• No results found

Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants

N/A
N/A
Protected

Academic year: 2021

Share "Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Scientia

Horticulturae

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / s c i h o r t i

Nitrogen,

phosphorus,

calcium,

and

magnesium

applied

individually

or

as

a

slow

release

or

controlled

release

fertilizer

increase

growth

and

yield

and

affect

macronutrient

and

micronutrient

concentration

and

content

of

field-grown

tomato

plants

Janet

C.

Cole

(Regents

Professor)

a,∗

,

Michael

W.

Smith

(Regents

Professor)

a

,

Chad

J.

Penn

(Former

Associate

Professor)

b

,

Becky

S.

Cheary

(Senior

Agriculturist)

a

,

Kelley

J.

Conaghan

(Former

undergraduate

student)

a

aDepartmentofHorticultureandLandscapeArchitecture,OklahomaStateUniversity,358AgHall,Stillwater,OK74078-6027,USA

bDepartmentofPlantandSoilSciences,OklahomaStateUniversity,368AgHall,Stillwater,OK74078-6028,USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30September2015

Receivedinrevisedform

15September2016

Accepted16September2016

Keywords:

Plantnutrition

Solanumlycopersicum

Magnesiumammoniumphosphate

Slowreleasefertilizer

a

b

s

t

r

a

c

t

TheU.S.EnvironmentalProtectionAgency(USEPA)hasrestrictedconcentratedanimalfeedingoperation (CAFO)releaseofwasteproductsintoU.S.waters.Thesewasteproductsmustbedisposedofusingbest managementpractices.Mostofthewasteisspreadoncropland,butsomeoperationshavefoundother creativeusesforwasteproducts.Useofaphosphorus(P)reductionsystemtoremovePfrom wastew-aterresultsinmagnesiumammoniumphosphate(MAP),aslowlysolublefertilizer.UsingaPreduction systemwillnoteliminatetheneedforlandapplicationofmanureandwastewater,butitreducesthe nutrientloadinthewastethatisappliedtherebymakingcompliancewithregulationseasier.Inthefirst yearofthisstudy,MAPwascomparedtoacontrolledreleasefertilizer(CRF)withasimilarnutrient ele-mentratioonplantgrowth,fruityield,nitrogen(N),P,potassium(K),calcium(Ca),magnesium(Mg), iron(Fe),manganese(Mn),andzinc(Zn)concentrationintomato(SolanumlycopersicumL.‘Mountain FreshPlus’)plantparts.Plantgrowthandfruitproductionweresimilarwiththetwofertilizers,butthe numberoftomatocullswasgreaterwitheitherfertilizerthanoncontrolplants.FoliarN,P,Ca,andMg concentrationdidnotdifferregardlessoffertilizertreatment.PlantsfertilizedwithCRFhadagreaterleaf KconcentrationthanthosefertilizedwithMAP,butfoliarKconcentrationdidnotdifferbetween fertil-izedandnonfertilizedplants.IronandMnconcentrationinabove-groundvegetativeplantparts(stems andleaves)didnotdifferregardlessoffertilizertreatment,butZnconcentrationincreasedlinearlyas CRFincreased.Inthesecondyear,MAP,eachoftheessentialelementscontainedinMAPseparately, andahandmixtureofeachoftheseelementswastestedfortheireffectontomatoplantgrowth,fruit yield,andtissueN,P,K,Ca,Mg,Fe,Mn,andZnconcentrationandcontent.Magnesiumammonium phos-phateandthehandmixtureoffertilizerresultedingreaterabove-groundbiomassexcludingfruitstem weightandfruityieldthananyoftheindividualnutrienttreatments.Calciumsulfateresultedinagreater numberandweightoftomatoesharvestedthanMAP.Nitrogenconcentrationdidnotdifferamongthe fertilizertreatmentsforroots,stems,orleaves,butNcontentwasgreaterinredfruitwiththehandmix offertilizerthanwithnofertilizerorwithammoniumsulfateorMgoxide.Inimmaturegreenfruitat terminationofthestudy,NcontentwasgreaterwithnofertilizerorCasulfatethanwithMAPortriple superphosphate(TSP).Phosphorus,K,andCaconcentrationsdidnotdifferamongfertilizertreatments foranytissuetested.Magnesiumconcentrationingreentomatoesdifferedamongfertilizertreatments suchthatMgconcentrationofgreentomatoesfromplantsfertilizedwithTSPwasgreaterthanMg con-centrationofgreentomatoesfertilizedwithammoniumsulfateorMgoxide.PhosphorusandKcontent ofgreenfruitdifferedamongfertilizertreatmentswithPandKconcentrationhighestingreenfruitfrom plantsfertilizedwithCasulfateandlowestingreenfruitfromplantsfertilizedwithMAPorTSP.

∗ Correspondingauthorat:DepartmentofHorticultureandLandscapeArchitecture,OklahomaStateUniversity,358AgHall,Stillwater,OK74078-6027,USA.

E-mailaddress:janet.cole@okstate.edu(J.C.Cole).

http://dx.doi.org/10.1016/j.scienta.2016.09.028

0304-4238/©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/

(2)

IronandMnconcentrationsdidnotdifferamongfertilizertreatmentsforanytissuetested.Zinc concen-trationinleaveswasgreaterwhenplantswerefertilizedwithMAP,TSP,Casulfate,orMgoxidethan withammoniumsulfate.ZincconcentrationofgreenfruitwasgreaterwhenfertilizedwithMAPthan withthehandmix,CasulfateorMgoxide.Ironcontentwashighestingreenfruitfromplantsfertilized withTSPandlowestinplantsfertilizedwithammoniumsulfateorcontrolplants.Manganesecontentof leavesfromcontrolplantswasgreaterthanthatofplantsreceivingammoniumsulfatewhileredfruit fromplantsfertilizedwiththehandmixhadagreaterMncontentthanredfruitfromanyother treat-ment.FoliarZncontentwasgreaterinplantsfertilizedwithCasulfatethaninthosefertilizedwiththe handmix,ammoniumsulfate,orTSP.Incontrast,Zncontentofredfruitfertilizedwiththehandmixwas greaterthanforredfruitinanyothertreatment.GreenfruitfromcontrolplantsandthosereceivingMAP hadagreaterZncontentthanplantsfertilizedwiththehandmix,TSP,orMgoxide.Fertilizerapplication increasedFe,Mn,andZncontentofseveralplanttissues.Noneofthelabelsoffertilizersappliedstated thattheycontainedmicronutrients;however,smallamountsofcontaminationwerepossible.Differing micronutrientcontentsofvariousplanttissuesamongfertilizertreatmentswereprobablyassociatedwith otherelementsaffectingplantgrowthornutrientuptake.Thenutrientelementspresentinthevarious fertilizerswerenotalwaysthenutrientelementsaffectedintheplantslikelyduetoanotherelementthat mayhavelimitedplantgrowthornutrientuptake.

©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In2003,theUSEPArevisedregulationsfor CAFOs. Withthis

revision,thenumberofCAFOsregulatedincreased,andnew

regu-lationsaddressedlandapplicationofmanurefromCAFOs(USEPA,

2003).To complywith USEPA regulations, CAFOs must have a

NationalPollutantDischargeEliminationSystemPermit. Oneof

thepermitrequirementsisdevelopmentofanutrientmanagement

plan.Thepurposeofthisplanistoreducetheamountofnutrients

leavingCAFOsitesthatmightpollutewaterways.Nodischargeof

manure,poultrylitter,orwastewaterfromaCAFOproductionarea

mayenterU.S.waters.Producersmustusebestmanagement

prac-ticestoeitherapplythemanure,which mayrequirelargeland

areas,orproducersmayuseinnovativetechnologiestoachieve

pollutantreductions.

Onewaytoreducetheamountofmanure,andthereforethe

landareaonwhichitmustbespread,istoprecipitateMAP(also

calledstruvite).ArecentlydevelopedPreductionsysteminvolves

wastewaterflowingthroughafluidized-bedreactorcausingPto

precipitateasMAP(Rutherford,2010).PlantproducerscanuseMAP

asaslowlysolublefertilizerinproductionofcrops.Oneadvantage

ofusingslowlysolublefertilizercomparedtotraditionalhighly

sol-ublefertilizersisthatplantnutrientsarereleasedoveralongertime

periodthatmayormaynotcorrespondbetterwithplantneeds.

Becauseofslowernutrientrelease,nutrientsarelesslikelytoleach

throughthesoilprofilebelowplantrootsorbecarriedtowaterways

resultinginpotentialforpollutionofthosewaterways.

ManyhorticulturalcropproducersuseCRFs.Similartoslowly

solublefertilizers,CRFsreleasenutrientsoveralongertimeperiod

thanhighlysolublefertilizers,butthemechanismforthisslower

releaseisdifferentthanforslowlysolublefertilizers.Controlled

release fertilizers discharge nutrients slowly because they are

encapsulatedinasemipermeablepolymercovering.Abrahamand

Pillai (1996) noted that about 40 to 70% of applied urea was

losttotheenvironment,butlosseswerereducedbycoatingurea

withcopolymer of acrylamide.Environmental conditions affect

nutrientreleaseofslowlysolubleandCRFs.Slowlysoluble

fertil-izersrequiremoistureandsoilmicroorganismactivityfornutrient

release(Morganetal.,2009).Controlledreleasefertilizersdepend

ondiffusionthroughcoatingswhichismoistureandtemperature

dependent(Morganetal.,2009).Thuscoolordryperiodsmayresult

ininadequatenutrientreleasetosupportplantgrowthandhotor

wetconditionsmayresultinnutrientdischargefasterthanplant

uptake.

Nitrogen,P,K,Ca,andMgareessentialplantmacronutrients.

NitrateandammoniumarethemajorformsofNtakenupbyplants

(Barkerand Bryson,2007).Undernormal, aeratedconditionsin

soils,nitrateis thepredominantform ofN takenup byplants.

Nitrateisreadilymobileinplants,butitmustbereducedto

ammo-niumforsynthesisofproteinsandotherorganiccompounds.Plants

recycleNfromthecyclingofproteinsandothernitrogenous

com-poundsasammonium(BarkerandBryson,2007).Scholbergetal.

(2000)notedthatNconcentrationsinvarioustissuesoftomato

plantsvarythroughoutthegrowingseason.

ThetotalamountofsoilPisoftenmuchgreaterthantheamount

ofplantavailableP(TisdaleandNelson,1975).Themaintenanceof

asuitableconcentrationofPinthesoilsolutionforplantuptake

depends onthe relative rateof organicmatter decomposition,

and ontheability ofthesoil’sinorganicfractions tofixsoluble

orthophosphatesininsolubleorslightlysolubleforms. Addition

ofsolublephosphatefertilizerscanincreasetheamountofsoluble

orthophosphatesinthesoilsolutionforashorttime,butdepending

onsoilpH,Pquicklyreactswithiron,aluminum,orsilicateclays

andbecomesunavailableforplantuptake.

RehmandSchmitt(2002)notedthatKcanoccurin

unavail-able,slowlyavailable,orreadilyavailableformsin soils.Onlya

smallamountofslowlyavailableKisavailableforplantuptake

duringasinglegrowingseason.ReadilyavailableKisdissolvedin

thesoilsolutionandreadilytakenupbyplants.Potassiumuptake

isaffectedbysoilmoisturecontent,soilaerationandoxygenlevel,

soiltemperature,andcompetingions

Like K, Ca and Mg in soilsoriginatefrom decomposition of

bedrock and mineralsthat containthese elements(Tisdale and

Nelson,1975).Comparedtootherminerals,Caweathersrelatively

quicklyandcanbecomeunavailabletoplantsvialeachinginhighly

weathered(mature)soils(PilbeamandMorley,2007).

Magnesium deficiency symptoms may occur when Mg is

limited, but they may also be associated with an antagonistic

relationshipbetweenMgions(Mg2+)andothercations.The

com-petitionofMgwithothercationsforuptakerangesfromhighest

to lowest as follows: K>NH4+>Ca>Na (Mills and Jones, 1996;

Pe ˜nalosaetal.,1995).

Numerous fertilizer formulations provide plant

macronutri-ents individually or in combinationsto the soil.Application of

macronutrient fertilizers usually affects nutrient availability to

plants.Micronutrientsaregenerallypresentinsufficientamounts

inmostsoils,buttheiravailabilitymaybelimitedduetoa

vari-etyofconditions.Mostmicronutrientsaremoreavailablewhen

(3)

con-sequentlyavailability.Interactionswithotherelements,colloidal

organicmatter, soil moistureand temperature can have major

impactsonavailabilityoruptakeofcertainmicronutrients.In

addi-tion,non-targetorganismsimmobilizemicronutrientsandsmall

amountsarelostbyerosionandleaching.

TotalFecontentofsoilisoflittlevalueindiagnosingFe

deficien-ciesinplants(TisdaleandNelson,1975).Soilconditionsthatleadto

FedeficiencyincludepHabove7,lowsoilmoistureandloworganic

mattercontent(FothandEllis,1997).Ironuptakecanbereduced

byhighconcentrationsofP,Mn,copper,nickelorZn(Tisdaleand

Nelson,1975).

Manganeseavailabilityfor plantuptakedecreasesassoilpH

increases.DivalentMnistheformabsorbedattherootsurfacecell

membrane.AssoilpHdecreases,theproportionofexchangeable

Mn2+increasesdramatically(Bromfieldetal.,1983).Manganese

deficiencyislargelyduetohighsoilpH,butitcantoalesserextent

beinducedbyanimbalanceofotherelementssuchasCa,Mg,and

ferrousiron(TisdaleandNelson,1975).

SimilartoFeandMn,plantavailabilityofZndependsonsoilpH,

Pconcentration,organicmattercontentandadsorptionbyclays

(TisdaleandNelson,1975).TheamountofZnpresentinthesoil

isnotareliableindicatorofplantavailability.Zinc deficiencyis

commoninplantsgrowinginhighlyweatheredacidorcalcareous

soils(TrehanandSekhon,1977).Zincionscanbeimmobilizedin

organicmattersothat theybecomeunavailableforrootuptake

(Ballingeretal.,1966;Storey,1957).However,inmostsituations

theZncomplexwithcolloidalorganicmatterincreasesavailability

(FothandEllis,1997).HighconcentrationsofsoilPintensifyZn deficiency.

AdditionofN,P,K,Ca,andMgmustoccurfrequentlyenoughto

supplyplantneedsbymaintainingeachofthesenutrientsinthesoil

solution.BecauseslowlysolubleandCRFfertilizersrelease

nutri-entsovertime,theyreplenishnutrientsinthesoilsolutionasthose

nutrientsarereleasedfromthefertilizer.Presenceandavailability

ofadequateplantnutrientsarevitalforplantgrowthandfruit

pro-duction.Theobjectivesofthisstudyweretodetermine(1)ifthe

slowreleasefertilizer,MAP(precipitatedfromanimalwastewater

throughafluidized-bedreactor)andaCRFwithasimilarnutrient

ratio,affectsplantgrowth,yieldandN,P,K,Ca,Mg,Fe,Mn,orZn

concentrationinfield-growntomatoplantfoliage,and(2)theeffect

ofN,P,Ca,andMgaloneorincombinationasahandmixtureof

theindividualelementsortheslowreleasefertilizerMAPonplant

growth,yield,andtissueN,P,K,Ca,Mg,Fe,Mn,orZn

concentra-tionandcontentoffield-growntomatoplants.Applyingelements

individuallyallowedevaluationofacriticalnutrientshortageofa

singleelementversussupplyingallelementsasinthecaseofMAP

orthemixture.

2. Materialsandmethods

2.1. Experiment1,magnesiumammoniumphosphateversus

controlledreleasefertilizer

2.1.1. Culturalpractices

‘MountainFreshPlus’tomatoseedlings(Gardner,1999,2002)

wereplantedintoaRenfrowloam(fine,mixed,superactive,

ther-micUderticPaleustolls)soilatStillwater,OK(N36◦09.412,W97◦

01.788)on4May2011.Plantspacingwithinrowwas1.8mand

1.8mbetweenrows.Thisspacingwasusedtoassurethatfertilizer

treatmentswereuniquetoeachplantandnotreatmentinfluenced

adjacentfertilizertreatments.Thespacingalsoallowedfor easy

harvestoffruit.Plantingholesweredugwitha15-cm-diameter

augertoadepthofabout15cm.Plantswerehand-wateredwith

ahoseimmediatelyafterplantingandthenasneededuntildrip

irrigationwasinstalledon8May2011.Thenplantswerewatered

dailyat0700HRfor1handat1300HRfor1hwithdripirrigation

(62mlm−1min−1)untilthestudywasterminated.Airtemperature

wasmeasuredat30minintervalsusingdataloggers(WatchDog

1225,SpectrumTechnologies,Aurora,IL).Highandlow

tempera-turesweredeterminedforeachdayduringtheexperimentthen

averagedailymaximum/minimumtemperaturesof 35.4/21.4◦C

werecalculated.

Baskets constructed from woven field fence (Red Brand;

Peoria, IL) with 10cm by 10cm spaces between the wires

were placed around each plant 48h after planting.

Bas-kets were 53.3cm in diameter and 122cm tall. Glyphosate

((N-phosphonomethyl)glycine, Eraser; Surrender brand, Control

Solutions,Pasadena,TX)wasapplied5June,2011at7.5gL−1a.i.

outsideofthebasketsforweedcontrol.Weedswerecontrolled

insideofthebasketsbyhandweeding.

2.1.2. Treatments

Asoiltestconductedpriortothestudyshowedthatthesitewas

lowinNandP,andrecommendedasingleapplicationof4.9gm−2N

andapplying12gm−2Pannually.Nofertilizerwasappliedpriorto

theexperimentalfertilizertreatments.Forplantsreceiving

fertil-izertreatments,fertilizerwasspreaduniformlyinthebottomof

theplantingholepriortoplantingtheplants.TheMAPfertilizer

(TerraPhos;KansasEnvironmentalManagementAssociates,Salina,

KS)consistedof4N-11.2P-0.4K(4N-26P2O5-0.5K2O)with8%Ca

and9%MgandFloricoteCRF(Floricote;Florikan,Sarasota,FL)was

10N-21P-0K(10N-49P2O5-0K2O).BothMAPandCRFwereapplied

at0,2.45,4.9,or9.8gm−2N.Theseapplicationratesprovided0,

2.7,5.5, or11.0gm−2P,respectivelywithMAPand0,5.1, 10.3,

or20.6gm−2,respectivelywithCRF.Themanufacturerestimated

completereleaseofnutrientsintheCRFwithin90dat26.6◦C.

2.1.3. Datacollection

Plant height and width (two perpendicular measurements)

weremeasured2,4,and8weeksafterplanting.Fruitwere

har-vesteddailyasredcolorappeared(breakerredstage).Fruitwere

gradedasediblefruitor consideredculls iftheyweredamaged

suchthattheywereunacceptableforthefreshmarket.Generally

damagewasduetofeedingbybirdsandotherwildlife.Fruitswere

countedandweigheddaily,includingweekends.

Above-groundplantpartswereharvested beginning29 Aug.

2011andseparatedintoimmaturetomatoesandstemswithleaves.

Leavesandstemsweredriedinanovenat55◦Ctoaconstantweight

andthenweighed.

Priortoplantharvest,theuppermostthreetofivefullyexpanded

leavesofplantsfromalltreatmentsinthefirstfourblockswere

removedanddriedinadryingovenat55◦Ctoaconstantweight

then weighed. Dried leaves wereground witha Wiley millto

pass through a 0.84mm mesh screen and stored in glass jars

forlateranalysis.LeafelementalconcentrationsofNwere

deter-minedwithaLecoNanalyzer(TruSpecN,St.Joseph,MI).Samples

weredry ashed in a mufflefurnace at 500◦C, dissolvedin 20%

HCl, filtered throughWhatman 41 filterpaper, and broughtto

theappropriatedilutionwith2%lanthanumsolution.Phosphorus

wasdeterminedcolorimetrically(Genesys10Spectrophotometer,

ThermoSpectronic,Rochester,NY)andK,Ca,Mg,Fe,Mn,andZn

wereanalyzedusingatomicabsorptionspectroscopy(PerkinElmer

model2380,Waltham,MA).

2.1.4. Experimentaldesignanddataanalysis

The experiment consisted of a randomized complete block

designwith10single-plantreplications.Becauseoffinancial

limi-tationsonlythefirst4blockswereusedforfoliageNanalysis.Eight

treatments(twofertilizersappliedatfourrateseach)wereapplied.

(4)

SASInstitute,Cary,NC),andapplicationratetrendswerecalculated

usingorthogonalcontrastswithineachfertilizertype.

2.2. Experiment2,elementalcombinations

2.2.1. Culturalpractices

‘MountainFreshPlus’tomatoseedlings weretransplantedas

describedaboveon25April.,2012.Thesiteandirrigationsystem

werethesameasthoseusedinexperiment1describedabove.

Cul-turalpracticeswereperformedasdescribedabove.Averagedaily

maximum/minimumairtemperatureswere32.3/19.1◦C.

2.2.2. Treatments

Thefollowingfertilizer treatmentswereapplied: (1)MAPat

4.9gm−2N,(2) calcium sulfate (CaSO4,23% Ca)at 9.8gm−2Ca,

(3)magnesiumoxide(MgO,58%Mg,CropMag58;Martin

Mari-etta, Baltimore, MD) at 11.0gm−2 Mg, (4) ammonium sulfate

((NH4)2SO4)Sulf-N;Honeywell,Morristown,NJ)at4.9gm−2N,(5),

TSP(Bonide, Oriskany,NY);0N-19.4P-0K(0N-45P2O5-0K2O,)at

7.1gm−2P,(6)handmixofCasulfate,Mgoxide,ammonium

sul-fate,andTSPattherateslistedintreatments2through5above,and

(7)nofertilizertreatment(control).AllN,P,Ca,andMgtreatments

wereappliedatratesequaltothatappliedwithMAP.Fertilizers

wereplacedinthebottomoftheplantingholeasdescribedabove

forplantsinrespectivefertilizertreatments.

2.2.3. Datacollection

Fruitwereharvestedbetween21June,2012and24July,2012

asredcolorappeared.Gradingwasasdescribedabovewithfruit

countedandweighed.

Plantswereharvested24July,2012andseparatedintomature

fruit,immaturefruit,leaves,stems,androots.Matureand

imma-ture fruit were air dried in a greenhouse with a daily high

temperatureofabout50◦C untildryand thenweighed.Leaves,

stems,androotsweredriedinovensat55◦Ctoaconstantweight

andweightsrecorded.

Nitrogen,P,K,Ca,Mg,Fe,Mn,andZnconcentrationwere

deter-minedasdescribedabove.WeightofN,P,K,Ca,Mg,Fe,Mn,orZn

foreachcomponentoftheplantwasdeterminedbymultiplying

thecomponentweightbytherespectivenutrientconcentration.

2.2.4. Experimentaldesignanddataanalysis

Treatments were arranged in a randomized complete block

designwithseventreatments(describedabove)and ten

single-plantreplications.Datawereanalyzedusingamixedmodel(PROC

MIXEDin SAS 9.4 software; SAS Institute, Cary,NC). Weighted

meanswerecalculatedusingLSMEANS withmeancomparisons

usingtheprotectedLSD(DIFFoption).

2.3. Experiment3,fertilizersolubilitykinetics

Thekineticsof nutrientrelease fromeach fertilizer material

listedabovefortreatments1–6(Section2.2.2),plusCRF,was

mon-itoredunderlaboratoryconditions.Fertilizerswereweighedand

placed in250mLbottles witha pH6 buffersolution(0.1MNa

acetate)toachieve asolid:solutionratioof1:2500.A pH6was

chosensincethiswasrepresentativeofthepHofthesoilusedin

thefieldexperiments.Foreachoftheseventreatments,six

sam-plesrepresentednutrientconcentrationsmeasuredat0.5,1,3,6,

24,and48hafterinitiationoftheexperiment.Eachtreatment-time

wasreplicatedthreetimes.Bottleswereplacedonareciprocating

shakerandremovedattheappropriatetimesforanalysis.Solutions

wereallowedtosettleforfiveminutesbeforedecanting,andthen

analyzedforP,Ca,andMgbyatomicemissionspectroscopy,and

NH4-NandNO3-Nbyflowinjectionautoanalyzer(LACHAT,1994).

Solubility wasquantified and normalized by expressing the

massofthenutrientdissolvedpermassofnutrientcontainedin

thematerial.Thus,avalueofoneindicates100%solubilitywith

respecttoagivennutrient.

3. Results

3.1. Experiment1,magnesiumammoniumphosphateversus

controlledreleasefertilizer

Plantheightandwidth2weeksafterplantingandplantwidth

4 weeks after planting were greater for plants fertilized with

MAP(12.4cm,20.0cm,and34.4cm,respectively)thanforthose

fertilizedwithCRF (11.5cm, 18.5cm, and32.2cm, respectively)

(Table 1). Plants receiving fertilizer, regardless of source were

taller(26.2cm)andwider (34.5cm)4 weeksafterplantingand

wider(68.0cm)8weeksafterplantingthancontrolplants(22.5cm,

29.8cm,and61.0cm,respectively).Plantheightandwidthofplants

receivingMAPincreasedlinearlyasrateincreasedat2,4,and8

weeksafterplanting.Plantheightandwidthat4weeksafter

plant-ingandplantwidth8weeksaftertransplantingincreasedlinearly

as CRF rateincreased.Above-ground plantbiomass (stems and

leaves)wasgreaterwithfertilizerthanwithout,butdidnotdiffer

betweenthefertilizers.Above-groundbiomassincreasedlinearly

withMAPrate,butnorelationshipexistedbetweenabove-ground

biomassandCRFrate.

Thenumber,weightandperfruitweightofediblefruitdidnot

differamongfertilizersorbetweenuntreatedcontrolplantsand

thosereceivingfertilizer(Table2).Incontrast,totalweightand

perfruitweightofcullswasgreaterwithMAP(278.2gand22.7g,

respectively)thanwithCRF(193.9gand19.4g,respectively).The

numberofcullsandtotalweightofcullswasgreaterwitheither

fertilizer(8culls and284g,respectively)thanfornon-fertilized

controlplants(3cullsand93g,respectively).Thenumberofedible

fruit,numberofculls,andtotalweightofcullsincreasedlinearly

withincreasedMAPrate.Numberofcullsincreasedlinearlywhile

totalcullweightincreasedcurvilinearlyasCRFrateincreased.

FoliarNconcentrationdidnotdifferbetweenthetwofertilizer

treatments orbetweenplants receivingfertilizerand untreated

controlplants(Table3).AcurvilinearrelationshipbetweenMAP

concentrationandfoliarNconcentrationoccurredsuchthatplants

receiving2.45or4.9gm−2Nhadlowerfoliarconcentrationsthan

plantsreceivingnoMAPorMAPat9.8gm−2N.

Phosphorus concentrationin leavesdidnotdiffer regardless

offertilizertreatment,andPconcentrationinleavesfromplants

receivingeitherfertilizerdidnotdifferfromthatofnonfertilized

controlplants (Table3).Acurvilinear relationshipbetweenleaf

PconcentrationandMAPapplicationrateindicatedfertilization

with9.8gm−2NderivedfromMAPresultedinthehighestleafP

concentration.ThusitappearsthatMAPaddedmorePthanCRF

resultinginasignificanttrendbetweenapplicationrateandplant

Pconcentration.ControlledreleasefertilizerdidnotaffectleafP

concentration.

Plantsreceivingfertilizer(regardlessofsource)hadagreater

leafKconcentrationthannonfertilizedplants(Table3).Notrends

betweenKconcentrationandfertilizerapplicationrateoccurred

foreitherfertilizer.Notethatbothfertilizerscontainedonlytrace

amountsofK.LeafCaandMg concentrationswerenotaffected

bypresenceorabsenceoffertilizerorbyfertilizertype(datanot

shown).

NodifferencesinfoliarFe,Mn,orZnconcentrationoccurred

betweenplantsfertilizedwithMAPorCRForbetweenthe

non-fertilizedandfertilizedplants(datanotpresented).Likewise,no

trendsinfoliarFeorMnconcentrationoccurredwhenplantswere

(5)

Table1

Tomatoplantheightandwidth(averageoftwoperpendicularmeasurements)2,4,and8weeksafterplanting(WAP)andabove-groundplantbiomass(stemsandleaves)at

harvestwithselectedratesofmagnesiumammoniumphosphate(MAP)orcontrolledreleasefertilizer(CRF)in2011.n=10.

Fertilizer Concentration(g/m2) 2WAP 4WAP 8WAP Above-groundbiomass(g)

Height(cm) Width(cm) Height(cm) Width(cm) Height(cm) Width(cm)

None 0 11.4 19.4 22.5 29.8 65.4 61.0 1596 MAP 2.45 11.7 18.2 24.2 33.8 67.4 64.0 1730 4.90 12.3 19.9 25.8 35.6 68.0 68.5 1833 9.80 13.9 22.4 29.8 38.6 71.6 70.2 2182 CRF 2.45 11.3 17.5 24.5 30.8 66.0 69.1 2009 4.90 11.9 19.1 26.6 34.3 67.9 67.2 1835 9.80 11.4 18.0 26.3 34.1 70.6 69.3 1811 Contrasts: MAPvs.CRF * ** NS ** NS NS NS Controlvs.fertilizer NS NS *** *** NS ** * MAP Lineara ** ** *** *** * ** ** CRF Linear NS NS ** ** NS * NS

NS,*,**,***Contrastsnotsignificant(NS)orsignificantatP0.05,0.01,or0.001,respectively.

aQuadraticandResidualtrendswerenotsignificantforheightorwidthatanynumberofdaysaftertreatmentforeitherfertilizer(P0.05).Likewisequadraticandresidual

trendswerenotsignificantforabove-groundbiomass.

Table2

Cumulativeedibleandcullfruitnumber,freshweight,andweightperfruitfromtomatoplantsfertilizedwithselectedratesofmagnesiumammoniumphosphate(MAP)or

controlledreleasefertilizer(CRF)in2011.n=10.

Fertilizer Rate(g/m2) Ediblefruit Culls

Fruit(no.) Totalwt.(g) Perfruitwt.(g) Fruit(no.) Totalwt.(g) Perfruitwt.(g)

None 0 18 887 50.8 3 93 22.2 MAP 2.45 19 904 51.0 8 334 29.7 4.90 16 996 69.1 7 278 18.3 9.80 25 1213 46.7 11 408 20.7 CRF 2.45 23 1053 48.2 7 220 14.4 4.90 22 1129 51.6 7 259 27.2 9.80 22 1030 41.8 7 203 13.6 Contrasts: MAPvs.CRF NS NS NS NS * * Controlvs.fertilizer NS NS NS *** *** NS MAP Linear * NS NS *** *** NS Quadratic NS NS * NS NS NS Residual NS NS NS * * NS CRF Linear NS NS NS * NS NS Quadratic NS NS NS NS * NS Residual NS NS NS NS NS NS

NS,*,**,***Contrastsnotsignificant(NS)orsignificantatP0.05,0.01,or0.001,respectively.

Table3

Nitrogen(N),phosphorus(P)andpotassium(K)percentageinleavesoftomatoplantsfertilizedwithselectedratesofmagnesiumammoniumphosphate(MAP),controlled releasefertilizer(CRF),ornofertilizer(control)in2011.n=4.Orthogonalcontrastsindicateifthereweresignificantdifferencesbetweenfertilizertreatmentsorsignificant trends(linearorquadratic)betweenappliedNrateandleafN,P,orKconcentrationwithineachfertilizer.

Fertilizer Rate(g/m2) LeafNconcn(%) LeafPconcn(%) LeafKconcn(%)

None 0 3.94 0.186 3.37 MAP 2.45 3.69 0.168 3.06 4.90 3.69 0.162 3.24 9.80 4.02 0.201 3.44 CRF 2.45 3.98 0.215 3.52 4.90 3.88 0.180 3.46 9.80 3.98 0.184 3.47 Contrasts: Controlvs.fertilizer NS NS * MAPvs.CRF NS NS NS MAP Linear NS NS NS Quadratic ** * NS Residual NS NS NS CRF Linear NS NS NS Quadratic NS NS NS Residual NS * NS

(6)

Table4

Foliarzinc(Zn)concentrationsfromtomatoplantsfertilizedwithselectedratesof magnesiumammoniumphosphate(MAP)oracontrolledreleasefertilizer(CRF). n=4.

Fertilizer Rate(g/m2) Znconcn(␮g/gDW)

None 0 34.8 MAP 2.45 28.2 4.90 30.5 9.80 31.8 CRF 2.45 39.2 4.90 34.2 9.80 28.2 Contrasts: MAPvs.CRF NS Controlvs.fertilizer NS MAP Lineara NS CRF Linear *

NS,*ContrastsnotsignificantorsignificantatP0.05,respectively.

aQuadraticandResidualtrendswerenotsignificantforZnconcentrationswith

eitherfertilizer(P≤0.05).

Table5

Stemdryweightoftomatoplantsreceivingselectedfertilizertreatmentsin2012.

n=10.

Fertilizeradded Stemdryweight(g)

None 141abz

MAPy 171b

Handmixy 136ab

Ammoniumsulfate 116a

Triplesuperphosphatey 120a

Calciumsulfate 119a

Magnesiumoxide 110a

z Meansfollowedbythesameletterarenotsignificantlydifferentbytheprotected

LSD,P≤0.05.

yMAP=magnesiumammonium phosphate;handmixrefers toamixtureof

ammoniumsulfate((NH4)2SO4),triplesuperphosphate,calciumsulfate(CaSO4),

andMgoxide(MgO)atthesameconcentrationaseachofthesefertilizersapplied

inindividualfertilizertreatments.

concentrationwasnegativelyrelatedtoCRFratebutnotrendwas

apparentwithMAP(Table4).

3.2. Experiment2,elementalcombinations

StemdryweightofplantsreceivingMAPwasgreaterthanthat

ofplantsfertilizedwithammoniumsulfate,TSP,Casulfate,orMg

oxide(Table5).Root,leaf,andtotaldryweightdidnotdifferamong

fertilizertreatments(datanotpresented).

ThetotalfreshweightofediblefruitwasgreaterwithMAPor

thehandmixtureoffertilizerthanwithnofertilizerorwith

ammo-niumsulfate,Casulfate,orMgoxide(Table6).Theweightofgreen

fruitharvestedwasgreaterwithCasulfatethanwithMAP,butthe

weightofgreenfruitfromplantsinotherfertilizertreatmentsor

thecontroltreatmentdidnotdifferfromeithertheMAPtreatment

ortheCasulfatetreatment.Likewise,thenumberofgreenfruitper

plantwasgreaterwithCasulfatethanwithMAP,butother

treat-mentsdidnotdifferinnumberofgreenfruitperplantfromthose

treatedwithCasulfateorMAP.Cullandtotalfruitfreshweight

andediblefruit,cullandtotalfruitnumberperplantdidnotdiffer

amongtreatments(datanotpresented.

Theweightofediblefruitharvesteddidnotdifferamongthe

nonfertilized,MAP,andhandmixtreatmentsduringthefirstthree

4-dayharvestintervals(Fig.1).Duringharvestinterval4through6,

plantsreceivingMAPorthehandmixtureyieldedagreaterweight

ofediblefruitthanplantsthatreceivednofertilizer.Neartheendof

thegrowingseason(harvestintervals7and8),presenceorabsence

offertilizerdidnotaffectediblefruityield.Thelackofresponseto

fertilizertreatmentattheendofthegrowingseasonmayberelated

Table6

Cumulativefreshweightandnumberofedibleorgreenfruitfromtomatoplants

receivingselectedfertilizertreatmentsin2012.n=10.

Fertilizeradded Ediblefruit Greenfruit Freshfruitweight/plant(g)

None 3861az 2996bc

MAPy 5478b 1961a

Handmixy 5770b 2636abc

Ammoniumsulfate 4263a 2834abc

Triplesuperphosphate 4838ab 2107ab

Calciumsulfate 4030a 3368c

Magnesiumoxide 3534a 2523abc

Fruitnumber/plant

None 19 25ab

MAPy 28 19a

Handmixy 30 25ab

Ammoniumsulfate 21 26ab

Triplesuperphosphate 24 23ab

Calciumsulfate 20 33b

Magnesiumoxide 19 25ab

z Meanswithincolumnsandfruitweightorfruitnumberfollowedbythesame

letterarenotsignificantlydifferentbytheprotectedLSD,P≤0.05.

yMAP=magnesiumammoniumphosphate;handmixreferstoamixtureof

ammoniumsulfate((NH4)2SO4),triplesuperphosphate,calciumsulfate(CaSO4),

andmagnesiumoxide(MgO)atthesameconcentrationaseachofthesefertilizers

appliedinindividualfertilizertreatments.

toexcessivetemperaturesreducingfruitsetinalltreatments.Sato

etal.(2000)showedthatthereleaseofpollengrainsandpollen

graingerminationisdecreasedinelevatedtemperaturesresulting

inlowerfruitset.Greaterflowerabortionalsoresultsinlowerfruit

setunderelevatedtemperatures(Satoetal.,2004).

Nitrogen concentrationdid notdiffer among fertilizer

treat-ments for anyplant parttested (datanot presented). Nitrogen

contentdidnotdifferamongfertilizertreatmentsforroots,stems,

orleaves,butredandgreenfruitNcontentdifferedamong

treat-ments.Plantsreceivingthehandmix offertilizerhadgreaterN

contentinredfruitthanredfruitreceivingnofertilizer,

ammo-niumsulfate,orMgoxide(Table7).Nitrogencontentofredfruitin

MAP,TSPorCasulfatetreatmentsdidnotdifferfromthatoffruit

fromplantsreceivingthehandmixtureorplantsreceivingno

fer-tilizer,ammoniumsulfate,orMgoxide.Nitrogencontentofgreen

fruitatterminationofthestudywasgreaterwithnofertilizerorCa

sulfatethanwithMAPorTSP.GreenfruitNconcentrationinplants

treatedwiththehandmix,ammoniumsulfate,orMgoxidedidnot

differfromthoseofplantsreceivingnofertilizerorCasulfateor

fromplantsreceivingMAPorTSP.

PhosphorusandKconcentrationdidnotdifferamongfertilizer

typeforanyofthetissuestested(datanotpresented).Phosphorus

andKcontentweregreatestingreenfruitfromnonfertilizedplants

orthosereceivingCasulfatewhilegreenfruitfromplantsfertilized

withMAPorTSPhadthelowestPandKconcentrations(Table7).

PhosphorusandKconcentrationingreenfruitfromplants

receiv-ingthehandmixture,ammoniumsulfate,orMgoxidedidnotdiffer

fromthatofanyotherfertilizertreatment.PhosphorusandK

con-tentdidnotdifferamongfertilizertreatmentsforanyotherplant

part.

Calciumconcentrationdidnotdifferamongfertilizertreatments

for anyplant part(datanot presented).Leaves of nonfertilized

plantsorthosereceivingMAPhadgreaterCacontentsthanthose

fertilizedwithammoniumsulfateorMgoxide(Table7).Leavesof

plantsfertilizedwiththehandmix,TSP,orCasulfatedidnot

dif-ferinCacontentfromleavesofplantsfertilizedwithanyother

fertilizer.RedfruitofplantsfertilizedwithMAPhadagreaterCa

contentthanredfruitfromanyotherfertilizertreatment(including

thenonfertilizedcontrol)exceptforthehandmix.Redfruitfrom

plantsfertilizedwiththehandmixdidnotdifferinCacontentfrom

(7)

nonfer-Fig.1.Tomatoharvestat4-dayintervalsfromplantsfertilizedwith4.9gm−2magnesiumammoniumphosphate(MAP),ahandmixtureofcalciumsulfate,magnesium

oxide,ammoniumsulfate,andtriplesuperphosphatetoprovidethesameamountofCa,Mg,N,andPastheMAP,ornotfertilized.Barswiththesameletterwithinharvest

intervalarenotsignificantlydifferentbytheprotectedLSD,P≤0.05.

Table7

Nitrogen(N),phosphorus(P),potassium(K)andcalcium(Ca)content(g/plantpart)

intomatoleaves,redfruit,andgreenfruitatharvestofplantsreceivingselected

fertilizertreatmentsin2012.n=10.

Fertilizerapplied Leaf Redfruit Greenfruit Total Ncontent(g/plantpart)

None 8.99 12.0az 4.12b 31.2

MAPy 8.68 16.0ab 2.77a 34.0

Handmixy 7.30 17.9b 3.51ab 32.4

Ammoniumsulfate 6.81 12.0a 3.71ab 26.6

Triplesuperphosphate 7.00 14.3ab 2.75a 27.7

Calciumsulfate 9.18 13.4ab 4.52b 32.9

Magnesiumoxide 6.46 11.4a 3.20ab 21.2

Pcontent(g/plantpart)

None 0.454 1.15 0.439b 2.52

MAPy 0.415 1.37 0.280a 2.52

Handmixy 0.330 1.55 0.361ab 2.48

Ammoniumsulfate 0.325 1.18 0.381ab 2.19

Triplesuperphosphate 0.362 1.35 0.289a 2.28

Calciumsulfate 0.461 1.23 0.476b 2.62

Magnesiumoxide 0.300 1.00 0.344ab 1.60

Kcontent(g/plantpart)

None 6.28 20.98 7.05b 43.27

MAPy 5.26 27.07 4.48a 46.59

Handmixy 4.37 30.02 5.89ab 45.49

Ammoniumsulfate 4.28 22.06 6.29ab 38.930

Triplesuperphosphate 4.79 25.85 4.84a 41.11

Calciumsulfate 5.99 23.48 7.70b 45.52

Magnesiumoxide 5.20 19.25 5.59ab 29.50

Cacontent(g/plantpart)

None 9.83b 0.457a 0.18b 13.52c

MAPy 10.16b 0.621b 0.10a 13.88c

Handmixy 7.90ab 0.603ab 0.13ab 10.85ac

Ammoniumsulfate 6.49a 0.502a 0.15ab 9.78ab

Triplesuperphosphate 7.28ab 0.520a 0.12a 9.89ab

Calciumsulfate 9.17ab 0.444a 0.19b 13.00bc

Magnesiumoxide 5.67a 0.427a 0.13ab 7.87a

z MeanswithincolumnsandN,P,K,orCacontentfollowedbythesameletterdo

notsignificantlydifferbyLSD,P≤0.05.

yMAP=magnesiumammonium phosphate,handmixreferstoamixtureof

ammoniumsulfate((NH4)2SO4),triplesuperphosphate,calciumsulfate(CaSO4),

andmagnesiumoxide(MgO)atthesameconcentrationaseachofthesefertilizers

appliedinindividualfertilizertreatments.

tilizedplants.Calciumcontentofgreenfruitfromplantsfertilized

withMAPorTSPwaslowerthanthatofgreenfruitfrom

nonfer-tilizedplantsorthosefertilizedwithCasulfate.Calciumcontent

ofgreenfruitfromplantsfertilizedwiththehandmix,ammonium

sulfate,orMgoxidedidnotdifferfromthatofgreen fruitfrom

anyotherfertilizertreatment.TotalplantCacontentwas

great-estinnonfertilizedplantsorthosefertilizedwithMAP,andlowest

inthosefertilizedwithMgoxide,TSPorammoniumsulfate.Total

plantCaofplantsreceivingCasulfatewasgreaterthantotalplant

CaofplantsreceivingMgoxide,butdidnotdifferfromthatof

non-fertilizedplantsorthosefertilizedwithMAP.Plantsfertilizedwith

thehandmixdidnotdifferinplantCacontentfromplantsinany

fertilizertreatmentornonfertilizedcontrolplants.

Magnesiumconcentrationandcontentdidnotdifferamong

fer-tilizertreatmentsforroots,stems,orleaves(datanotpresented).

Magnesiumconcentrationalsodidnotdifferamongfertilizer

treat-mentsforredfruit,butgreenfruitfromplantsfertilizedwithtriple

superphosphatehadagreaterMgconcentrationthangreenfruit

fromplantsfertilizedwiththehandmixorMg oxide(Table8).

GreenfruitofplantsfertilizedwithMAPorCasulfatedidnotdiffer

inMgconcentrationfromgreenfruitofplantsfertilizedwithany

otherfertilizerornonfertilizedplants.Magnesiumcontentinred

fruitfromplantsfertilizedwithMAPorthehandmixwasgreater

thanforredfruitfromplantsfertilizedwithMgoxide.Redfruit

fromnonfertilizedplantsorplantsfertilizedwithammonium

sul-fatehadalowerMgcontentthanredfruitfromplantsfertilized

withthehandmix.Redfruitfromplantsfertilizedwithtriple

super-phosphateorCasulfatedidnotdifferinMgcontentfromredfruit

ofnonfertilizedplantsorplantsfertilizedwithanyotherfertilizer.

Incontrast,greenfruitfromplantsfertilizedwithCasulfatehad

agreaterMgcontentthangreenfruitfromplantsfertilizedwith

MAPorTSP.Green fruitfromnonfertilizedcontrolplantshad a

greaterMgcontentthangreenfruitfromplantsfertilizedwithMAP.

Greenfruitfromplantsfertilizedwiththehandmix,ammonium

sulfate,orMgoxidedidnotdifferinMgcontentfromgreenfruitof

nonfertilizedplantsorplantsreceivinganyotherfertilizer.

IronandMnconcentrationsweresimilaramongfertilizer

treat-mentsforallplantpartstested(datanotpresented).Likewise,Fe

andMncontentofrootsandstemsandtotalplantFeandMn

con-tentdidnotdifferamongfertilizertreatments(datanotpresented).

(8)

Table8

Magnesium(Mg)concentration(%)andcontent(g/plantpart)inredandgreen

tomatofruitatharvestofplantsreceivingselectedfertilizertreatmentsin2012.

n=10forallotherplantparts.

Fertilizerapplied Plantpart

Redfruit Greenfruit Mgconcn(%DW)

None 0.167 0.242bcz

MAPy 0.158 0.238abc

Handmixy 0.165 0.232ab

Ammoniumsulfate 0.153 0.229a

Triplesuperphosphate 0.166 0.251c

Calciumsulfate 0.182 0.238abc

Magnesiumoxide 0.153 0.235ab

Mgcontent(g/plantpart)

None 0.750ab 0.312bc

MAPy 1.003bc 0.204a

Handmixy 1.105c 0.261abc

Ammoniumsulfate 0.745ab 0.276abc

Triplesuperphosphate 0.913abc 0.225ab

Calciumsulfate 0.876abc 0.341c

Magnesiumoxide 0.664a 0.252abc

z MeanswithincolumnsandMgconcentrationorcontentfollowedbythesame

letterdidnotsignificantlydifferbyLSD,P≤0.05.Meanswithincolumnsand

ele-mentalconcentrationorcontentwithoutlettersdidnotsignificantlydiffer(P≤0.05)

amongtreatments.

yMAP=magnesiumammonium phosphate,handmixreferstoa mixtureof

ammoniumsulfate((NH4)2SO4),triplesuperphosphate,calciumsulfate(CaSO4),

andmagnesiumoxide(MgO)atthesameconcentrationaseachofthesefertilizers

appliedinindividualfertilizertreatments.

treatments,butFecontentofgreenfruitfromplantsfertilizedwith

ammoniumsulfate,Casulfate,ornonfertilizedcontrolplantswas

greaterthanwhenfertilizedwiththehandmixorTSP(Table9).

GreenfruitfromplantsfertilizedwithCasulfatehadagreaterFe

contentthanwhenfertilizedwithMgoxide,TSP,orthehandmix.

Leaf Mn contentwas greaterin nonfertilized plants than in

plantsfertilizedwithammoniumsulfate(Table9).Manganese

con-tentofleavesfromnonfertilizedplants orplantsfertilizedwith

ammoniumsulfatedidnotdifferfromthatofleavesfromplants

receivinganyotherfertilizertreatment.Manganesecontentofred

fruitfromplantsfertilizedwiththehandmixwasgreaterthanthat

ofredfruitfromplantsfertilizedwithMAP.Manganesecontentof

redfruitfertilizedwithMAPwasgreaterthanforredfruitfrom

plantsfertilizedwithMgoxideornonfertilizedplants.Redfruit

fromplantsfertilizedwithammoniumsulfate,TSP,orCasulfate

didnotdifferinMncontentfromredfruitofplantsfertilizedwith

MAP,Mgoxide,ornonfertilizedplants.Fertilizertreatmentsdid

notaffectMncontentofgreenfruit.

Zincconcentrationandcontentdidnotdifferamongfertilizer

treatmentsforrootsorstems,andtotalplantZncontentwassimilar

amongfertilizertreatments(datanotpresented).Zinc

concentra-tionwasgreaterinleavesofplantsfertilizedwithCasulfateorMg

oxidethaninfoliagefromplantsfertilizedwithammoniumsulfate,

thehandmix,ornonfertilizedplants(Table9).FoliarZn

concen-trationofplantsfertilizedwithMAPorTSPwasgreaterthanfoliar

Znconcentrationofplantstreatedwithammoniumsulfate,butdid

notdifferfromplantsreceivinganyotherfertilizerornonfertilized

plants.Zincconcentrationofgreenfruitfromplantsfertilizedwith

MAPwasgreaterthanZnconcentrationofgreenfruitfromplants

fertilizedwiththehandmix,Casulfate,orMgoxide,butgreenfruit

fromplantsfertilizedwithammoniumsulfate,TSP,ornonfertilized

plantsdidnotdifferinZnconcentrationfromgreenfruitofplants

fertilizedwithMAP,thehandmix,Casulfate,orMgsulfate.

Foliar Zncontent from plants fertilizedwith Casulfate was

greaterthanforplantsfertilizedwiththehandmix,ammonium

sulfate,orTSP.Zinccontentofredfruitfromplantsfertilizedwith

thehandmixwasgreaterthanforredfruitfromanyotherfertilizer

Table9

Iron(Fe)andmanganese(Mn)contentandzinc(Zn)concentrationandcontent

inleaves,redfruitandgreenfruitoftomatoplantsreceivingselectedfertilizer

treatmentsin2012.n=10forallplantparts.

Fertilizerapplied Plantpart

Leaf Redfruit Greenfruit Ironcontent(mg/plantpart)

None 22.9 21.5 11.2cdz

MAPy 23.0 27.0 10.3bcd

Handmixy 18.6 32.1 7.4ab

Ammoniumsulfate 16.3 27.1 11.4cd

Triplesuperphosphate 17.1 26.7 5.7a

Calciumsulfate 22.1 25.3 12.8d

Magnesiumoxide 14.9 22.3 7.9abc

Manganesecontent(mg/plantpart)

None 30.2b 7.7a 3.1

MAPy 26.6ab 10.5b 2.2

Handmixy 20.3ab 12.7c 2.8

Ammoniumsulfate 17.4a 8.1ab 2.9

Triplesuperphosphate 18.6ab 9.3ab 2.2

Calciumsulfate 25.0ab 9.4ab 3.5

Magnesiumoxide 19.9ab 6.9a 2.8

Zincconcn.(␮g/gDW)

None 29ab 25 64ab

MAPy 34bc 22 103b

Handmixy 31ab 29 49a

Ammoniumsulfate 27a 26 66ab

Triplesuperphosphate 35bc 27 60ab

Calciumsulfate 39c 28 56a

Magnesiumoxide 38c 26 32a

Zinccontent(mg/plantpart)

None 8.7abc 11.2a 8.3c

MAPy 9.8bc 13.9a 9.8c

Handmixy 7.2ab 19.4b 5.5ab

Ammoniumsulfate 6.0a 12.6a 7.9bc

Triplesuperphosphate 7.8ab 15.1a 5.4ab

Calciumsulfate 11.1c 13.1a 8.1bc

Magnesiumoxide 7.9abc 11.0a 3.4a

z MeanswithincolumnsandFeorMncontentorZnconcentrationorcontent

followedbythesameletterdonotsignificantlydifferbyLSD,5%level.Meanswithin

columnsandFeorMncontentwithoutlettersdidnotsignificantlydiffer(5%level)

amongtreatments.

yMAP=magnesiumammoniumphosphate,handmixrefersto amixtureof

ammoniumsulfate((NH4)2SO4),triplesuperphosphate,calciumsulfate(CaSO4),

andmagnesiumoxide(MgO)atthesameconcentrationaseachofthesefertilizers

appliedinindividualfertilizertreatments.

treatment(Table9).Zinccontentofgreenfruitfromnonfertilized

plantsorthosefertilizedwithMAPwasgreaterthanZncontent

ofgreenfruitfromplantsfertilizedwiththehandmix,TSP,orMg

oxide.

3.3. Experiment3,fertilizersolubilitykinetics

Basedonthesolubilityindexexperiment,nutrientreleasewas

alwaysfasterforconventionalsourcessuchasCasulfate,

ammo-niumsulfate,andTSP,comparedtoMAPandCRF(Fig.2).Infact,the

conventionalfertilizersreachednear100%solubilityveryquickly

forNandCa.Althoughthereleasewasslower,MAPwasgenerally

abletoachievenearlyequalnutrientreleasetoconventional

nutri-entsourcesbyhour48ofthesolubilityexperiment.Anexception

tothisgeneralobservationwasforMg;MAPreleasedmoreMgin

ashortertimecomparedtoMgoxide.Ingeneral,MAPwasmuch

moresolubleandhadfasterdissolutionkineticsthanCRP.

4. Discussion

Inthefirstexperiment,plantsreceivingtheslowlysoluble

fer-tilizerMAPweretallerandwiderthanthosereceivingCRFearly

(9)

Fig.2. Relativesolubility(nutrientmassreleased/totalnutrientcontent,avalueof0indicatescompleteinsolubilityand1completesolubility)ofnitrogen,controlled

releasefertilizer(CRF.circle)Y=0.0144logX-0.0004,R2=0.84,p=0.01;handmix(square),Y=0.0126logX+0.9612,R2=0.39,p=notsignificant;triplesuperphosphate(TSP,

triangle),Y=0.1933logX+0.091,R2=0.87,p=0.01;ammoniumsulfateisnotshown,allrelativesolubilityvalueswere1.Phosphorus,CRF(circle)Y=0.009logX-0.0006,

R2=0.81,p=0.01;handmix(triangle)Y=0.11logX+0.32,R2=0.98,p=0.001,magnesiumammoniumphosphate(MAP,square)Y=0.17logX+0.10,R2=0.86,p=0.01,TSP

(X)Y=0.12logX+0.37,R2=0.95,p=0.001.Calcium,handmix(triangle)Y=0.11logX+0.62,R2=0.97,p=0.001;MAP(square)Y=0.11logX+0.006,R2=0.77,p=0.05,TSP(X)

Y=0.072logX+0.21,R2=0.88,p=0.01;calciumsulfate(circle)Y=0.09logX+0.68,R2=0.73,p=0.05.Magnesium,handmix(triangle)Y=0.12logX-0.004,R2=0.81,p=0.01;

MAP(square)Y=0.17logX+0.97,R2=0.87,p=0.01;magnesiumoxide(circle)Y=0.027logX-0.0035,R2=0.75,p=0.05.

wasprobablyquickerthantheCRFresultinginfasterplantgrowth.

Plantheightsbetweenfertilizedplantsweresimilarbyfourweeks

afterplantingandplantwidthsweresimilarbyeightweeks.The

positiverelationshipbetweenMAPconcentrationwithheightand

widthbutlackofaffectusingCRFaftertwoweeksgrowthsupports

thistheory.Byfourweeks,positivetrendsbetweenfertilizerwith

heightandwidthwereapparentforbothfertilizers(Table1).

NeitherslowlysolubleMAPnorCRFconsistentlyaffected

edi-blefruityieldduringthefirstyear,butthenumberandweightof

cullswasgreaterwithbothfertilizersthanwithnofertilizer.This

differencemaybeexplainedbythelargernumberandweightof

fruitformedinthepresenceoffertilizercomparedtowithout

fer-tilizer.Cullswereprimarilyduetomechanicaldamagefrombirds

andotherwildlife.Thelargernumberoffruitorlargersizedfruit

infertilizedtreatmentsmayhavebeenmorevisiblyappealingand

readilyaccessibletowildlifethanintreatmentswithoutfertilizer.

AstudyofAmericanrobins(Turdismigratorius)showedthatberry

choicesmadeamong Crataegusmonogynafruitswerecorrelated

withfruitabundance, fruitsize,and fruitpulpiness(Sallabanks,

1993).Whilenottestedinthisstudy,itisalsopossiblethatfruit

fromfertilizedplantscontainedcompoundsthatmadethosefruit

moreattractivethanfruitfromnonfertilizedplants.Flemingetal.

(2008)foundthatinnectarivorousbirdlineageshexosewasthe

preferredsugar rather thansucrose in dilute diets,but sucrose

wasthepreferredsugar sourcein moreconcentrated diets.We

speculatethatthegreaterfruitabundance,highersolublesolids

orproteinconcentrationinfruitfromfertilizedplantsmayhave

contributedtogreaterdepredationlosses.

Inthesecondexperimentstemdryweightsofplantsandtotal

freshweightofedible fruitreceivingMAPorthehandmixture

ofindividualelementsgenerallywerelargerandproducedmore

fruitthanthoseplantsthatreceivedindividualnutrientsor

con-trolplants.Nonutrientdeficiencysymptomswerevisibleinany

treatment,includingthecontrols.Liebig’sLawof theMinimum

statesthatdeficiencyorabsenceofonenutrientwithallothers

presentlimitsplantgrowth(vanderPloegetal.,1999).Magnesium

ammoniumphosphateandthehandmixturehadseveral

nutri-entsmixedtogethertomeetplantdemands;whereas,ammonium

sulfate,Casulfate,orMgoxideprovidedonlyoneortwonutrient

elementsforplantuse.Fertilizationwithasingleelementappeared

toresultinbelowoptimalconcentrationsofcertainessential

ele-mentsonthose treatmentsthataffectedplantgrowthandfruit

development.Differencesinplantperformancedidnotconsistently

pointtoasingleelementbeinginadequate,butsuggestedthatfor

certainaspectsofplantdevelopmentdifferentelementswerein

shortsupply.PlantsreceivingCasulfatehadgreaternumbersand

weightsofgreenfruitatterminationoftheexperimentthanplants

receivingMAP(Table6).Calciumisimportantinfruitcellwalland

cellmembranestability,andCadeficienciesoftenappearasfruit

malformationsincludingblossomendrotandcatfacingin

toma-toes(MayfieldandKelley,2012).Whilethesesymptomswerenot

presentinanytreatment,thehighlysolubleCasulfatemayhave

providedmoreCaforplantuptakeresultingingreatergreenfruit

numbersandweightsattheconclusionofthestudythanwiththe

slowlysolubleMAP.

Davidsonet al.(2000)notedthatnutrientintensityand

bal-ancearereflectedinthechemicalcompositionofplantpartswhen

plantsareinthesamestageofgrowthordevelopment,allother

factorsbeingconstant.In2011foliarNconcentrationinall

fertil-izertreatmentswaswithinthesufficiencyrangeof3.5%to5.1%for

broadleavedvegetableplants(BarkerandBryson,2007).However,

asignificanttrendofincreasingfoliarNconcentrationwithMAP

applicationrateexisted(Table3).Thefactthatthistrendoccurred

forMAPandnotCRFsuggeststhatNsuppliedfromCRFwasnot

assolubleasMAP.ThesolubilityindextestconfirmedthatMAP

releasedmoreNthanCRF,andatafasterrate(Fig.2).In2012,foliar

NconcentrationforuntreatedplantsandthosereceivingMAPwere

belowthesufficiencyrange,buttheydidnotdifferfromthoseof

plantsinothertreatmentsandwerenotlowenoughthatN

defi-ciencysymptomswereapparent.Nitrogenconcentrationinboth

redandgreenfruitwassimilartofruitNconcentrationsreported

(10)

showednitrate-Ntobelacking,plantsabsorbedsimilaramountsof

Nregardlessoffertilizertreatments.Inthe1920sand1930s

cot-ton(GossypiumhirsutumL.)andwasacommoncropinthisregion,

anditwasoftengrownannuallyuntilsoilnutrientswere

inade-quatetoproduceaneconomicalreturn.Thisstudywasconducted

onsuchasite. Whencottonwasnolongerdeemedproductive,

thefieldwasabandonedandallowedtorevegetatenaturallyover

thenext60to80years.Whenitwastilledforthisstudy,the

pre-dominantvegetationwasnativeprairiegrassesandforbs.Organic

matterconcentrationsarerelativelyhighinsoilspopulatedwith

prairievegetation(Funderburg,1997)andwasabout2.3percent

inthis soil.Organicmatteris stableinuntilledsoiland usually

onlyabout5percentofitmineralizesyearly.Therateof

decom-positionisincreasedwithtillagewhentemperatureisfavorable

andtillageexposessoilorganicmattertooxygen,andirrigation

maintainsadequatemoisturetosupportrapidmineralizationby

microorganisms.WespeculatethatthissourceofN,notidentified

inthesoiltest,resultedinfewdifferencesintissueNconcentration

amongtreatments,despitelowsoilnitratepriortothestudy.

DifferencesinNcontentamongfertilizertreatmentsinredand

greenfruitwerenotduetodifferencesinNconcentrationamong

treatments,butratherduetodifferencesintheweightofredand

green fruit produced among the treatments. Elia and Conversa

(2012)notedthatexcessNresultsingreatervegetativegrowth

andlowerfruit set.In ourstudy,ammoniumnitratelikely

pro-videdNmorequicklythanMAP(Fig.2),butredfruitNcontent

didnotdifferbetweentheammoniumsulfate-treatedplantsand

MAP-treatedplants(Table7).TheinitialflushofsolubleNfrom

ammoniumsulfatemaynothavecorrespondedwiththetimingof

plantneedsforN,whileMAPservedasa slow-releaseNsource

(Fig.2).Incontrast,ammoniumsulfate waspresentinthehand

mix,andNcontentofredfruitwasgreaterwiththehandmixthan

withammoniumsulfatealone(Table7).Thissuggeststhatplantsin

theammoniumsulfatetreatmentlackedsomeotheressential

ele-mentthatresultedinlessfruitsetthanplantsreceivingthemixture

ofnutrientelementsinMAPorthehandmix.BecauseNcontent

ofredfruitfromthehandmix(containedN,P,S,Ca,andMg)was

greaterthanammoniumsulfate(containedNandS),andsincethe

handmixresultedinequalNcontentstoMAP(containedN,P,Ca,

andMg)andTSP(containedPandCa),itislikelythatincreasing

applicationofPaloneorincombinationwithCaimprovedoverall

Nuptake.

Inbothyears,Pconcentrationinallvegetativeplantparts

(rang-ingfrom0.109%to0.150%)regardlessoffertilizertreatmentwasat

thelowendofthesufficiencyrange(Sanchez,2007),andno

defi-ciencysymptomsappearedsupportingthatPconcentrationwas

adequate.Phosphorus concentrationofred andgreen fruitwas

greaterthanforvegetativeplantpartsandwaswellwithinthe

suffi-ciencyrange(Sanchez,2007)forplantsinallfertilizertreatments.

LeafK(3.36%),Ca(1.87%),andMg(0.51%)regardlessofpresence

orabsenceoffertilizerwerewithinestablishedsufficiencyranges

fortomato(Mengal, 2007;PilbeamandMorley,2007;Merhaut,

2007).TheunconventionalMAPreleasedPtothesamedegreeas

TSP,bothaloneandinamix,althoughthePreleasewassomewhat

delayedcomparedtoTSP.Comparedtotheun-conventionalCRF,

MAPreleasedmorePatafasterrate(Fig.2).

In2012,althoughP,K,andCaconcentrationdidnotdifferamong

fertilizertreatmentsinanyplanttissue,thetotalPandKcontentof

greenfruitandCacontentofleaves,redfruit,greenfruit,andtotal

Cacontentforplantsdifferedamongfertilizertreatments(Table7).

Thesevarianceswereattributedtodifferencesingrowthandfruit

yieldamong thefertilizer treatmentsin which biggerplants or

plantswithlargeryieldhadmorePandKingreenfruitandgreater

Cainleavesandfruit.Forexample,itisinterestingtonotethat

twoofthemostsolublePsources,asindicatedbythesolubility

experiment(MAPand TSP;Fig.2),containedsignificantlylessP

inthegreenfruitcomparedtothecontrolandCasulfate,which

receivednoP.ForCacontentsinleaves,redandgreenfruit,and

totalCa,noticethattheMAPandcontrolfertilitytreatmentswere

alwaysamongthetoptwo.Again,thissuggeststhattheabilityof

thefertilizertoreleasethenutrient(Fig.2)isnottheonlyfactor

thathasanimpactonCacontent.Itispossiblethatthetimingof

nutrientreleasecouldhaveaffectedthetotalCacontent;for

exam-ple,MAP,whichdidnotreleaseasmuchCaasCasulfate,provided

aslowreleaseofthenutrientthatmayhavecoincidedwithplant

uptakedemand.EventhoughCasulfate(eitheraloneorina

mix-ture)releasedmoreCathanMAP,theMAPtreatmentresultedin

greaterCacontentthanCasulfate,althoughnotalwayssignificant

(Table7).

Likewise,Mgconcentrationdidnotdifferforanytissuetested

exceptgreenfruit,buttheMgcontentofredfruitdifferedamong

fertilizertreatmentsduetomorefruitmassinsometreatments.

Magnesiumconcentrationofgreenfruitdifferedamongfertilizer

treatments,butitisinterestingtonotethatthegreatestMg

con-centration occurredwithTSP which contains noMg.Applied P

increasesrootgrowth(AnghinoniandBarber,1980;Borkertand

Barber,1985)andmayhavecontributedtoenhancedMguptake

andpartitioningtothegreenfruit.DespitethegreaterMg

concen-trationwithTSP,greenfruitfromplantsfertilizedwithCasulfate

containedmoreMgthanfruitfromplantsfertilizedwithTSP.Thus,

fruit yieldimprovedwithCa sulfate suchthat Mgcontent was

greaterinfruitfromthattreatmentdespitetheMgconcentration

advantageoffruitfromplantsfertilizedwithTSP.Theseresults

sug-gestthattheabilityofthefertilizertosupplyMghadlessimpact

ontheMgcontentofredandgreenfruitthandidthenutrient

bal-anceandaddedPsincethetopthreetreatmentsthatcontained

themostMginredfruitweretheonlyfertilizertreatmentsthat

addedP(Table8;mix,MAP,andTSP).Fromanotherperspective,

threeofthefourtreatmentswiththehighestMgcontentingreen

fruit(Table8;mix,MAP,andCasulfate)alladdedsulfate,which

increasesMgsolubility.Regardless,Fig.2showsthattheraw

abil-ityofthefertilizerstosupplyMgtosolutionwasthelargestand

mostefficient(withregardtotime)forMAPcomparedtotheother

fertilizerthatcontainedMg,eitheraloneorinamix(e.g.Mgoxide).

FoliarFe,Mn,and Znconcentrationswerewithinsufficiency

rangesfor field typetomato plants inalltreatments (Mills and

Jones, 1996).Ironand Mnconcentrations inthevarioustissues

testeddidnotdifferbyfertilizertreatment,buttotalFeandMn

contentinsometissuesdifferedbyfertilizertreatment.These

dif-ferenceswereassociatedwithtreatmentsaffectingdryweightof

thevariousplantparts.Thus,uptakeofFeandMnwasgreaterwhen

plantswerelargeralthoughconcentrationsofthesetwoelements

suggestednotreatmentdifferences.Incontrast,Znconcentration

differedinleavesandgreenfruitamongthefertilizertreatments.

AlthoughZnwasnotaddedasafertilizerothernutrientshada

small, but noticeable impacton leafZn concentration.BothCa

sulfateandMgoxidetreatmentsenhancedleafZnconcentration

compared tothecontrol,butotherplantparts wereunaffected

(Table9).TheZncontentofleavesandgreenfruitdidnotfollowthe

samepatternasZnconcentrationsinthesetissues,thustissue

con-centrationdoesnotaccountforallofthedifferencesinZncontent.

TheothervariableaffectingZncontentisdryweightofthevarious

plantpartsatharvest,whichimpactedZncontentofleaves,red

fruit,andgreenfruitmorethantheconcentration.

Fromthisstudy,weconcludethatthevariousfertilizerswere

effectiveinincreasingN,P,K,Ca,andMgand theymaintained,

increased,ordecreasedFe,Mn,andZninvariousplantparts.The

intensityoftheeffectsdiffereddependingonplantparttestedand

fertilizersource.Fertilizerdifferencesweremoreapparentintotal

nutrientcontentofvariousplantpartsthaninnutrient

concen-trationfor allofthenutrientsinvestigated.Thisreflectscertain

(11)

pro-ductionresultinginalargeamountofthenutrientabsorbedand

allocatedtoademandcenterthatwasnotdetectablebymeasuring

concentrationsbecauseofinherentvariability.Mixturesof

fertiliz-ers(MAP,CRF,andhandmix)didnotgreatlyaffectconcentration

ofN,P,K,Ca,orMgcomparedtotheindividualfertilizers.

Micronutrientcontentwasmoresensitivetofertilizertreatment

thanconcentrationforFeandMn.Thisreflectscertainnutrientsor

combinationsofnutrientsenhancinggrowthorproduction

result-inginalargeamountofthenutrientabsorbedandallocatedtoa

demandcenterthatwasnotdetectablebymeasuring

concentra-tions.Likewise,althoughdifferencesinZnconcentrationexisted

inleavesand green fruit,thedifferences in totalZncontent of

leaves,redfruitandgreenfruitfollowedadifferentpattern.

Mix-turesoffertilizers(MAP,CRF,andhandmix)minimallyaffected

theconcentrationofFeandMncomparedtotheindividual

fertil-izers.Sincenoneofthefertilizerscontainedmicronutrients,unless

unknowinglycontaminated,theelementspresentinthefertilizers

affectedmicronutrientuptakeandallocationpatternsindirectly.

Theabsenceofanelementlimitedplantgrowthornutrientuptake

in somesituations, and in other casesenhanced growth

creat-ingmoredemandforanotherelement.Inthisstudy,nonutrients

wereclearlydeficient,butplantsrespondedinsomeinstanceswith

improvedgrowthoryield.Thissuggeststhateitherelemental

suf-ficiencyrangesmayrequireminoradjustmentorthattheratioof

certainnutrientsinindextissuemaybeusefulinfinetuningfertility

programs.

Acknowledgements

Approvedfor publicationbytheDirector,Oklahoma

Agricul-turalExperimentStation.Fundingforthisprojectwasprovidedby

theKansasLivestockFoundation.WethankKansasEnvironmental

ManagementAssociates,LLCforprovidingTerraPhos,Floricotefor

providingcontrolledreleasefertilizer,MartinMariettaMagnesia

SpecialtiesforprovidingCropMag58,andHoneywellforproviding

Sulf-N.WeappreciatethehelpofWilliamColeinfieldmaintenance

andweedcontrol.

References

Abraham,J.,Pillai,V.N.R.,1996.Membrane-encapsulatedcontrolled-releaseurea

fertilizersbasedonacrylamidecopolymers.J.Appl.Polym.Sci.60,2347–2351.

Anghinoni,I.,Barber,S.A.,1980.Phosphorusinfluxandgrowthcharacteristicsof

cornrootsasinfluencedbyphosphorussupply.Agron.J.72,685–688.

Ballinger,W.E.,Bell,H.K.,Childers,N.F.,1966.Peachnutrition,In:ChildersN.F.,

(Ed.),Temperatetotropicalfruitnutrition,NewBrunswick,NJ.

Barker,A.V.,Bryson,G.M.,2007.Nitrogen.In:Barker,A.V.,Pilbeam,D.J.(Eds.),

HandbookofPlantNutrition.Taylor&Francis,NewYork,NY,p.21–50.

Borkert,C.M.,Barber,S.A.,1985.Soybeanshootandrootgrowthandphosphorus

concentrationasaffectedbyphosphorusplacement.SoilSci.Soc.Am.J.49, 152–155.

Bromfield,S.M.,Cumming,R.W.,David,D.J.,Williams,C.H.,1983.ChangeinsoilpH,

manganeseandaluminumundersubterraneancloverpasture.Aust.J.Exp. Agric.Anim.Husb.23,181–191.

Davidson,H.,Mecklenburg,R.,Peterson,C.,2000.NurseryManagement

AdministrationandCulture,4thed.Prentice-Hall,UpperSaddleRiver,NJ.Elia,

A.,Conversa,G.,2012.Agronomicandphysiologicalresponsesofatomatocrop

tonitrogeninput.Eur.J.Agron.40,64–74.

Fleming,P.A.,Xie,S.,Napier,K.,McWhorter,T.J.,Nicolson,S.W.,2008.Nectar

concentrationaffectssugarpreferencesintwoAustralianhoneyeatersanda lorikeet.Funct.Ecol.22,599–605.

Foth,H.D.,Ellis,B.G.,1997.Soilfertility.CRCPress,Inc.,BocaRaton,FL.

Funderburg,E.,24July2014http://www.noble.org/ag/soils/organicmatter/.

Gardner,R.G.,1999.NC109tomatobreedingline:‘Mountainfresh’F1hybrid.

Hortscience34,941–942.

Gardner,R.G.,2002.WNCTomatoReleasesRestrictionsPertainingtoCultivarand

BreedingLineReleasesfromtheNCSUFresh-MarketTomatoBreeding

Program,25June2014http://polk.ces.ncsu.edu/wnctomatoreleases/.

LACHAT,1994.QuickChemMethod12-107-04-1-B.LACHATInstrument,

Milwaukee,WI.

Mayfield,J.L.,Kelley,W.T.,2012.Blossom-endrotandcalciumnutritionofpepper

andtomato.Univ.Ga.Ext.Circ.,938.

Mengal,K.,2007.Potassium.In:Barker,A.V.,Pilbeam,D.J.(Eds.),HandbookofPlant

Nutrition.Taylor&Francis,BocaRaton,FL,p.91–116.

Merhaut,D.J.,2007.Magnesium.In:Barker,A.V.,Pilbeam,D.J.(Eds.),Handbookof

PlantNutrition.Taylor&Francis,BocaRaton,FL,p.146–172.

Mills,H.A.,JonesJr.,J.B.,1996.PlantAnalysisHandbookII.MicroMacroPublishing,

Athens,GA.

Morgan,K.T.,Cushman,K.E.,Sato,S.,2009.Releasemechanismsforslow-and

controlled-releasefertilizersandstrategiesfortheiruseinvegetable production.HortTechnology19,10–12.

Pe ˜nalosa,J.M.,Cáceras,M.D.,Sarro,M.J.,1995.Nutritionofbeanplantsinsand

culture:influenceofcalcium/potassiumratiointhenutrientsolution.J.Plant Nutr.18,2023–2032.

Pilbeam,D.J.,Morley,P.S.,2007.Calcium.In:Barker,A.V.,Pilbeam,D.J.(Eds.),

HandbookofPlantNutrition.Taylor&Francis,BocaRaton,FL,p.121–140.

Rehm,G.,Schmitt,M.,2002.Potassiumforcropproduction.Univ.Minn.Ext.Bull.,

29July2014 http://www.extension.umn.edu/agriculture/nutrient-management/potassium/potassium-for-crop-production/.

Rutherford,B.,2010.PhosphorusComplianceGoesHighTech,24July2014http://

beefmagazine.com/pasture-range/Environment/phosphoruscompliancegoes hightech20100201.

Sallabanks,R.,1993.Hierarchicalmechanismsoffruitselectionbyanavian

frugivore.Ecology74,1326–1336.

Sanchez,C.A.,2007.Phosphorus.In:Barker,A.V.,Pilbeam,D.J.(Eds.),Handbookof

PlantNutrition.Taylor&Francis,BocaRaton,FL,p.51–90.

Sato,S.,Peet,M.M.,Thomas,J.F.,2000.Physiologicalfactorslimitfruitsetoftomato

(LycopersiconescultentumMill.)underchronicmildheatstress.PlantCell Environ.23,719–216.

Sato,S.,Peet,M.M.,Gardner,R.G.,2004.Alteredflowerretentionand

developmentalpatternsinninetomatocultivarsunderelevatedtemperature. ScientiaHort.101,95–101.

Scholberg,J.,McNeal,B.L.,Boote,K.J.,Jones,J.W.,Locascio,S.J.,Olson,S.M.,2000.

Nitrogenstresseffectsongrowthandnitrogenaccumulationbyfield-grown tomato.Agron.J.92,159–167.

Storey,J.B.,1957.PeachFertilizationProc.TexasPeachandPlumGrowersAssn.

TexasAgric.Expt.Sta.,CollegeStation,TX.

Tisdale,S.L.,Nelson,W.L.,1975.SoilFertilityandFertilizers.MacmillanPublishing,

NewYork.

Trehan,S.P.,Sekhon,G.S.S.,1977.Effectofclay,organicmatterandCaCO3content

onzincabsorptionbysoils.PlantSoil46,329–336.

UnitedStatesEnvironmentalProtectionAgency(USEPA),2003.Producers’

complianceguideforCAFOs.Revisedcleanwateractregulationsfor

concentratedanimalfeedingoperations(CAFOs).EPA821-R-03-010.

vanderPloeg,R.R.,Böhm,W.,Kirkham,M.B.,1999.Ontheoriginandtheoryof

mineralnutritionofplantsandtheLawofMinimum.SoilSci.Soc.Am.J.63, 1055–1062.

References

Related documents

The main factors influencing consumer’s energy saving behaviour, including current tariffs for housing and communal services will be considered and the mechanism of the economic

Structural analysis within the structure and architecture synergy (SAS) framework establishes the notion that structural analysis computation is a primary tool not only to

Research in South Africa has found that teachers experience the implementation of inclusive practices in their classrooms as stressful and they report that becoming effective in

The age-size distributions corresponding to the Size Model (Figure 3E,F) were produced by running the Age & Size Model (Equation (3) in the main text) using the estimated

This means that in the case of copper fins, benefits related to increasing fin efficiency with increasing fin thickness diminishes faster due to reducing of convective heat

As expected for open-reference clustering, SortMeRNA combined with SUMACLUST reported fewer OTUs than UCLUST and USEARCH 6.1 while preserving high accuracy and lower alpha diversity

in the sera of patients with the active form of the disease (above 5 points on the Truelove-Witts scale) in comparison to the patients with the mild form of the disease as

Cervical vagotomy produced the ex pected respiratory slowing as reported by others.@ The respiratory fluctuations of ve nous pressure, arterial blood pressure, R-R interval and