• No results found

The importance of regional e ­infrastructure within the national landscape

N/A
N/A
Protected

Academic year: 2020

Share "The importance of regional e ­infrastructure within the national landscape"

Copied!
16
0
0

Loading.... (view fulltext now)

Full text

(1)

Original citation:

Rodger, P. Mark, Cox, S. J., Dove, M. T., Hogg, D. C., Kenny, S. D., Martin, R., Mulheran, P. A., Richards, A, Taylor, C., Metcalf, T., Sinclair , G., Real, A. N., Groenewald, W. and

Fakhrkonandeh, A. (2016) The importance of regional e--infrastructure within the national landscape. Regional e-Infrastructure Centres Network (ReICN).

Permanent WRAP URL:

http://wrap.warwick.ac.uk/85992

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

A note on versions:

The version presented in WRAP is the published version or, version of record, and may be cited as it appears here.

(2)

 

The  Importance  of  Regional  e

Infrastructure  

 

Within  the  National  Landscape

 

 

A  submission  compiled  by  the  Regional  e-­Infrastructure  Centres  

Network  (ReICN)  

 

ReICN  is  a  network  comprising  the  five  Regional  Centres  that  were  established  by  EPSRC  in   2012,  and  that  have  been  operating  ever  since.  The  Centres,  and  their  member  universities,   are:  

ARCHIE-­WeSt   Glasgow  Caledonian  University,  University  of  Glasgow,  University  of  

Stirling,  University  of  Strathclyde,  University  of  the  West  of  Scotland  

HPC  Midlands   University  of  Leicester,  Loughborough  University  

MidPlus   Queen  Mary  College  London,  University  of  Birmingham,  University  of  

Nottingham,  University  of  Warwick  

N8  HPC   Durham  University,  Lancaster  University,  University  of  Liverpool,  

University  of  Leeds,  University  of  Manchester,  Newcastle  University,   University  of  Sheffield,  University  of  York  

SES   Imperial  College  London,  University  of  Cambridge,  University  College  

London,  University  of  Oxford,  University  of  Southampton*  

All  five  Centres  have  been  running  Regional  e-­‐Infrastructure  Centres  for  at  least  four  years,   and  in  several  cases  were  running  multi-­‐institutional  services  before  that.  

This   report   Summarises   our   Collective   experience   of   the   advantages   and   disadvantages   of   regional   provision   within   the   Nation’s   e-­‐Infrastructure   landscape,   and   suggests   several   mechanisms  by  which  the  nation  would  benefit  from  including  a  vibrant  regional  tier  within   the   plans   for   the   post-­‐ARCHER   landscape.   The   report   also   includes   a   substantial   evidence   base  to  support  the  recommendations  we  present  herein.  

The  ReICN  Executive  consists  of:  P.M.  Rodger  (Chair,  Warwick),  S.J.  Cox  (Southampton),  M.T.   Dove   (QMUL)   D.C.   Hogg   (Leeds),   S.D.   Kenny   (Loughborough),   R.   Martin   (Strathclyde),   P.A.   Mulheran  (Strathclyde),  A.  Richards  (Oxford)  and  C.  Taylor  (Manchester)  

Additional   input   to   this   submission   was   provided   by:   T.   Metcalf   (UCL),   G.   Sinclair   (Manchester),   A.N.   Real   (Leeds),   W.   Groenewald   (Warwick)   and   A.   Fakhrkonandeh   (Warwick)  

   

                                                                                                                         

(3)

Executive  Summary  

Regional   e-­‐Infrastructure   Centres   are   an   essential   component   of   an   integrated   e-­‐ Infrastructure   landscape,   and   are   essential   for   maximising   the   benefits   obtained   from   both   national  and  local  facilities.  They  contribute  directly  to  the  development  of  high  value  digital   skills,  research  leadership,  economic  growth  and  productivity  in  the  UK.    

Continued   benefit   from   Regional   Centres   within   a   national   ecosystem   requires   a   cohesive   long-­‐term   plan   for   UK   investment   in   e-­‐infrastructure   and   associated   skills.   Such   a   plan   is   essential  if  the  digital  capabilities  are  to  be  available  for  the  demands  we  currently  anticipate,   while   also   delivering   the   flexibility   to   exploit   new   opportunities.   The   on-­‐going   culture   shift   toward  collaboration  and  sharing,  embodied  in  Regional  Centres,  is  also  integral  to  expanding   the  use  of  digital  technologies  within  research  and  industry,  thereby  stimulating  innovation   and  underpinning  competitive  advantage.    

Key  Selling  Points  for  Regional  Centres  within  an  integrated  UK  ecosystem  

1. Increased capability and capacity: readily accessible to research groups, enabling them to achieve more rapid and effective research impact.

2. More effective two-way communication of priorities and initiatives: creating a 3-level network (National ↔ Regional ↔ Universities) to focus and filter discussions

3. Successful pathways for broadening access to HPC

4. Increased diversity of e-infrastructure, skills and networks: readily accessible to individual researchers, and enabling and de-risking rapid experimentation with new ideas and architectures.

5. Effective vehicles for regional investment and resource sharing: leveraging University investment, and enabling regional research strengths to become gateways for SMEs into high-end computing.

6. Personal networking: face-to-face discussions within 2 hours travel (‘Regionality’) is a powerful enabler for research collaboration, technical support, training and knowledge exchange.

7. Effective platforms to link with other key investments, such as the Henry Royce Institute, Farr Institute, Alan Turing Institute or the National Automotive Innovation Centre.

Recommendations  

1. That   a   strong   and   vibrant   Regional   (Tier   2)   layer   be   embedded   within   the   next  

realisation  of  the  UK  e-­‐Infrastructure  ecosystem.  

2. That  recognition  of  the  ‘on-­‐the-­‐ground’  benefits  of  the  regional  centres  that  is  backed  

up  with  a  commitment  to  a  sustainable,  long-­‐term  strategy  that  includes  capital  and   operational  funding.  

3. That   funding   for   the   Regional   layer   be   delivered   through   a   research-­‐driven   grant  

scheme  that  is  strongly  informed  by  Research  Council  experience  with  both  CDT  and   Programme  Grant  initiatives  so  as  to  ensure:  

i. Appropriate  diversity  of  provision  across  the  UK;  

ii. Comprehensive  coverage  of  researchers  within  the  UK;  

iii. Flexibility   to   adapt   spending   plans   in   the   light   of   both   regional   research  

initiatives  and  technological  developments;  

iv. Continuing  quality  of  provision  through  mid-­‐term  review.  

4. That  consideration  be  given  to  an  immediate  short-­‐term  tranche  of  refresh  funding  to  

(4)

Contents  

 

 

A  submission  compiled  by  the  Regional  e-­Infrastructure  Centres  Network  (ReICN)   1

 

Executive  Summary   2

 

Key  Selling  Points  for  Regional  Centres  within  an  integrated  UK  ecosystem   2

 

Recommendations   2

 

Contents   3

 

Introduction   4

 

Advantages  of  a  strong  regional  layer   4

 

The  research  enabled  by  a  strong  regional  layer   6

 

Productive  Nation   7

 

Healthy  Nation   7

 

Resilient  Nation   8

 

Connected  Nation   8

 

Important  Principles  and  Potential  Models   8

 

Guiding  Principles   8

 

Mechanism  for  Funding   9

 

Evidence  Base   10

 

Training  and  Support   10

 

Outreach   10

 

Industrial  Engagement   11

 

Personal  Interviews   13

 

Case  Studies   13

 

Statistical  Indicators   15

 

 

(5)

Introduction  

Until  the  e-­‐infrastructure  initiative  that  created  the  five  EPSRC  regional  Tier-­‐2  centres  in  2012,   high-­‐performance  capability  for  scientific  research  in  England  and  Scotland  largely  consisted  of   a  single  central  Tier-­‐1  HPC  resource  and  whatever  local  resources  an  institute  was  prepared  to   establish.   A   few   discipline-­‐based   collaborative   resources   were   available   (Dirac,   UKMHD),   but   were  not  available  to  the  vast  majority  of  UK  researchers.  

The   creation   of   the   regional   Tier-­‐2   Centres   in   2012   demonstrably   created   new   research   opportunities,  and  produced  a  major  advance  in  any  strategy  to  develop  a  new  generation  of   scientists  who  are  literate  in  simulations  and  high-­‐performance  computing.  

At   the   level   of   meeting   demand,   the   provision   of   Tier-­‐2   regional   centres   has   been   extraordinarily  successful.  The  Tier-­‐2  centres  have  provided  different  types  of  computing  that   are   not   being   met   by   national   facilities,   including   high-­‐throughput   computing,   high-­‐memory   installations,  smaller-­‐scale  facilities  and  GPU  computing.  The  added  capacity  from  this  initiative   was  quickly  met  by  demand,  and  subsequently  by  high  quality  research  outputs.    

In  many  cases  this  demand  was  not  appropriate  for  national  facilities,  since  national  facilities   need  to  be  optimised  for  users  with  very  large  demands  that  challenge  the  boundaries  of  the   technology,   and   so   it   is   strategically   unwise   for   the   national   facilities   to   be   diluted   to   meet   needs  that  are  best  served  by  regional  Tier-­‐2  centres.  

This  experiment  in  Regional  Computing  was  not  universal.  Only  about  half  the  research-­‐active   Universities   in   England   and   Scotland   were   supported.   However,   their   experience   provides   a   wealth  of  information  for  designing  the  next  generation  e-­‐Infrastructure  landscape  to  optimise   the  UK’s  future  in  a  highly  competitive  global  environment.  

Within  this  report  we  identify  a  number  of  crucial  and  unique  features  that  Regional  Centres   add  to  the  National  e-­‐Infrastructure  landscape;  we  identify  features  that  must  be  included  in— and   others   that   must   be   excluded   from—design   of   the   next   generation   landscape;   and   we   suggest  funding  models  that  could  be  used  to  implement  this.  We  also  provide  an  evidence  base   to  support  our  proposals.  

Advantages  of  a  strong  regional  layer  

Regional   Centres   should   play   an   essential   role   in   any   strategy   to   develop   wider   high-­‐end   computing   literacy   within   the   scientific   community.   The   balance   they   strike   between   regionality  and  critical  mass  enables  them  to  do  far  more  than  simply  bridge  between  local  and   national  facilities:  it  enables  them  to  be  a  powerful  tool  for  shaping  high-­‐end  e-­‐Infrastructure   access,  training  and  support  within  a  national  strategy.  

Regionality   brings   with   it   a   sense   of   local   ownership   that   cannot   be   captured   by   national   provision.  This  extends  to  access,  training  and  support.  Whilst  ARCHER  has  excellence  in  these   areas,   it   is   essentially   only   available   to   the   large   scale   users   and   thus   is   not   appropriate   for   developing   large   numbers   of   new   users   who   do   not   (yet)   satisfy   the   requirements   for—or,   indeed,  do  not  yet  recognise  the  potential  of—using  a  Tier-­‐1  centre.  

Critical  mass  brings  with  it  a  level  of  expertise  and  innovation  that  cannot  be  matched  by  most   Universities.  This  can  lead  to  much  more  powerful  training  and  support  than  can  be  provided   locally,   without   losing   the   ability   to   adapt   to   individual   needs—as   often   must   happen   when   working  on  a  national  level.  

(6)

1 Ready  access  to  increased  capability  

Regional   centres   extend   researcher   horizons   significantly,   while   the   scale   or   resources   still   enables   them   to   employ   only   light-­‐touch   review   processes   to   ensure   effective   usage.   This   makes   the   centres   very   effective   at   enabling   researchers   to   explore   new   ideas   and   the   possibilities   for   scale-­‐up   with   minimum   inertia,   and   so   enables   both   greater   impact   for   the   research  and  optimal  efficiency  on  national  facilities  when  they  are  subsequently  employed.   The   importance   of   bureaucracy-­‐free   access   in   enabling   major   new   research   avenues   was   underlined  in  a  number  of  interviews  (page  12),  while  surveys  by  the  Regional  Centres  suggest   that   up   to   10%   of   researchers   have   used   the   regional   facilities   for   proof-­‐of-­‐concept   research   that  has  subsequently  been  migrated  on  to  ARCHER.  

2 Communication  of  priorities  and  initiatives  

The  one-­‐to-­‐very-­‐many  mapping  of  researchers  onto  national  facilities  leads  to  very  inefficient   communication:   either   communications   are   flooded   by   too   much   attention   to   individuals,   or   they   are   starved   by   the   need   to   be   relevant   to   everyone.   The   presence   of   a   universal   tiered   structure,   enhancing   two-­‐way   communication   between   each   tier,   can   enable   highly   effective   sifting,  sorting  and  propagation  of  information.  Bidirectional  networks  with  about  three  layers   (local,  national  and  regional  in  this  case)  are  generally  found  to  provide  excellent  targeting  of   information  flow,  with  little  degradation  of  information  from  filtering  between  levels.  

3 Broadening  access  to  HPC  

The  Regional  Centres  have  been  very  successful  in  allowing  many  researchers  to  broaden  their   computational  horizons.  In  some  cases  this  has  involved  making  HPC  available  to  institutions   that,   thus   far,   have   not   had   adequate   access.   Examples   include   the   involvement   of   Glasgow   Caledonian   University,   University   of   Stirling,   and   the   University   of   the   West   of   Scotland   in   ARCHIE-­‐WeSt,  and  the  use  of  MidPlus  by  a  research  group  at  Aston.  In  other  cases,  the  wider   access   has   involved   helping   non-­‐traditional   disciplines   discover   the   power   of   high-­‐end   computing.  In  particular,  easy  access  to  Regional  Centres  has  empowered  research  groups  in   the  Social  Sciences  and  Economics  to  discover  just  how  much  they  can  now  gain  through  the   analysis  of  very  large  social  and  media  databases  using  high-­‐end  computing  facilities.  

4 Diversity  of  e-­infrastructure,  skills  and  networks  

The   Tier-­‐2   centres   have   provided   different   types   of   computing   that   were   not   being   met   by   national   facilities,   including   high-­‐throughput   computing,   high-­‐memory   installations,   remote   hardware   accelerated   visualization,   smaller-­‐scale   facilities   and   GPU   computing.   Most   Universities   do   not   have   the   resources   to   support   several   significant   installations   and   so   are   forced  into  a  one-­‐size-­‐fits-­‐all  strategy.  National  facilities  must  usually  be  justified  by  a  proven   high  level  of  need  within  the  national  community,  and  so  are  not  well  placed  to  accommodate   new  technologies  or  research  communities  with  novel  requirements.  Regional  Tiers  provide  an   optimal  balance,  pooling  resources  to  enable  several  architectures  to  be  supported,  exhibiting  a   natural   diversity   through   their   accountability   to   different   regional   research   strengths,   and   facilitating  low-­‐risk  experimentation  with  new  systems.  

An   excellent   example   is   Emerald   (SES),   which   was   the   largest   GPU   machine   in   Europe   when   first   deployed   (374   GPUs).   At   the   time,   GPU   technology   was   considered   novel   and   to   have   a   narrow  application  and  skills  base.  Most  university  GPU  machines  were  small  (<10  GPUs)  and   operated   in   silos   within   departments.   GPUs   are   now   accepted   technology.   The   second   most  

powerful   computer*  and   the   ten   most   energy   efficient   computers  in   the   world   are   based   on  

GPUs.  The  SES  investment  at  an  early  stage  has  enabled  the  UK  to  be  at  the  forefront  of  these   developments,   and   has   allowed   a   great   deal   of   exciting   research   to   be   conducted   ahead   of                                                                                                                            

*  http://www.top500.org/  

(7)

international  competitors.  It  is  also  important  to  stress  that  access  to  SES  GPU  infrastructure   and  expertise  has  always  been  open  to  all  UK  researchers,  and  there  are  long-­‐time  users  from   the  universities  of  Bath  and  Manchester.  Thus  by  responding  to  regional  clusters  of  expertise,   the   Regional   Centres   can   enable   the   whole   UK   to   benefit   from   early   uptake   and   experimentation  with  new  technology.  

5 Effective  and  efficient  regional  investment  and  resource  sharing  

Regional   centres   provide   a   showcase   through   which   to   develop   and   project   the   research   strengths   of   a   region,   and   should   therefore   facilitate   collaboration   and   knowledge   exchange   between  Universities,  Industry  and  Commerce  within  the  region.  This  is  likely  to  be  particularly   important   for   SME   engagement,   which   typically   does   not   have   the   level   of   expertise   and   resources  that  enables  large  industries  to  exploit  national  centres.  

Opportunities   also   abound   for   University-­‐Government   co-­‐investment.     The   funding   initiative   that   created   the   ReICN   centres   has   already   demonstrated   just   how   powerful   a   tool   Regional   Centres  can  be  for  regional  investment.  The  initial  investment  from  Government  was  more  than   doubled   by   additional   investment   from   the   member   Universities—in   the   first   year!   Very   significantly,   the   matched   University   investment   went   well   beyond   equipment   sharing   to   co-­‐ ownership.   At   present,   this   has   been   achieved   as   a   one-­‐off   experiment.   If   some   level   of   continuity  of  Government  funding  for  regional  centres  can  be  provided,  then  it  will  help  embed   a  culture  of  strategic  co-­‐investment  by  University  groupings  in  large  research  infrastructure.  

6 Personal  networking:  diversity  with  critical  mass  through  “regionality”  

Face-­‐to-­‐face  interaction  is  an  essential  element  of  networking,  just  as  time  spent  in  discussion   is  an  essential  component  of  developing  new  collaborations.  The  barrier  created  by  requiring   more   than   2   hours   travel   cannot   be   overestimated.   Regional   Centres   are   ideally   placed   to   exploit   this,   being   close   enough   to   develop   powerful   collaborations   and   promote   knowledge-­‐ exchange  between  experts  who  would  otherwise  be  isolated  within  their  University,  and  in  the   process  creating  new  centres  of  excellence  in  aspects  of  computational  science  and  modelling   that   others   in   the   region   can   engage   with.   This   point   was   emphasised   by   users   during   the   interviews   (page   12),   with   comments   such   as   “…it   not   only   provides   computers,   but   also   the   community.    Other  facilities  only  offer  CPU  time”  (Eberhard,  Aston)  

7 Effective  platforms  to  link  with  other  key  investments  

Major  new  research  initiatives—such  as  the  Alan  Turing  Centre,  the  Henry  Royce  Institute,  the   Farr  institute  or  the  National  Automotive  Innovation  Centre—raise  demands  for  cutting-­‐edge   e-­‐infrastructure   that   are   too   large   for   individual   Universities   to   meet,   but   too   specialised   for   National  Centres  to  address  without  a  major  funding  and  procurement  exercise.  However,  such   research   initiatives   usually   create   regional   priorities   that   leave   Regional   e-­‐Infrastructure   Centres   well   placed   to   meet,   having   sufficient   resources   but   small   enough   size   to   be   able   to   adapt  to  meet  at  least  the  initial  demands  such  initiatives  create,  and  therefore  provide  space   for  more  considered  responses  to  be  crafted  as  the  initiative  develops.  

The  research  enabled  by  a  strong  regional  layer  

The   scientific   impact   of   the   Regional   Centres   has   already   been   significant,   with  each   facility  

(8)

suited   to   Regional   Centres,   exploiting   the   scale   and   diversity   of   hardware,   the   regionality   of   support,  and  the  ability  to  build  a  community  of  experts  around  research  initiatives  and  meet   with  them  frequently.  

Productive  Nation  

Materials:  New  and  improved  materials  are  fundamental  to  achieving  breakthroughs  in  many   aspects  of  product  design  and  manufacturing.  Materials  innovation  is  critical  in  underpinning   manufacturing  industry  and  driving  economic  growth.  Particularly  important  examples  are  2D   nanomaterials,   quantum   technologies,   biomaterials   and   materials   for   energy   efficient   ICT,   energy   storage,   nuclear   power   systems,   and   uses   in   extreme   environments.   Modelling,   at   multiple   scales   and   levels   of   theory,   will   play   an   essential   role   in   the   discovery,   design   and   characterization   of   new   materials,   and   then   optimizing   and   scaling   up   the   synthesis   and   manufacturing  processes.  

Virtual  Engineering:  Virtual   engineering   has   the   potential   to   transform   industrial   practice   by  

developing  and  testing  complex  products  in  silico,  improving  product  quality  and  reducing  time   to  market.  It  involves  the  integration  of  modelling,  simulation  and  visualisation  technologies  to   explore  and  optimise  all  aspects  of  product  performance  and  usability,  in  a  virtual  innovation   environment.   It   draws   on   and   integrates   a   very   broad   range   of   computationally   intensive   modelling  and  simulation  methods,  from  chemical  dynamics,  through  computational  mechanics   and  fluid  dynamics  to  autonomous  multi-­‐agent  systems  to  derive  holistic  simulations  of  whole   products  and  ecosystems.  It  has  been  applied  extensively  in  the  automotive,  aerospace,  oil  and   gas  industries,  but  has  the  potential  to  be  applied  far  more  extensively  across  all  sectors.     Intelligent  and  Adaptive  Quality  Control:  Developments  in  real  time  data  analytics  and  artificial   intelligence  will  make  it  possible  to  develop  control  systems  for  complex  multi-­‐stage  processes   that  are  able  to  identify  unexpected  variations  in  one  process  within  the  system,  diagnose  the   likely   consequences,   and   then   design   adaptations   in   other   processes   that   will   correct   for   the   initial  variations.  This  research  is  at  the  heart  of  the  “Industry  4.0”  vision,  but  will  have  impact   well  beyond  that  project.  

Healthy  Nation  

Digital   Human:   Healthcare   could   be   transformed   through   truly   predictive   models.   The  

challenge  is  to  develop  computational  models  from  the  bottom  up  –  from  cells  and  pathways,   through  complex  organs,  to  individuals  and  populations  –  that  are  able  to  predict  the  outcomes   of  healthcare  interventions  (or  none).  This  requires  models  of  normal  function  and  of  disease   and   it   requires   that   these   models   can   be   personalised   using   individual   data   (e.g.   imaging,   physiological   measurements,   medical   records,   genome,   self-­‐reporting),   so   that   diagnoses   and   interventions  can  also  be  personalised.  

Pattern  Discovery:  As  a  complement  to  the  model-­‐driven  Digital  Human  approach,  there  is  also   huge  potential  in  a  data-­‐driven  approach  to  healthcare.  The  explosion  of  health-­‐related  digital   data  has  created  an  unprecedented  opportunity  is  to  find  patterns  in  this  complex  multivariate  

data   that   can   support   stratified   or   precision   medicine,  e.g.   identifying   subgroups   of   patients  

who  are  likely  to  respond  to  a  particular  treatment,  or  detecting  unanticipated  side-­‐effects  of   treatments.  

(9)

Resilient  Nation  

Low-­carbon/Clean   Energy:   Computational   fluid   dynamics   (CFD)   simulations   involving  

turbulence,  vortex  flow,  fluid-­‐structure  interactions  etc.  will  be  central  to  developing  efficient,   low   environmental   impact   wind   and   tidal   turbines.   Simulations   of   turbulent   reacting   flows,   including  large  eddy  simulations  (LES),  will  be  important  in  designing  high  fuel-­‐economy,  low   pollution  combustion  systems.  Computationally  intensive  modelling  and  simulation  will  also  be   critical  for  nuclear  power  (plant  design,  reprocessing  and  waste  storage),  while  modified  CFD   methods   for   high   temperature   plasmas   will   underpin   longer-­‐term   work   on   nuclear   fusion.   Other  important  areas  that  depend  fundamentally  on  modelling  and  simulation  are  hydrogen   fuel  cell  design  and  carbon  capture.  

Sustainable   Infrastructure:   Increasingly   complex   and   interconnected   infrastructure   is   an  

essential   feature   of   modern   society.   System-­‐wide   modelling   will   be   crucial   in   understanding,   designing   and   controlling   sustainable   infrastructure,   such   as   that   governing   water,   power,   communications,   employment,   transport   and   health.   Computationally   intensive   modelling   involving  many  of  these  elements  will  be  needed  to  understand  the  emergent  properties  of  this   complex   network,   to   inform   planning   decisions,   and   ultimately   to   design   and   implementing   optimal  control  mechanisms.  

Natural   World:   Understanding   and   predicting   the   behaviour   of   the   natural   world   is  

fundamental   to   developing   a   resilient   nation.   On-­‐going   research   is   needed   to   develop   better   computational  models,  and  to  integrate  more  and  more  extensive  data  sets,  into  packages  that   will  provide  more  reliable  and  longer  term  predictions  of  climate  change,  weather,  flood  risk   and  erosion,  and  that  will  underpin  strategies  for  mitigating  the  effects  of  natural  disasters.  

Connected  Nation  

Data  Science:  Developing  new,  efficient  algorithms  for  data  analytics  is  fundamental  to  many  of   the   challenges   outlined   above.   Health   and   city   data   are   extremely   high-­‐dimensional,   with   complex   temporal   structure,   of   variable   reliability,   and   subject   to   missing   data   and   artefacts.   New   methods   will   be   needed   to   make   predictions   reliable   and   specific.   It   is   also   a   common   requirement   not   only   to   make   predictions   from   data,   but   also   to   provide   estimates   of   their   reliability.  

Internet   of   Things:   The   internet   of   things   (IoT)   is   again   is   an   important   underpinning   technology   for   productivity,   health   and   resilience.   Sense-­‐making,   given   the   self-­‐organising   nature   of   the   IoT,   the   local   interactions   and   information   flows,   and   the   large,   heterogeneous,   distributed   data   output   will   present   a   significant,   computationally   complex   challenge   that,   in   practice   will   have   to   be   solved   using   distributed   computational   resources.   Large-­‐scale   modelling  and  simulation  of  the  IoT  will  be  an  important  tool  in  developing  methods  that  can   be  deployed  in  the  field.  

Cognitive   Computing:  The   interpretation   of   images,   video,   text,   and   speech   are   examples   of  

intelligent  technologies  that  will  be  important  in  realising  both  the  Connected  Nation  ambition   and   in   underpinning   goals   and   opportunities   in   the   other   three   themes.   State-­‐of-­‐the-­‐art   methods   (e.g.   CNNs)   rely   on   computationally   intensive   training   that   is   often   only   practical   using  significant  computational  resources.  

Important  Principles  and  Potential  Models  

Guiding  Principles  

For   the   reasons   enumerated   above,   we   believe   that   there   are   a   number   of   key   features   that   must  be  built  into  the  national  e-­‐Infrastructure  landscape.  

• It  must  include  a  vibrant  and  cohesive  regional  (Tier  2)  layer.  

(10)

• It   must   develop   a   healthy   synergy   between   Regional   and   local   University   e-­‐ Infrastructure,   that   recognises   the   greater   strength   of   some   Universities   while   still   enabling  all  Universities  to  access  appropriate  parts  of  the  Regional  layer.  

• It   must   recognise   and   accommodate   the   need   for   continuity   and   long-­‐term   financial  

planning  in  successful  Regional  Centres;  in  the  process,  it  should  recognise  the  value  of   Government  funding  in  leveraging  further  investment  from  Universities.  

• It  must  recognise  that  e-­‐Infrastructure  requires  premises,  support  staff  and  software  in  

addition   to   the   hardware;   in   the   case   of   Tier   2,   all   these   elements   must  be   located   to   exploit  the  benefits  of  regionality.  

• It  should  foster  the  development  of  local  communities  of  experts,  enabling  critical  mass  

to  form  across  institutions  within  a  Regional  Centre.  

• It  should  facilitate  the  exploitation  of  high-­‐end  e-­‐Infrastructure  by  industry,  particularly  

(in  the  case  of  Regional  Centres)  by  SMEs.  

Mechanism  for  Funding  

We   consider   here   three   potential   scenarios   relating   to   a   Regional   layer   within   the   next   generation  of  UK  e-­‐Infrastructure  landscape.  All  three  scenarios  presuppose  the  existence  of  a   national  centre:  

1. No  Government  /  Research  Council  funding  for  a  regional  tier;  

2. EPSRC  regional  centres,  funded  through  an  appropriate  research-­‐driven  grant  scheme;  

3. A  model  similar  to  that  used  for  national  facilities,  where  service  contracts  are  awarded  

through  a  tender  response.  

Scenario  1  would  negate  all  the  advantages  of  regional  centres  that  we  have  already  catalogued   in  this  submission.  It  would  also  step  backwards  from  the  outcomes  of  the  Tildesley  report  and   would   undo   the   progress   the   Regional   Centres   have   made   over   the   last   four   years   in   establishing   a   more   connected   e-­‐infrastructure   that   engages   better   with   a   wider   user   base.   Some  inter-­‐University  cooperation  is  likely  to  continue,  but  this  will  fall  far  short  of  providing   e-­‐Infrastructure  for  the  nation.  We  conclude  that  scenario  1  is  completely  untenable.  

Scenarios  2  and  3  both  allow  for  regional  definition  of  the  e-­‐Infrastructure  provision,  but  differ   in  the  extent  to  which  the  facility  is  research-­‐  (scenario  2)  or  service-­‐  (scenario  3)  driven.     Scenario   3   requires   a   detailed   service   definition   to   be   constructed   centrally   so   that   it   can   be   tendered  against.  As  a  result,  it  will  tend  to  be  blind  to  regional  clusters  of  expertise,  and  will   need  to  impose  diversity  rather  than  allowing  it  to  emerge  in  response  to  local  strengths.  It  will,   however,  make  it  easier  to  deliver  universal  coverage  within  the  Regional  layer.  

Scenario   2   will   be   responsive   to   University   research   needs,   will   allow   partnerships   to   form   naturally,   and   will   naturally   generate   diversity   through   regional   variations.   Some   innovation   will   be   needed   in   constructing   a   competitive   grant   scheme   that   can   include   diversity   and   universal   coverage   across   the   cohort   as   criteria   for   selecting   individual   winning   grants.   We   note,  however,  that  similar  issues  arose  with  the  national  call  for  CDTs,  and  suggest  that  similar   processes  would  again  be  successful  for  a  Regional  e-­‐Infrastructure  call.  

Any   scheme   must   also   allow   for   both   on-­‐going   technology   refreshes   (every   2–3   years)   and   flexibility  to  incorporate  new  technology  as  it  emerges.  While  both  scenarios  2  and  3  readily   allow   for   technology   refreshes,   responsiveness   to   new   technology   is   far   better   driven   at   a   regional   level   where   it   can   emerge   naturally   in   response   to   the   goals   and   expertise   of   the   research   community.   We   note   also   that   Research   Councils   have   experience   with   this,   since   similar  flexibility  is  built  into  programme  grants.  

(11)

relation  to  balancing  provision  across  the  cohort  of  Centres  funded,  enabling  flexibility  to  adapt   plans  during  mid-­‐term  technology  refreshes,  and  being  subject  to  mid-­‐term  review.  

Evidence  Base  

Training  and  Support  

Information   on   training   and   support   has   been   obtained   by   surveying   the   ReICN   Regional   Centres,  conducting  interviews  with  users  in  our  member  Universities  and  potential  users  from   other   Universities,   discussions   with   organisations   such   as   the   HPC   Short   Course   Consortium,   and  consultation  with  a  range  of  CDTs.  

The  ReICN  Regional  Centres  were  not  funded  to  provide  training,  and  operational  costs  were   only  funded  for  one  year.  As  a  result,  there  is  a  wide  diversity  of  provision,  and  considerable   reliance  on  existing  mechanisms  within  the  member  institutions.  The  number  of  staff  FTEs  for   support  ranged  from  2–8  across  the  Regional  Centres,  though  much  of  this  was  exploiting  local   provision,  and  was  not  always  able  to  be  coordinated  across  the  whole  regional  centre.  Where   coordination  was  possible,  it  was  greatly  valued  by  the  users.  

All  centres  provided  a  significant  level  of  support  for  loading  and  maintaining  major  research   software   packages   and   libraries.   This   was   seen   as   essential   by   all   users   and   potential   users.   Lack  of  coordination  of  commercial  software  licenses,  and  lack  of  flexibility  on  the  part  of  some   software   vendors,   was   seen   as   a   significant   barrier   to   more   effective   use   of   the   Regional   Centres  in  some  areas  of  research,  and  is  clearly  an  issue  that  needs  to  be  addressed  as  part  of   the  whole  research  computing  ecosystem.  

The   need   for   reliable   access   to   high   quality   training   in   advanced   research   computing   techniques   was   a   consistent   theme   in   all   the   interviews   and   consultations.   It   is   noted   that   a   number  of  national  initiatives  are  also  relevant  in  this  context  (e.g.  SSI,  HPC  Short  Courses  and   a   number   of   excellent   domain-­‐specific   summer   schools),   but   when   consulted,   users   consistently   noted   that   the   timing   and   capacity   of   these   training   mechanisms   did   not   accommodate   the   needs   of   a   substantial   percentage   of   computationally-­‐oriented   researchers.   There  remains  a  need  for  regional  coordination,  and  potentially  provision,  of  training  to  ensure   all  researchers  are  sufficiently  well  skilled  in  the  computational  methods  they  require.  

A  number  of  different  strategies  were  adopted  amongst  the  ReICN  Regional  Centres.  SES  made   use   of   summer   schools   run   at   Oxford,   Southampton   and   Cambridge;   MidPlus   made   MSc  

modules   delivered   at   one   member   available   to   the   other   institutions  via   access   grid,   with  

supporting  practical  exercises  run  locally;  N8  devolved  training  to  local  institutions.  All  these   training   experiments   proved   to   have   their   merits,   but   it   is   clear   that   more   deliberate   investment—exploiting   and   coordinating   the   advantages   of   Regional   Centres,   CDTs   and   national   training   networks—is   needed   to   ensure   that   a   consistently   high   level   of   training   becomes   available   across   the   UK.   Thus   must   not   be   left   as   an   afterthought   in   the   next   major   funding  round.  

Outreach  

ReICN  studied  the  activities  that  had  been  undertaken  by  the  five  EPSRC  Regional  Centres  to  

engage  users  from  Universities  beyond  their  main  membership.*  The  study  involved  a  mixture  

of  gathering  quantitative  data  on  actual  use  of  the  five  facilities,  and  conducting  a  survey  and   interview  process  with  a  selection  of  people  at  non-­‐member  institutions.  The  main  findings  of   this  study  are  given  below.  

                                                                                                                         

*  The  list  of  twenty-­‐four  universities  that  are  members  of  one  of  the  five  EPSRC  Regional  Centres  is  given  

(12)

• ARCHIE-­‐WeSt   and   HPC   Midlands   currently   host   projects   from   external   University   groups,   N8   HPC   has   several   projects   that   involve   users   from   outside   N8   institutions,   MidPlus   has   fostered   use   through   collaboration   between   member   and   non-­‐member  

Universities,  and  there  is  legacy  external  activity  through  SES.*  

• In   general   the   external   projects   arise   through   academic   contacts,   and   might   involve  

visiting  researchers  and  Fellows,  as  does  the  external  activity  at  MidPlus.    

• Successful  outreach  requires  dedicated  staff  and  sustained  effort,  which  is  not  a  priority  

of   the   centres   at   present,   which   instead   focus   on   supporting   consortia   members.   For   example,  N8  requires  its  project  leads  to  be  a  member  of  its  already  large  consortium,   whilst  collaborators  can  come  from  beyond  the  consortium.    

• The   services   utilised   by   these   projects   include   access   to   the   HPC   resource,   plus   the  

training,  support  and  consultancy  that  each  centre  provides.  

• Access   arrangements   vary,   but   at   present   the   centres   usually   require   project   leaders  

from   non-­‐member   institutions   to   cover   the   operating   costs   of   their   projects   at   an   appropriate   academic   rate.   Some   Regional   Centres   do   provide   some   free   exploratory   access  to  non-­‐member  Universities,  but  this  is  necessarily  limited.  

• The  most  obvious  barriers,  beyond  raising  awareness,  to  uptake  by  external  University  

groups   are   the   access   costs   and   software   licencing;   software   is   usually   licensed   to   individual   Universities   rather   than   to   a   Regional   Centre   itself,   and   vendors   are   often   reluctant  to  extend  academic  licence  fees  to  Regional  Centres.  

• Future  regional  provision  could  be  expanded  in  scope,  but  requires  more  operational  

staff  as  well  as  hardware  to  support  a  wider  user  community.    

• Future   access   arrangements   and   operating   costs   for   academics   out-­‐with   the   regional  

consortia  could  be  aligned  to  those  of  the  National  centres.  

Industrial  Engagement  

One   of   the   key   drivers   of   the   2012   e-­‐Infrastructure   funding   was   the   realisation,   clearly  

expounded  in  the  Tildesley  Report,†  that  UK  industry  would  require  easy  access  to  a  nationally  

coherent   e-­‐Infrastructure   in   order   to   remain   globally   competitive   and   to   exploit   fully   the   advantages  that  e-­‐Science  has  to  offer.  It  was  thought  that  this  would  best  be  achieved  by  the   public   and   private   sectors   sharing   a   common   infrastructure,   with   Industry   having   access   to   expertise   and   skills   in   High   Performance   Computing   through   knowledge   exchange   with   the   Academic  community.  

Consequently,   a   major   driver   for   the   ReICN   Regional   Centres   was   to   reach   out   and   promote   HPC  to  Industry.  This  has  proven  to  be  very  successful  in  a  number  of  sectors:    across  all  five   regional  centres  there  have  been  135  joint  Academic-­‐Industry  projects  utilising  HPC,  18  direct   Industry  usage  projects  and  a  further  16  Knowledge  Exchange  activities  involving  the  Regional   HPC  Centres  in  the  space  of  three  years.  It  is  also  illustrated  through  a  number  of  the  attached   case  studies.  

ReICN  has  catalogued  and  analysed  Industry  Engagement  activities  across  the  Regional  Centres   in  order  to  determine  best  practice  and  develop  an  effective  Industry  Engagement  strategy.  Its  

                                                                                                                         

*  ARCHIE-­‐WeSt  has  projects  from  Heriot-­‐Watt  and  the  Glasgow  School  of  Art;  SES  has  projects  from  Bath  

and  Manchester;  HPC  Midlands  has  one  current  project  and  is  in  negotiations  with  four  other  external   academic  groups;  N8  HPC  has  several  projects  which  involve  users  from  outside  the  N8  institutions  such   as  the  University  of  Bradford  and  Salford  University;  MidPlus  has  a  project  with  Aston.  

 “A  Strategic  Vision  for  UK  e-­‐Infrastructure”,  

(13)

members   have   also   examined   the   barriers   to   greater   engagement. *  The   key  

conclusions/outcomes  are:  

• Almost   without   exception,   Industry   Engagement   has   grown   out   of   established  

relationships  between  Universities  and  companies;  

• This   is   more   difficult   to   achieve   for   national   facilities,   which   do   not   have   their   own  

academic-­‐industry  community  to  explore;  

• National  facilities  are  well  placed  to  deliver  HPC-­‐on-­‐demand  to  companies  that  already  

understand  their  HPC  needs,  while  Regional  Centres—with  their  close  links  to  member   Universities,   and   hence   to   domain-­‐specific   expertise—are   well   placed   to   work   with   companies   that   do   not   (yet)   understand   their   HPC   needs,   and   so   are   key   enablers   in   exporting  HPC  to  Industry;  

• Regional   Centres   are   working   to   build   upon   this   strong   foundation   and   seeking   to  

establish  a  nationally  coherent  Industry  Engagement  HPC  strategy;  succeeding  in  this   will   be   difficult   without   sustained   investment   in   the   Regional   layer,   and   the   current   hiatus  in  funding  for  Regional  Centres  risks  undermining  the  progress  made  so  far;  

• Best  practice  is  still  emerging  on  how  to  balance  competition  and  cooperation  between  

Universities  in  Regional  Centre  –  Industry  engagement;  

• Effective   industrial   engagement   does   require   Regional   Centres   to   have   significant,  

dedicated  human  resources.  

Based  on  these  conclusions,  we  recommend  that  any  Industry  Engagement  Strategy  built  into   the  next  generation  of  the  UK  e-­‐Infrastructure  landscape  should:  

• Recognise   that   different   Regional   Centres   have   different   research   strengths   with  

different   skills   profiles   and   should   enable   those   characteristics   to   be   mapped   to   Industry  requirements;  

• Recognise   that   relationships   are   fundamental   and   will   protect   the   integrity   of   any  

Academic  –  Industry  relationship;  

• Exploit  the  advantages  of  local  industry/university  interaction  where  ever  feasible;  

• Provide   mechanisms   for   easy   project   migration   to   other   centres   and   platforms   when  

the  industry’s  requirements  are  not  well  matched  to  the  regions  expertise  and  facilities;  

• Enhance  collaboration  between  national  centres,  such  as  Hartree,  and  Regional  Centres  

that  exploits  the  synergy  between  scale  of  resources  and  domain  expertise;  

• Ensure   that   the   strategy   is   adequately   resourced   with   the   requisite   support   staff   and  

facilities.  

Delivering  such  a  strategy  requires  a  coherent  infrastructure  across  the  Regional  Centres,  and   may   at   times   require   elements   of   common   authentication,   access,   support   procedures,   operating   environments   and   a   common   approach   to   security.   This   is   only   achievable   by   establishing  a  coherent  Regional  layer  within  the  e-­‐Infrastructure  landscape.  

                                                                                                                         

(14)

Personal  Interviews  

Telephone  interviews  were  conducted  with  ten  research  leaders,  selected  from  both  inside  and   outside  the  Regional  Centre  member  universities.  Three  key  attributes  were  consistently  cited   as  substantive  benefits  of  working  with  Regional  Centres.  

Versatility:  researchers   who   used   both   national   and   regional   facilities   found   the  

Regional   Centres   were   more   closely   linked   with   their   users,   and   were   able   to   offer   a   more  flexible  and  versatile  service  which  was  able  to  accommodate  different  types  of   users.  

Good  support  and  infrastructure:  the  size  of  the  regional  centres  was  found  to  generate  a  

good   balance   between   support   staff   and   users,   providing   a   high   level   of   expertise   coupled   with   good   responsiveness.   Interviewees   also   valued   the   research   community   they  found  associated  with  the  Regional  Centres.  

Appropriate   scale   for   the   task:  many   of   the   researchers   interviewed   noted   that   the  

regional  facilities  were  well  sized  to  provide  most  of  their  research  computing  capacity,   while   allowing   scale-­‐up,   optimisation   and   targeting   of   their   large   jobs   that   really   did   require  the  resources  of  a  national  (tier  1/0)  facility.  

A  more  complete  description  is  included  in  the  supporting  documents.  

Case  Studies  

A  selection  of  case  studies,  sampling  the  variety  and  quality  of  research  enabled  by  the  Regional   Centres,  is  listed  on  the  next  page.  The  selection  includes  world-­‐leading  science  in  fields  such  as   modelling  DNA  and  rotary  aircraft,  and  searching  for  extra-­‐terrestrial  life.  Real-­‐world  problems   with   economic   impact   are   addressed   in   fields   of   health,   renewable   energy,   advanced   manufacturing  and  public  and  environmental  safety.  In  some  projects  smaller,  local,  companies   have   partnered   the   work,   while   others   have   involved   larger   companies   such   as   Johnson   &   Johnson   and   Airbus.   More   details   and   links   to   the   original   studies   are   provided   in   the   supporting  documents.  

(15)

Case%Study%title Scie ntif ic %im pac t Ec on om ic %im pa ct Re ne w ab le %e ne rg y He alth Indus tr ial% eng ag em en t Ad va nc ed %m an uf ac tu rin g Pu bl ic%& %en vi ro n.%sa fe ty Engine er ing%de sign

SgurrEnergy:*Using*High*Performance*Computing*for*Large*Scale*Renewable*Energy*Projects * X X * X * * *

Developing*StateAofAtheAart*Desalination*Processes*using*Molecular*Dynamics * X * X * * * *

Ship*Propeller*Boss*Cap*Fin*Optimisation*using*ARCHIEAWeSt * X * * * * * *

Stopping*Alzheimer’s*in*its*Tracks:*Using*HPC*to*Understand*and*Prevent*BetaAamyloid*Aggregation * X * X * * * *

Molecular*Dynamic*Simulation*Study*of*Nanometric*Cutting*of*Single*Crystal*Silicon*at*Elevated*Temperatures * X * * * X * *

Utilising*HPC*for*the*Prediction*of*Allosteric*Binding*Sites*for*Drug*Discovery * X * X * * * *

Structural*Analysis*and*Design*Optimisation*using*ANSYS*Remote*Solver * X * * X * * X

Modelling*mutations*for*cancer*cure X * * X * * * *

Environmentally*Friendly*Heterogeneous*Catalysis X * * * * * * *

Slowing*the*aging*process X * * X * * * *

HPC*Adds*Extra*Dimension*To*The*Search*For*Extraterrestrial*Life X * * * * * * *

Modelling*the*coastal*effects*of*a*Tsunami * X * * * * X *

Imaging*Software*Brings*the*Brain*into*Fuller*Focus X * * X * * * *

Computing*Power*Helps*Researchers*Unlock*DNA’s*Mysteries X * * X * * * *

From*biodiesel*to*detergents * X X * * * * *

University*of*Manchester*and*Johnson*&*Johnson*Protein*Conformational*Change*using*Molecular*Simulation * * * X X * * *

N8*HPC*A*An*HPC*Stepping*Stone:*Wind*and*Tidal*Turbine*Design * X X * * * * *

Improving*safety*by*predicting*the*lifespan*of*composite*materials * X * * X X X *

Increasing*turbine*life*through*novel*blade*coating* * X * * X * * X

Simulations*find*answers*for*cheaper,*more*efficient*thinAfilm*photovoltaics * X X * X * * *

High*Fidelity*CFD*Simulations*of*Rotary*Wing*Aircraft* X X * * * * * *

DFT*calculations*in*applications*of*NMR*crystallography*to*organic*molecules*of*importance*to*the*pharmaceutical*industry*and*in*

supramolecular*self*assembly * X * X X * * *

Regularity*of*classical*threeAdimensional*fluids X * * * * * X X  

(16)

Statistical  Indicators  

The  following  data  is  the  average*  for  an  individual  ReICN  Regional  Centre.  

Objectives

2015 Lifetime1(201232015)

World1class1and1world1leading1scientific1output !

#!journal!papers!for!period 168.5 278.5

Impact!case!studies!or!press!releases!in!period 8.3 29

Graduate1and1post1doctorate1training1and1support

Average1regional1centre1metrics1

calculated!with!available!values

total!number!of!users 454.3 404.5

Increased1impact1and1collaboration1with1industry

%!use!by!industry 19.20% 19.20%

#industrial!partners 12 56

#groups!with!industrial!collaboration 11.7 29

#joint!papers 3.5 27

Strengthening1of1UK’s1international1position

%!use!by!o/seas 0% 2%

#o/seas!collaborators 17.25 33

Operational1metrics

#!active!accounts!per!month 79.5 55.31

%!utilisation!of!system 91.28% 83.04%

Other1metrics1currently1recorded

#!grants!mentioning!regional!HPC!centre 31.3 108.7

total!value!of!grants!mentioning!regional!HPC!centre £14.9M £48.5M

#industrial!studentships 9.5 32

#!KTPs!/!KTNs 2 7

#CDT!interaction 4 11

#progressions!to!Tier!1 9.5 20.5  

 

                                                                                                                         

References

Related documents

characterizing the floristic features of plant species associated with four wild medicinal plants in the Egyptian deserts. and L., and the two other species were

IEM extraction method al- low single extraction process and a single subsequent mea- surement of the soil available nitrate, phosphate, sulfate by IC, calcium, magnesium,

delivery, distance from the facility, cultural belief, and maternal workload, not knowing about postnatal care, and being apparently healthy were major predictors

vehicle warranty so the schools did not incur any actual costs due to the maintenance issues. Additionally, it was felt that the initial maintenance problems with the hybrid

This was done by overlaying the groundwater potential zones layer ( Figure 14 ) with the existing boreholes layer ( Figure 7 ) and evaluating the predicted ground water

We carried out a large prospective cohort study, using the computerized national databases of the Department of Veterans Affairs (VA) to examine the risk according

Representative graph showing survival of HEPG- 2 cell grown compared to 5FU in the presence of increasing concentrations of compounds 7, 10, 11 and 13.. one of the basic

This paper selects five kinds of direct financing methods such as the public issuance of stocks, the non-public issuance of stocks, the allotment of shares, the issuance