Post 3. Addition Property
4. A B Angle 5. ADF CBE 6. DF CE
4. All rt. are . 5. SAS SAS
6. Corresponding parts of Δ are #30 Given: SPR SQT PR QT Prove: SRQ STP R T Statement 1. SPR SQT Side PR QT 2. S S Angle 3. SPR – PR SQT – QT or SR ST Side 4. SRQ STP 5. R T Reasons 1. Given 2. Reflexive Post 3. Subtraction Property 4. SAS SAS
5. Corresponding parts of Δ are #31
Given: DA CB
DA AB & CB AB Prove: DAB CBA
AC BD Statement
1. DA CB Side
DA AB & CB AB 2. DAB and CBA are rt 3. DAB CBA Angle 4. AB AB Side 5. DAB CBA 6. AC BD Reasons 1. Given 2. lines form rt . 3. All rt are . 4. Reflexive post. 5. SAS SAS
#32 Given: BAE CBF BCE CDF AB CD Prove: AE BF E F Statement 1. BAE CBF Angle BCE CDF Angle AB CD 2. BC BC 3. AB + BC CD + BC or AC BD Side 4. AEC BDF 5. AE BF E F Reasons 1. Given 2. Reflexive Post. 3. Addition Property. 4. ASA ASA
5. Corresponding parts of Δ are .
#33 Given: TM TN M is midpoint TR N is midpoint TS Prove: RN SM Statement Reasons
1. TM TN Side M is midpoint TR N is midpoint TS 2. T T Angle 3. RM is ½ of TR NS is ½ of TS 4. RM NS 5. TM + RM TN + NS or RT TS Side 6. RTN MTS 7. RN SM 1. Given 2. Reflexive Post.
3. A midpoint cuts a segment in . 4. ½ of parts are .
5. Addition Property 6. SAS SAS
7. Corresponding parts of Δ are.
#34
Given: AD CE & DB EB Prove: ADC CEA
Statement
1. AD CE & DB EB Side
Reasons 1. Given
2. B B Angle 3. AD + DB CE + EB or AB BC Side 4. ABE BCD
5. 1 2
6. 1 & 3 are supplementary 2 & 4 are supplementary 7. 3 4 or
ADC CEA
2. Reflexive Post 3. Addition Post. 4. SAS SAS
5. Corresponding parts of Δ are . 6. A st. line forms supplementary . 7. Supplements of are .
#35
Given: AE BF & AB CD ABF is the suppl. of A Prove: AEC BFD
Statement
1. AE BF Side & AB CD ABF is the suppl. of A
Reasons 1. Given
2. A 1 Angle 3. BC BC 4. AB + BC CD + BC or AC BD Side 5. AEC BFD 2. Supplements of are . 3. Reflexive Post. 4. Addition Property. 5. SAS SAS #36 Given: AB CB BD bisects ABC Prove: AE CE Statement 1. AB CB Side BD bisects ABC 2. 1 2 Angle 3. BE BE Side 4. BEC BEA 5. AE CE Reasons 1. Given
2. A bisector cuts an into 2 parts.
3. Reflexive Post. 4. SAS SAS
5. Corresponding parts of Δ are
#37 Given: PB PC Prove: ABP DCP Statement 1. PB PC Reasons 1. Given
2. 1 2
3. 1 & ABP are supplementary 2 & DCP are supplementary 4. ABP DCP
2. opposite sides are .
3. Supplementay are formed by a linear pair.
4. Supplements of are .
#38
Given: AC and BD are bisectors of each other.
Prove: AB BC CD DA
Statement
1. AC and BD are bisectors of each other
2. 1, 2, 3 and 4 are rt 3. 1 2 3 4 Angle 4. AE EC and BE DE 2 sides 5. ABE BEC DEC AED 6. AB BC CD DA
Reasons 1. Given
2. lines form rt . 3. All rt are .
4. A bisector cuts a segment into 2 parts.
5. SAS SAS
6. Corresponding parts of Δ are
#39
Given: AEFB, 1 2 CE DF, AE BF Prove: AFD BEC
1. AEFB, 1 2 Angle CE DF Side, AE BF 2. EF EF 3. AE + EF BF + EF or AF EB Side 4. AFD BEC 1. Given 2. Reflexive Post. 3. Addition Property 4. SAS SAS #40 Given: SX SY, XR YT Prove: RSY TSX Statement 1. SX SY Side, XR YT 2. SX + XR SY + YT or SR ST Side 3. S S Angle 4. RSY TSX Reasons 1. Given 2. Addition Post. 3. Reflexive Post. 4. SAS SAS #41 Given: DA CB DA AB, CB AB Prove: DAB CBA
Statement 1. DA CB Side
DA AB, CB AB
2. DAB and CBA are rt. 3. DAB CBA Angle 4. AB AB Side 5. DAB CBA Reasons 1. Given 2. lines form rt 3. All rt. are 4. Reflexive Post. 5. SAS SAS #42 Given: AF EC 1 2, 3 4 Prove: ABE CDF Statement 1. AF EC 1 2, 3 4 Angle 2. DFC BEA Angle 3. EF EF 4. AF + EF EC + EF or AE FC Side 5. ABE CDF Reasons 1. Given 2. Supplements of are 3. Reflexive post. 4. Addition Post. 5. AAS AAS #43
Given: AB BF, CD BF 1 2, BD FE Prove: ABE CDF Statement 1. AB BF, CD BF 1 2 Side , BD FE 2. B and CDF are rt. 3. B CDF Angle 4. DE DE 5. BD + DE FE + DE or BE DF Side 6. ABE CDF Reasons 1. Given 2. lines form rt. 3. All rt. are 4. Reflexive Post. 5. Addition Post. 6, ASA ASA #44
Given: BAC BCA CD bisects BCA AE bisects BAC Prove: ADC CEA
Statement 1. BAC BCA Angle CD bisects BCA AE bisects BAC 2. ECA ½BAC and DCA ½BCA
3. ECA DCA Angle 4. AC AC Side 5. ADC CEA Reasons 1. Given 2. bisector cuts an in ½ 3. ½ of are 4. Reflexive post. 5. ASA ASA
#45 Given: TR TS, MR NS Prove: RTN STM Statement 1. TR TS Side, MR NS 2, TR – MR TS – NS or TM TN Side 3. T T Angle 4. RTN STM Reasons 1. Given 2. Subtraction Post. 3. Reflexive Post. 4. ASA ASA #46
Given: CEA CDB, ABC
AD and BE intersect at P PAB PBA Prove: PE PD Statement 1. CEA CDB, ABC AD and BE intersect at P PAB PBA 2. Reasons 1. Given
#47 Given: AB AD and BC DC Prove: 1 2 Statement 1. AB AD and BC DC 2. AC AC 3. ABC ADC 4. AE AE 5. BAE DAE 6. ABE ADE 7. 1 2 Reasons 1. Given 2. Reflexive Post. 3. SSS SSS 4. Reflexive Post.
5. Corresponding parts of Δ are . 6. SAS SAS
7. Corresponding parts of Δ are .
#48
Given: BD is both median and altitude to AC Prove: BA BC
Statement 1. BD is both median and
altitude to AC 2. AD CD Side
3. ADB and CDB are rt. 4. ADB CDB Angle 5. BD BD Side
6. ABD CBD
Reasons 1. Given
2. A median cuts a segment into 2 parts
3. Lines form rt. 4. All rt. are 5. Reflexive Post.
7. BA BC 6. SAS SAS
7. Corresponding parts of Δ are . #49
Given: CDE CED and AD EB Prove: ACC BCE
Statement
1. CDE CED and AD EB Side 2. CDA CEB Angle
3. CD CE Side 4. ADC BEC 5. ACD BCE Reasons 1. Given 2. Supplements of are . 3. Sides opp. in a are 4. SAS SAS
5. Corresponding parts of Δ are . #50
Given: Isosceles triangle CAT
CT AT and ST bisects CTA Prove: SCA SAC
Statement 1. Isosceles triangle CAT
CT AT Side and ST bisects CTA 2. CTS ATS Angle
3. ST ST Side 4. CST AST
Reasons 1. Given
2. An bisector cuts an into 2 parts
3. Reflexive Post. 4. SAS SAS
5. CS AS
6. SCA SAC 5. Corresponding parts of Δ are . 6. opp. sides in a are #51 Given: 1 2 DB AC Prove: ABD CBD Statement 1. 1 2 and DB AC 2. DBA and DBC are rt. 3. DBA DBC Angle 4. DAB DCA Angle 5. DB DB Side 6. ABD CBD Reasons 1. Given 2. lines form rt. 3. All rt. are 4. Supplements of are 5. Reflexive Post. 6. AAS AAS #52 Given: P S R is midpoint of PS Given: PQR STR Statement 1. P S Angle R is midpoint of PS 2. PR RS Side
3. QRP and TRS are vertical
Reasons 1. Given
2. A midpoint cuts a segment into 2 parts
4. QRP TRS Angle
5. PQR STR 4. Vertical are 5. ASA ASA
#53 Given: FG DE G is midpoint of DE Given: DFG EFG Statement 1. FG DE G is midpoint of DE
2. FGD and FGE are rt. 3. FGD FGE Angle 4. FG FG Side 5. DG GE Side 6. DFG EFG Reasons 1. Given 2. lines form rt. 3. All rt. are 4. Reflexive Post.
5. A midpoint cuts a segment into 2 parts. 6. SAS SAS #54 Given: AC CB D is midpoint of AB Prove: ACD BCD Statement 1. AC CB Side D is midpoint of AB Reasons 1. Given
2. AD DB Side 3. CD CD Side 4. ACD BCD
2. A midpoint cuts a segment into 2 parts. 3. Reflexive Post. 4. SSS SSS #55 Given: PT bisects QS PQ QS and TS QS Prove: PQR RST Statement 1. PT bisects QS PQ QS and TS QS 2. QR RS Side
3. PRQ and TRS are vertical 4. PRQ TRS Angle 5. Q and S are rt. 6. Q S Angle 7. PQR RST Reasons 1. Given
2. A bisector cuts a segment into 2 parts.
3. Intersecting lines form vert. 4. All vert. are
5. lines form rt. 6. All rt. are 7. ASA ASA #56 Given: AB ED and FE CB FE AD and CB AD Prove: AEF CBD Statement 1. AB ED and FE CB Side Reasons 1. Given
FE AD and CB AD 2. BE BE
3. AB + BE ED + BE or AE DB Side 4. AEF and DBF are rt. 5. AEF DBF Angle 6. AEF CBD 2. Reflexive Post. 3. Addition Post. 4. lines form rt. 5. All rt. are 6. SAS SAS #57 Given: SM is bisector of LP RM MQ a b Prove: RLM QPM Statement 1. SM is bisector of LP RM MQ Side a b 2. SML and SMP are rt. 3. 1 2 Angle 4. LM PM Side 5. RLM QPM Reasons 1. Given 2. lines form rt. 3. Complements of are
4. A bisector cuts a segment into 2 parts. 5. SAS SAS #59 Given: AC BC CD AB Prove: ACD BCD Statement Reasons
1. AC BC CD AB
2. CDA and CDB are rt. 3. CDA CDB 4. CD CD 5. ACD BCD 1. Given 2. lines form rt. 3. All rt. are 4. Reflexive Post. 5. SAS SAS #60 Given: FQ bisects AS A S Prove: FAT QST Statement 1. FQ bisects AS A S Angle 2. AT ST Side
3. ATF & STQ are vertical 4. ATF STQ Angle
5. FAT QST
Reasons 1. Given
2. A bisector cuts a segment into 2 parts.
3. Intersecting lines form vert. 4. All vert. are
5. ASA ASA
#61
Given: A D and BCA FED AE CD
AEF BCD Prove: ABC DFE
Statement 1. A D Angle and BCA FED Angle
Reasons 1. Given
AE CD and AEF BCD 2. EC EC 3. AE + EC CD + EC or AC DE Side 4. ABC DFE 2. Reflexive Post. 3. Addition Post. 4. ASA ASA #62 Given: SU QR, PS RT TSU QRP Prove: PQR STU Q U Statement 1. SU QR, PS RT TSU QRP 2. SR SR 3. PS + SR = RT + SR or PR TS 4. PQR STU 5. Q U Reasons 1. Given 2. Reflexive Post. 3. Addition Post 4. SAS SAS
5. Corresponding parts of Δ are .
Given: M D ME HD THE SEM Prove: MTH DSE Statement 1. M D Angle, ME HD THE SEM 2. HE HE 3. ME – HE HD - HE or MH DE Side 4. THM SED Angle 5. MTH DSE Reasons 1. Given 2. Reflexive post. 3. Subtraction Post. 4. Supplements of are 5. ASA ASA #64 Given; SQ bisects PSR P R Prove: PQS QSR Statement 1. SQ bisects PSR P R Angle 2. PSQ RSQ Angle 3. SQ SQ Side 4. PQS QSR Reasons 1. Given
2. an bisectors cuts an into 2 parts.
3. Reflexive Post 4. AAS AAS
#65 Given: PQ QS and TS QS R midpoint of QS Prove: P T Statement 1. PQ QS and TS QS R midpoint of QS 2. Q and S are rt. 3. Q S Angle
4. PRQ and TRS are vertical 5. PRQ TRS Angle 6. QR SQ Side Reasons 1. Given 2. lines form rt. 3. All rt. are
4. Intersecting lines form vert. 5. All vert. are
7. PQR TSR 8. P T
parts.
7. ASA ASA
8. Corresponding parts of Δ are .
#66 Given: CB FB, BT BV DV TS, DC FS Prove: D S Statement 1. CB FB, BT BV DV TS, DC FS Side 2. BTV BVT Angle 3. CB + BT FB + BV or CT FV Side 4. VT VT 5. DV + VT TS + VT or DT SV Side 6. DCT SVF 7. D S Reasons 1. Given
2. opp. sides in a are 3. Addition Post
4. Reflexive Post. 5. Addition Post 6. SAS SAS
#67 Given: PQ DE and PB AE QA PE and DB PE Prove: D Q Statement 1. PQ DE Hyp and PB AE QA PE and DB PE 2. AB AB 3. PB – AB = AE – AB or PA EB Leg
4. QAP and DBA are rt.
Reasons 1. Given
2. Reflexive post. 3. Subtraction Post. 4. lines form rt.
5. QAP DBA 6. PAQ EBD 7. D Q
5. All rt. are 6. HL HL
7. Corresponding parts of Δ are . #68 Given: TS TR P Q Prove: PS QR Statement 1. TS TR Side P Q Angle
2. PTS and QTR are vertical 3. PTS QTR Angle
4. PTS QTR 5. PS QR
Reasons 1. Given
2. Intersecting lines form vert. 3. All vert. are
4. AAS AAS
5. Corresponding parts of Δ are . #69
Given: HY and EV bisect each other Prove: HE VY
Statement
1. HY and EV bisect each other 2. HA YA Side and EA VA Side 3. HAE and YAV are vertical 4. HAE YAV Angle
5. HAE YAV 6. HE VY
Reasons 1. Given
2. A bisector cuts a segment into 2 parts.
3. Intersecting lines form vert. 4. All vert. are
5. SAS SAS
#70
Given: E D and A C B is the midpoint of AC Prove: EA DC
Statement
1. E D Angle and A C Angle B is the midpoint of AC 2. EA DC Side 3. ABE CBE 4. EA DC Reasons 1. Given
2. A midpoint cuts a segment into 2 parts.
3. AAS AAS
4. Corresponding parts of Δ are . #71 Given: E is midpoint of AB DA AB and CB AB 1 2 Prove: AD CB Statement 1. E is midpoint of AB DA AB and CB AB 1 2 2. AE EB Side 3. DE CE Side Reasons 1. Given
2. A midpoint cuts a segment into 2 parts.
4. ADE BCD