• No results found

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

N/A
N/A
Protected

Academic year: 2021

Share "C Soldering Temperature, for 10 seconds 300 (1.6mm from case )"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

IRF5305S/L

HEXFET

®

Power MOSFET

l

Advanced Process Technology

l

Surface Mount (IRF5305S)

l

Low-profile through-hole (IRF5305L)

l

175°C Operating Temperature

l

Fast Switching

l

P-Channel

l

Fully Avalanche Rated

S D

G

Absolute Maximum Ratings

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The D2Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D2Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application. The through-hole version (IRF5305L) is available for low-profile applications.

Description

V

DSS

= -55V

R

DS(on)

= 0.06Ω

I

D

= -31A

2 D P ak T O -26 2

Parameter Typ. Max. Units

RθJC Junction-to-Case ––– 1.4

RθJA Junction-to-Ambient ( PCB Mounted,steady-state)** ––– 40

Thermal Resistance

°C/W

Parameter Max. Units

ID @ TC = 25°C Continuous Drain Current, VGS @ -10V… -31

ID @ TC = 100°C Continuous Drain Current, VGS @ -10V… -22 A

IDM Pulsed Drain Current … -110

PD @TA = 25°C Power Dissipation 3.8 W

PD @TC = 25°C Power Dissipation 110 W

Linear Derating Factor 0.71 W/°C

VGS Gate-to-Source Voltage ± 20 V

EAS Single Pulse Avalanche Energy‚… 280 mJ

IAR Avalanche Current -16 A

EAR Repetitive Avalanche Energy 11 mJ

dv/dt Peak Diode Recovery dv/dt ƒ… -5.8 V/ns

TJ Operating Junction and -55 to + 175

TSTG Storage Temperature Range

Soldering Temperature, for 10 seconds 300 (1.6mm from case )

(2)

‚ VDD = -25V, Starting TJ = 25°C, L = 2.1mH RG = 25Ω, IAS = -16A. (See Figure 12)

 Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 )

Notes:

** When mounted on 1" square PCB (FR-4 or G-10 Material ).

For recommended footprint and soldering techniques refer to application note #AN-994.

ƒISD ≤ -16A, di/dt ≤ -280A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C

„ Pulse width ≤ 300µs; duty cycle ≤ 2%.

… Uses IRF5305 data and test conditions

Source-Drain Ratings and Characteristics

Parameter Min. Typ. Max. Units Conditions

V(BR)DSS Drain-to-Source Breakdown Voltage -55 ––– ––– V VGS = 0V, ID = -250µA

∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– -0.034 ––– V/°C Reference to 25°C, ID = -1mA…

RDS(on) Static Drain-to-Source On-Resistance ––– ––– 0.06 Ω VGS = -10V, ID = -16A „

VGS(th) Gate Threshold Voltage -2.0 ––– -4.0 V VDS = VGS, ID = -250µA

gfs Forward Transconductance 8.0 ––– ––– S VDS = -25V, ID = -16A…

––– ––– -25

µ A VDS = -55V, VGS = 0V

––– ––– -250 VDS = -44V, VGS = 0V, TJ = 150°C

Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V

Gate-to-Source Reverse Leakage ––– ––– -100 n A VGS = -20V

Qg Total Gate Charge ––– ––– 63 ID = -16A

Qgs Gate-to-Source Charge ––– ––– 13 nC VDS = -44V

Qgd Gate-to-Drain ("Miller") Charge ––– ––– 29 VGS = -10V, See Fig. 6 and 13 „…

td(on) Turn-On Delay Time ––– 14 ––– VDD = -28V

tr Rise Time ––– 66 ––– ID = -16A

td(off) Turn-Off Delay Time ––– 39 ––– RG = 6.8Ω

tf Fall Time ––– 63 ––– RD = 1.6Ω, See Fig. 10 „…

Between lead,

––– –––

and center of die contact

Ciss Input Capacitance ––– 1200 ––– VGS = 0V

Coss Output Capacitance ––– 520 ––– pF VDS = -25V

Crss Reverse Transfer Capacitance ––– 250 ––– ƒ = 1.0MHz, See Fig. 5…

Electrical Characteristics @ T

J

= 25°C (unless otherwise specified)

IGSS

ns IDSS Drain-to-Source Leakage Current

nH 7.5

LS Internal Source Inductance

Parameter Min. Typ. Max. Units Conditions

IS Continuous Source Current MOSFET symbol

(Body Diode) ––– ––– showing the

ISM Pulsed Source Current integral reverse

(Body Diode)  ––– ––– p-n junction diode.

VSD Diode Forward Voltage ––– ––– -1.3 V TJ = 25°C, IS = -16A, VGS = 0V „

trr Reverse Recovery Time ––– 71 110 ns TJ = 25°C, IF = -16A

Qrr Reverse Recovery Charge ––– 170 250 nC di/dt = -100A/µs „…

ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) A S D G -31 -110

(3)

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

1 1 0 1 0 0 1 0 0 0 0 . 1 1 1 0 1 0 0 D D S 20 µ s P U L S E W ID T H T = 25 °Cc A -I , D ra in -t o -S o u rc e C u rre n t (A )

-V , D rain-to-S o urce V oltage (V )

VGS TOP - 15V - 10V - 8.0V - 7.0V - 6.0V - 5.5V - 5.0V BOTTOM - 4.5V -4 .5V 1 1 0 1 0 0 1 0 0 0 0.1 1 1 0 1 0 0 D D S A -I , D ra in -t o -S o u rc e C u rre n t (A )

-V , D rain-to-S ource V oltage (V )

VGS TOP - 15V - 10V - 8.0V - 7.0V - 6.0V - 5.5V - 5.0V BOTTOM - 4.5V -4 .5 V 20 µ s P U L S E W ID T H T = 17 5°CC 1 1 0 1 0 0 4 5 6 7 8 9 1 0 T = 2 5°CJ T = 17 5 °CJ A V = -2 5 V 2 0µ s P U L S E W ID TH DS G S

-V , G ate -to-S ource V olta ge (V )

D -I , D ra in -t o -S o u rc e C u rre n t (A ) 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 - 6 0 - 4 0 - 2 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 J

T , J unc tion T em perature (°C )

R , D ra in -to -S o u rc e O n R e s is ta n c e DS (o n ) (N or m a liz ed) A I = -2 7A V = -1 0V D G S

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance

Vs. Temperature

(4)

Fig 8. Maximum Safe Operating Area

Fig 6. Typical Gate Charge Vs.

Gate-to-Source Voltage

Fig 5. Typical Capacitance Vs.

Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode

Forward Voltage

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 1 1 0 1 0 0 C , C a p a c it anc e ( p F ) A V = 0V , f = 1 M H z C = C + C , C S H O R TE D C = C C = C + C G S iss g s g d d s rs s g d o ss ds g d C is s C os s C rs s D S

-V , D rain-to -S o urc e V oltag e (V )

0 4 8 1 2 1 6 2 0 0 1 0 2 0 3 0 4 0 5 0 6 0

Q , T otal G ate C harge (nC )G

A F O R TE S T C IR C U IT S E E F IG U R E 1 3 V = -4 4V V = -2 8V I = -16 A GS -V , G a te -t o -S o u rc e V o lt a g e ( V ) D D S D S 1 0 1 0 0 1 0 0 0 0 . 4 0 . 8 1 . 2 1 . 6 2 . 0 T = 2 5°CJ V = 0 V G S S D SD A -I , R e v e rs e D ra in C u rre n t (A )

-V , S o urc e -to -D rain V o lta g e (V ) T = 17 5 °CJ 1 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 O P E R A T IO N IN T H IS A R E A L IM ITE D B Y RD S (o n) 1 0 0 µ s 1 m s 1 0 m s A T = 25 °C T = 17 5°C S ing le P u ls e C J D S

-V , D rain-to-S ourc e V oltage (V )

D -I , D ra in C u rre n t (A )

(5)

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 9. Maximum Drain Current Vs.

Case Temperature

VDS -10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % RD VGS VDD RG D.U.T. VDS 90% 10% VGS td(on) tr td(off) tf + -25 50 75 100 125 150 175 0 5 10 15 20 25 30 35 T , Case Temperature ( C)

-I , Drain Current (A)

° C D 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 Notes: 1. Duty factor D = t / t 2. Peak T = P x Z + T 1 2 J DM thJC C P t t DM 1 2

t , Rectangular Pulse Duration (sec)

Thermal Response (Z ) 1 thJC 0.01 0.02 0.05 0.10 0.20 D = 0.50 SINGLE PULSE (THERMAL RESPONSE)

(6)

Fig 13b. Gate Charge Test Circuit

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy

Vs. Drain Current

QG QGS QGD VG Charge

-10V

D.U.T. VDS ID IG -3mA VGS .3µF 50KΩ .2µF 12V Current Regulator Same Type as D.U.T.

Current Sampling Resistors

+

-Fig 12b. Unclamped Inductive Waveforms

Fig 12a. Unclamped Inductive Test Circuit

tp V(BR)DSS IA S R G IA S 0 .0 1Ω tp D .U .T L VD S VD D D R IV E R A 1 5 V -2 0 V 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 5 J E , S in g le P u ls e A v a la n c h e E n e rg y ( m J ) AS A

S tarting T , J unc tion T em perature (°C ) V = -2 5V I T O P -6 .6A -1 1A B O T TO M -16 A D D D

(7)

Peak Diode Recovery dv/dt Test Circuit

P.W. Period di/dt Diode Recovery dv/dt Ripple ≤ 5%

Body Diode Forward Drop Re-Applied

Voltage Reverse Recovery Current

Body Diode Forward Current

VGS=10V

VDD

ISD

Driver Gate Drive

D.U.T. ISDWaveform D.U.T. VDSWaveform Inductor Curent D = P.W. Period + -+ + + -ƒ „ ‚ RG VDD • dv/dt controlled by RG

• ISD controlled by Duty Factor "D"

• D.U.T. - Device Under Test D.U.T

*

Circuit Layout Considerations Low Stray Inductance

• Ground Plane

• Low Leakage Inductance Current Transformer



*

Reverse Polarity of D.U.T for P-Channel VGS

[ ]

[ ]

***

VGS = 5.0V for Logic Level and 3V Drive Devices

[ ] ***

(8)

D

2

Pak Package Outline

D2Pak

Part Marking Information

1 0.16 (.4 00 ) RE F . 6.47 (.2 55 ) 6.18 (.2 43 ) 2.61 (.1 03 ) 2.32 (.0 91 ) 8.8 9 (.3 50 ) R E F . B -1.3 2 (.05 2) 1.2 2 (.04 8) 2.7 9 (.110 ) 2.2 9 (.090 ) 1.3 9 (.0 5 5) 1.1 4 (.0 4 5) 5 .28 (.20 8) 4 .78 (.18 8) 4.69 (.1 85) 4.20 (.1 65) 1 0.54 (.4 15) 1 0.29 (.4 05) A -2 1 3 15 .4 9 (.6 10) 14 .7 3 (.5 80) 3 X 0 .93 (.03 7 ) 0 .69 (.02 7 ) 5 .08 (.20 0) 3X1.40 (.0 55) 1.14 (.0 45) 1.7 8 (.07 0) 1.2 7 (.05 0) 1.4 0 (.055 ) M AX. NO TE S: 1 D IM EN S IO N S A F T ER SO L D ER D IP. 2 D IM EN S IO N IN G & T O LE RA N C IN G PE R A N S I Y1 4.5M , 198 2. 3 C O N T RO L LIN G D IM EN SIO N : IN C H . 4 H E AT SINK & L EA D D IM EN S IO N S D O N O T IN C LU D E B UR R S. 0.5 5 (.022 ) 0.4 6 (.018 ) 0 .25 (.01 0 ) M B A M M IN IM U M R E CO M M E ND E D F O O TP R IN T 1 1.43 (.4 50 ) 8.89 (.3 50 ) 17 .78 (.70 0) 3 .8 1 (.15 0) 2 .08 (.08 2) 2X LE A D A SS IG N M E N TS 1 - G A TE 2 - D R AIN 3 - S O U RC E 2.5 4 (.100 ) 2 X

P A R T N U M B E R

IN TE R N A TIO N A L

R E C T IF IE R

L O G O

D A T E C O D E

(Y YW W )

YY = Y E A R

W W = W E E K

A S S E M B L Y

L O T C O D E

F 5 3 0 S

9 B 1 M

9 24 6

A

(9)

Package Outline

TO-262 Outline

TO-262

(10)

Tape & Reel Information

D2Pak 3 4 4 TR R F E E D D IRE C TIO N 1 .8 5 ( .0 7 3 ) 1 .6 5 ( .0 6 5 ) 1 .6 0 (.0 6 3 ) 1 .5 0 (.0 5 9 ) 4 .1 0 ( .1 6 1 ) 3 .9 0 ( .1 5 3 ) TR L F E E D D IRE CTIO N 10 .9 0 (.42 9) 10 .7 0 (.42 1) 16 .10 (.63 4 ) 15 .90 (.62 6 ) 1 .75 (.06 9 ) 1 .25 (.04 9 ) 1 1 .6 0 (.4 5 7 ) 1 1 .4 0 (.4 4 9 ) 1 5 .4 2 (.6 0 9 ) 1 5 .2 2 (.6 0 1 ) 4 .7 2 (.1 3 6) 4 .5 2 (.1 7 8) 2 4 .3 0 (.9 5 7 ) 2 3 .9 0 (.9 4 1 ) 0 .3 68 (.0 1 4 5 ) 0 .3 42 (.0 1 3 5 ) 1 .60 (.06 3) 1 .50 (.05 9) 13.50 (.532 ) 12.80 (.504 ) 33 0.00 (1 4.1 73) M A X . 2 7.4 0 ( 1.079) 2 3.9 0 ( .9 41) 60.00 (2.3 62) M IN . 3 0.40 (1.1 97) M A X . 26 .40 ( 1.03 9) 24 .40 ( .961 ) N O T E S : 1. C O M F O R M S TO E IA -4 18. 2. C O N TR O LLIN G D IM E N S IO N : M ILL IM ET ER . 3. D IM E N S IO N M E A S U R E D @ H U B . 4. IN C LU D E S F LA N G E D IS TO R T IO N @ O U T E R E D G E .

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 4/99

(11)

References

Related documents

When permanent dedicated connections are required, a point-to-point link is used to provide a single, pre-established WAN communications path from the customer prem- ises, through

Productivity-diversity relationships, whereby higher productivity sustains 598 higher diversity, have also been suggested in the deep-sea (McClain & Schlacher 2015, Woolley 599

Similar work by Kim and Yu (2012) evaluated the rumen bacterial community using real-time PCR to quantify cultured and uncultured species in liquid and solid fractions of Jersey

In the USA the minimum factor of safety of the suspension ropes is based on the actual rope speed corresponding to the rated speed of the car and is slightly greater for

Effect of maternal plane of nutrition during mid-gestation on weighted gene co- expression network analysis modules 7- 11 of progeny longissimus muscle transcriptome at 392 d of

Chapter 4 examined the effect of a butyrate-enriched milk replacer on animal performance and rumen and hindgut microbiota in dairy calves, showing an association

 Have good Onsite-Offshore co-ordination experience in evaluating the functional specs with process teams, delivering the road map of the functional specs to offshore

A network analysis including relative abundances of all ruminal microbial genera (archaea, bacteria, fungi, and protists) and their genes was performed to improve our understanding