Poly­[[bis­(1H imidazole κN3)­cadmium(II)] μ3 benzene 1,3 di­oxy­acetato]

(1)metal-organic papers Poly[[bis(1H-imidazole-jN3)cadmium(II)]l3-benzene-1,3-dioxyacetato]. Acta Crystallographica Section E. Structure Reports Online ISSN 1600-5368. Shan Gao,* Ji-Wei Liu, Li-Hua Huo, Hui Zhao and Jing-Gui Zhao School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China Correspondence e-mail: shangao67@yahoo.com. Key indicators Single-crystal X-ray study T = 293 K Ê Mean (C±C) = 0.005 A R factor = 0.029 wR factor = 0.071 Data-to-parameter ratio = 16.9. # 2004 International Union of Crystallography Printed in Great Britain ± all rights reserved. Shan Gao et al.. Received 1 November 2004 Accepted 11 November 2004 Online 20 November 2004. Comment. For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.. m1878. Each seven-coordinate CdII atom in the title coordination polymer, poly[[bis(1H-imidazole-N3)cadmium(II)]-3-mphenylenebis(oxyacetato)], [Cd(1,3-BDOA)(C3H4N2)2]n (1,3BDOA2ÿ is the benzene-1,3-dioxyacetate dianion, C10H8O6), displays a distorted monocapped octahedral coordination geometry, de®ned by two N atoms from the imidazole ligands and ®ve O atoms from three 1,3-BDOA2ÿ anions. Adjacent CdII atoms are bridged by two 1,3-BDOA2ÿ ligands, forming a one-dimensional double-chain structure, with Cd  Cd Ê across the double chain and separations of 4.014 (3) A Ê 13.105 (2) A along the chain. A network of NÐH  O interchain hydrogen bonds is also present.. . Recently, there has been growing interest in cadmium(II) carboxylate polymers, due to the recognition of their role in biological organisms (Strasdeit et al., 1988), as well as in molecular-based materials (Liu et al., 2002), within which the judicious choice of a suitable ligand is an important factor that greatly in¯uences the structure of the coordination architecture and functionality of the complex formed. Phenylenedioxydiacetic acids (BDOAH2) are regarded as excellent candidates with which to construct high-dimensional coordination polymers, because of their interesting structural characteristics. Firstly, they have high symmetry and versatile carboxylate coordination modes. Secondly, they are not only capable of binding to metal centres, but can also form regular hydrogen bonds by functioning as both a hydrogen donor and acceptor, owing to the existence of deprotonated and/or. protonated carboxyl groups. Recently, we have reported some coordination polymers incorporating 1,3- or 1,4-BDOA2ÿ ligands, in which these ligands act in a great variety of coordination modes, such as bidentate (Gao, Li et al., 2004; Gao, Liu, Huo, Zhao & Zhao, 2004b; Gao, Liu, Huo, Zhao & Ng, 2004a; Liu et al., 2004), tridentate (Gao, Liu, Huo, Zhao & Zhao, 2004a,c,d) or tetradentate (Gao, Liu, Huo, Zhao & Ng,. [Cd(C10H8O6)(C3H4N2)2]. doi:10.1107/S160053680402923X. Acta Cryst. (2004). E60, m1878±m1880.

(2) metal-organic papers 2004b) modes. Here, we report the structural characterization of the title novel double-chain cadmium(II) coordination polymer, [Cd(1,3-BDOA)(C3H4N2)2]n, (I) (Fig. 1), obtained by the self-assembly reaction of cadmium dinitrate tetrahydrate, imidazole and 1,3-BDOAH2. This compound represents the ®rst example of a coordination polymer with a pentadentate 1,3-BDOA2ÿ ligand coordinating in bridging mode. The asymmetric unit of (I) consists of a CdII ion, two imidazole molecules and one 1,3-BDOA2ÿ dianion. The seven-coordinate CdII ion is coordinated by two N atoms from the imidazole ligands and ®ve O atoms from three different carboxylate groups (Table 1). The local coordination around the CdII ion can best be described as distorted monocapped octahedral with a CdN2O5 chromophore. Its equatorial plane is de®ned by atoms O1, O2, N1 and O6i [symmetry code: (i) Ê ; deviation of Cd1 from x + 1, y + 1, z] [r.m.s. deviation 0.12 A Ê the mean plane 0.47 (4) A]. Atoms N3 and O6ii occupy the axial sites, with an N3ÐCd1ÐO6ii angle of 162.59 (7) [symmetry code: (ii) ÿx, ÿy, 1 ÿ z]. The capping atom O5i lies Ê out of the plane of atoms N1, N3 and O6i. The 2.342 (3) A i CdÐO5 and CdÐO6ii distances (Table 1) are considerably longer than the other CdÐO bonds but lie within the range of the corresponding bond distances reported for related CdII Ê; carboxylate coordination polymers [2.639 (2) and 2.879 (2) A Clegg et al., 1995]. The imidazole molecules serve as typical monodentate ligands coordinated to the metal centre. The dihedral angle between the two imidazole molecules is 72.04 (8) . The CdÐOcarboxyl distances in (I) range from 2.251 (2) to Ê , whereas in the related polymer, [Cd(1,42.771 (2) A BDOA)(C3H4N2)3]n, (II) (Gao, Liu, Huo, Zhao & Zhao, 2004c), the CdÐOcarboxyl distances range from 2.347 (2) to Ê . In (II), the CdII atom is coordinated by three 2.481 (2) A carboxyl O atoms from two different 1,4-BDOA2ÿ groups and three N atoms from three imidazole molecules, displaying an octahedral con®guration, and the 1,4-BDOA2ÿ dianion behaves as a bridging ligand with both a monodentate and a bidentate chelating mode, to form a one-dimensional chain polymer. In (I), the two CÐO bond distances of one of the carboxyl groups (C10/O5/O6) are signi®cantly different, while those of the other carboxyl group (C1/O1/O2) are essentially the same. This may be attributed to the in¯uence of the different coordination modes of the carboxyl groups. In the former, the carboxyl group is in a tridentate bridging mode through atoms O5 and O6bridge between two metal ions. In the latter, the carboxyl group is in a bidentate chelating mode through atoms O1 and O2. One of the oxyacetate groups and the aromatic ring are nearly coplanar, with a C7ÐO4ÐC9ÐC10 torsion angle of ÿ176.3 (2) , while the other oxyacetate group is twisted out the aromatic ring plane, with a C3ÐO3ÐC2ÐC1 torsion angle of 72.9 (4) . The dihedral angles between the aromatic ring and imidazole molecules are 52.55 (8) and 57.99 (7) . In contrast, in (II), both oxyacetate groups and the aromatic ring are almost coplanar, with torsion angles of Acta Cryst. (2004). E60, m1878±m1880. ÿ174.2 (3) (C11ÐO3ÐC12ÐC19) and 178.7 (2) (C17Ð O6ÐC16ÐC15). Each 1,3-BDOA2ÿ dianion links two CdII atoms in a bisbidentate mode, giving rise to a one-dimensional chain running along a diagonal of the ab plane. The intrachain Ê , which is somewhat shorter Cd  Cd separation is 13.105 (2) A Ê than that in (II) of 15.009 (2) A. Neighbouring chains share carboxyl atoms O6 and O6ii to generate a four-membered ring with a centrosymmetric Cd2O2 core, in which the Cd  Cd Ê . The three four-membered rings with separation is 4.014 (3) A CdÐO bonds as shared edges have an overall chair shape (Fig. 2). Imidazole atoms N2 and N4 do not participate in coordination to the metal atom, owing to their weak coordination ability, but engage in intermolecular hydrogen bonds with carboxyl O atoms (Table 2), consolidating the crystal structure and leading to a three-dimensional supramolecular architecture.. Experimental Benzene-1,3-dioxyacetic acid was prepared following by the method described for the synthesis of benzene-1,2-dioxyacetic acid by Mirci (1990). Compound (I) was synthesized by the addition of cadmium dinitrate tetrahydrate (6.16 g, 20 mmol) and imidazole (1.90 g, 20 mmol) to a hot aqueous solution of 1,3-BDOAH2 (4.52 g, 20 mmol), and the pH was adjusted to 6 with 0.2 M NaOH. The solution was allowed to evaporate at room temperature, and colourless prismatic crystals of (I) were obtained after several days. CHN analysis, calculated for C16H16N4O6Cd: C 40.65, H 3.41, N 11.85%; found: C 40.71, H 3.36, N 11.80%. Crystal data [Cd(C10H8O6)(C3H4N2)2] Mr = 472.74 Triclinic, P1 Ê a = 9.4084 (19) A Ê b = 10.062 (2) A Ê c = 11.130 (2) A = 108.46 (3)

(3) = 111.04 (3) = 95.46 (3) Ê3 V = 906.5 (5) A. Z=2 Dx = 1.732 Mg mÿ3 Mo K radiation Cell parameters from 6222 re¯ections  = 3.6±27.4  = 1.25 mmÿ1 T = 293 (2) K Prism, colourless 0.38  0.24  0.17 mm. Data collection 4122 independent re¯ections 3923 re¯ections with I > 2(I) Rint = 0.025 max = 27.5 h = ÿ10 ! 12 k = ÿ12 ! 13 l = ÿ14 ! 14. Rigaku R-AXIS RAPID diffractometer ! scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.649, Tmax = 0.816 8787 measured re¯ections. Refinement w = 1/[ 2(Fo2) + (0.0402P)2 + 0.4978P] where P = (Fo2 + 2Fc2)/3 (/)max = 0.001 Ê ÿ3 max = 0.79 e A Ê ÿ3 min = ÿ0.59 e A. Re®nement on F 2 R[F 2 > 2(F 2)] = 0.029 wR(F 2) = 0.071 S = 1.08 4122 re¯ections 244 parameters H-atom parameters constrained. Shan Gao et al.. . [Cd(C10H8O6)(C3H4N2)2]. m1879.

(4) metal-organic papers Table 1. Ê ,  ). Selected geometric parameters (A Cd1ÐN1 Cd1ÐN3 Cd1ÐO1 Cd1ÐO2 Cd1ÐO5i Cd1ÐO6i. Cd1ÐO6ii C1ÐO1 C1ÐO2 C10ÐO5 C10ÐO6. 2.239 (2) 2.299 (2) 2.476 (2) 2.367 (2) 2.771 (2) 2.251 (2). N1ÐCd1ÐN3 N1ÐCd1ÐO1 N1ÐCd1ÐO2 N1ÐCd1ÐO5i N1ÐCd1ÐO6i N1ÐCd1ÐO6ii N3ÐCd1ÐO1 N3ÐCd1ÐO2 N3ÐCd1ÐO5i N3ÐCd1ÐO6ii O1ÐCd1ÐO5i. 2.636 (2) 1.248 (3) 1.249 (3) 1.232 (3) 1.261 (3). O1ÐCd1ÐO6ii O2ÐCd1ÐO1 O2ÐCd1ÐO5i O2ÐCd1ÐO6ii O5iÐCd1ÐO6ii O6iÐCd1ÐN3 O6iÐCd1ÐO1 O6iÐCd1ÐO2 O6iÐCd1ÐO5i O6iÐCd1ÐO6ii. 94.28 (8) 100.19 (8) 151.85 (8) 99.27 (8) 104.64 (8) 83.11 (7) 83.76 (7) 93.42 (8) 78.37 (7) 162.59 (7) 154.42 (6). 79.79 (6) 53.89 (6) 108.80 (7) 81.51 (7) 119.04 (7) 127.24 (7) 137.56 (6) 91.95 (7) 50.48 (6) 69.81 (7). Figure 1. Symmetry codes: (i) 1 ‡ x; 1 ‡ y; z; (ii) ÿx; ÿy; 1 ÿ z.. A view of the asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes as in Table 1.]. Table 2. Ê ,  ). Hydrogen-bonding geometry (A DÐH  A iv. N2ÐH17  O1 N4ÐH18  O4v N4ÐH18  O5v. DÐH. H  A. D  A. DÐH  A. 0.86 0.86 0.86. 1.96 2.57 2.02. 2.786 (3) 3.148 (3) 2.792 (3). 160 125 149. Symmetry codes: (iv) 1 ÿ x; ÿy; 1 ÿ z; (v) 1 ÿ x; ÿy; 2 ÿ z.. All H atoms were placed in calculated positions, with CÐH = Ê (aromatic) or 0.97 A Ê (aliphatic) and NÐH = 0.86 A Ê (imida0.93 A zole), and were re®ned as riding, with Uiso(H) = 1.2Ueq(C,N). Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell re®nement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); SHELXL97.. The authors thank the National Natural Science Foundation of China (grant No. 20101003), Heilongjiang Province Natural Science Foundation (grant No. B0007), the Scienti®c Fund of Remarkable Teachers of Heilongjiang Province (grant No. 1054G036) and Heilongjiang University for supporting this study.. References Clegg, W., Cressey, J. T., McCamley, A. & Straughan, B. P. (1995). Acta Cryst. C51, 234±235. Gao, S., Li, J.-R., Liu, J.-W. & Huo, L.-H. (2004). Acta Cryst. E60, m140±m141. Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Ng, S. W. (2004a). Acta Cryst. E60, m1329±m1330.. m1880. Shan Gao et al.. . [Cd(C10H8O6)(C3H4N2)2]. Figure 2. The double-chain structure of (I), with the imidazole ligands and H atoms omitted for clarity. [Symmetry codes as in Table 1; (iii) 1 ÿ x, 1 ÿ y, 1 ÿ z.] Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Ng, S. W. (2004b). Appl. Organomet. Chem. 18. In the press. Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004a). Acta Cryst. E60, m1231±m1233. Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004b). Acta Cryst. E60, m1242±m1244. Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004c). Acta Cryst. E60, m1267±m1269. Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004d). Acta Cryst. E60, m1308±m1310. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Liu, J.-W., Huo, L.-H., Gao, S., Zhao, H., Zhu, Z.-B. & Zhao, J.-G. (2004). Wuji Huaxue Xuebao (Chin. J. Inorg. Chem.), 20, 707±710. (In Chinese.) Liu, Y.-H., Lu, Y.-L., Wu, H.-C., Wang, J.-C. & Lu, K.-L. (2002). Inorg. Chem. 41, 2592±2597. Mirci, L. E. (1990). Rom. Patent No. 07 43 205. Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany. Strasdeit, H., Saak, W., Pohl, S., Driessen, W. L. & Reedijk, J. (1988). Inorg. Chem. 27, 1557±1563.. Acta Cryst. (2004). E60, m1878±m1880.

(5) supporting information. supporting information Acta Cryst. (2004). E60, m1878–m1880. [https://doi.org/10.1107/S160053680402923X]. Poly[[bis(1H-imidazole-κN3)cadmium(II)]-µ3-benzene-1,3-dioxyacetato] Shan Gao, Ji-Wei Liu, Li-Hua Huo, Hui Zhao and Jing-Gui Zhao poly[[bis(1H-imidazole-κN3)cadmium(II)]-µ3-m-phenylenebis(oxyacetato)] Crystal data [Cd(C10H8O6)(C3H4N2)2] Mr = 472.74 Triclinic, P1 Hall symbol: -P 1 a = 9.4084 (19) Å b = 10.062 (2) Å c = 11.130 (2) Å α = 108.46 (3)° β = 111.04 (3)° γ = 95.46 (3)° V = 906.5 (5) Å3. Z=2 F(000) = 472 Dx = 1.732 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 6222 reflections θ = 3.6–27.4° µ = 1.25 mm−1 T = 293 K Prism, colourless 0.38 × 0.24 × 0.17 mm. Data collection Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 10 pixels mm-1 ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.649, Tmax = 0.816. 8787 measured reflections 4122 independent reflections 3923 reflections with I > 2σ(I) Rint = 0.025 θmax = 27.5°, θmin = 3.1° h = −10→12 k = −12→13 l = −14→14. Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.029 wR(F2) = 0.071 S = 1.08 4122 reflections 244 parameters 0 restraints Primary atom site location: structure-invariant direct methods. Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0402P)2 + 0.4978P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 0.79 e Å−3 Δρmin = −0.59 e Å−3. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2). Cd1 N1. x. y. z. Uiso*/Ueq. 0.564492 (18) 0.6212 (3). 0.399619 (16) 0.2225 (2). 0.633815 (16) 0.4898 (2). 0.03328 (7) 0.0408 (4). Acta Cryst. (2004). E60, m1878–m1880. sup-1.

(6) supporting information N2 N3 N4 O1 O2 O3 O4 O5 O6 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 H2B H2C H4 H5 H6 H8 H9A H9B H11 H12 H13 H14 H15 H16 H17 H18. 0.6729 (3) 0.6843 (2) 0.8646 (3) 0.3217 (2) 0.3871 (2) 0.0538 (2) −0.0044 (2) −0.1478 (2) −0.35877 (19) 0.2941 (3) 0.1374 (4) 0.1089 (3) 0.2301 (4) 0.2722 (4) 0.1932 (3) 0.0691 (3) 0.0279 (3) −0.1469 (3) −0.2201 (3) 0.6555 (3) 0.6481 (5) 0.6175 (4) 0.8350 (3) 0.7273 (4) 0.6159 (3) 0.1553 0.0730 0.2829 0.3557 0.2225 −0.0533 −0.1271 −0.2190 0.6664 0.6516 0.5971 0.9111 0.7122 0.5092 0.6956 0.9550. 0.0171 (2) 0.3414 (2) 0.3112 (3) 0.26615 (18) 0.50269 (19) 0.2504 (2) −0.13626 (19) −0.4038 (2) −0.40128 (18) 0.3840 (2) 0.3868 (3) 0.2005 (3) 0.2760 (3) 0.2104 (3) 0.0732 (3) −0.0004 (3) 0.0612 (3) −0.2018 (3) −0.3459 (2) 0.1057 (3) 0.0797 (4) 0.2075 (3) 0.3511 (3) 0.2761 (4) 0.2931 (4) 0.4557 0.4201 0.3691 0.2602 0.0312 0.0102 −0.2156 −0.1391 0.0872 0.0420 0.2747 0.3818 0.2459 0.2749 −0.0652 0.3085. 0.4011 (3) 0.8239 (2) 0.9968 (2) 0.62225 (18) 0.7189 (2) 0.6670 (3) 0.81726 (18) 0.7681 (2) 0.60028 (18) 0.6765 (3) 0.6866 (4) 0.7722 (3) 0.9003 (3) 0.9967 (3) 0.9684 (3) 0.8392 (3) 0.7405 (3) 0.6970 (3) 0.6907 (2) 0.5086 (3) 0.3055 (4) 0.3617 (3) 0.8882 (3) 1.0043 (3) 0.8973 (3) 0.7773 0.6173 0.9221 1.0826 1.0343 0.6534 0.6147 0.6987 0.5878 0.2191 0.3202 0.8616 1.0706 0.8763 0.3929 1.0518. 0.0497 (5) 0.0406 (4) 0.0534 (6) 0.0399 (4) 0.0478 (4) 0.0586 (5) 0.0450 (4) 0.0536 (5) 0.0406 (4) 0.0370 (5) 0.0578 (8) 0.0452 (6) 0.0525 (7) 0.0563 (7) 0.0491 (6) 0.0392 (5) 0.0415 (5) 0.0445 (6) 0.0337 (4) 0.0430 (5) 0.0639 (9) 0.0582 (8) 0.0479 (6) 0.0597 (8) 0.0540 (7) 0.069* 0.069* 0.063* 0.068* 0.059* 0.050* 0.053* 0.053* 0.052* 0.077* 0.070* 0.057* 0.072* 0.065* 0.060* 0.064*. Atomic displacement parameters (Å2). Cd1 N1 N2. U11. U22. U33. U12. U13. U23. 0.03570 (10) 0.0480 (11) 0.0584 (14). 0.02842 (10) 0.0343 (10) 0.0335 (10). 0.03878 (10) 0.0449 (11) 0.0617 (14). 0.00759 (6) 0.0159 (9) 0.0213 (10). 0.01694 (7) 0.0202 (9) 0.0266 (11). 0.01472 (7) 0.0180 (9) 0.0186 (10). Acta Cryst. (2004). E60, m1878–m1880. sup-2.

(7) supporting information N3 N4 O1 O2 O3 O4 O5 O6 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16. 0.0347 (10) 0.0424 (12) 0.0438 (9) 0.0532 (11) 0.0412 (10) 0.0391 (9) 0.0485 (10) 0.0305 (8) 0.0400 (12) 0.0535 (16) 0.0368 (12) 0.0537 (16) 0.0528 (16) 0.0486 (14) 0.0323 (11) 0.0298 (10) 0.0376 (12) 0.0321 (10) 0.0472 (13) 0.096 (3) 0.088 (2) 0.0381 (13) 0.0563 (17) 0.0385 (13). 0.0457 (11) 0.0570 (14) 0.0339 (8) 0.0316 (8) 0.0518 (11) 0.0396 (9) 0.0443 (10) 0.0365 (8) 0.0333 (11) 0.0422 (14) 0.0379 (12) 0.0338 (12) 0.0495 (15) 0.0499 (15) 0.0359 (11) 0.0391 (12) 0.0386 (12) 0.0311 (10) 0.0359 (12) 0.0546 (17) 0.0534 (16) 0.0552 (15) 0.069 (2) 0.0721 (19). 0.0392 (10) 0.0480 (12) 0.0431 (9) 0.0672 (12) 0.0944 (16) 0.0414 (9) 0.0519 (10) 0.0459 (9) 0.0451 (12) 0.105 (2) 0.0689 (16) 0.0649 (17) 0.0437 (14) 0.0369 (12) 0.0434 (12) 0.0525 (14) 0.0423 (12) 0.0334 (10) 0.0488 (13) 0.0604 (18) 0.0607 (17) 0.0507 (14) 0.0530 (16) 0.0526 (15). 0.0072 (8) 0.0126 (10) 0.0140 (7) 0.0059 (7) 0.0080 (9) −0.0074 (7) −0.0009 (8) −0.0014 (6) 0.0110 (9) 0.0211 (12) 0.0089 (10) −0.0050 (11) −0.0125 (12) −0.0050 (11) −0.0011 (9) 0.0024 (9) −0.0080 (10) 0.0017 (8) 0.0137 (10) 0.0362 (18) 0.0373 (16) 0.0133 (11) 0.0058 (14) 0.0036 (12). 0.0112 (8) 0.0013 (10) 0.0169 (7) 0.0336 (9) 0.0265 (10) 0.0018 (7) −0.0012 (8) 0.0053 (7) 0.0195 (10) 0.0478 (17) 0.0298 (12) 0.0338 (14) 0.0197 (12) 0.0158 (11) 0.0148 (9) 0.0138 (10) 0.0005 (10) 0.0090 (8) 0.0186 (11) 0.0470 (18) 0.0447 (17) 0.0150 (11) 0.0131 (13) 0.0134 (12). 0.0186 (9) 0.0233 (11) 0.0159 (7) 0.0207 (8) 0.0446 (12) 0.0182 (7) 0.0265 (9) 0.0190 (7) 0.0212 (9) 0.0418 (16) 0.0212 (12) 0.0059 (12) −0.0039 (12) 0.0085 (11) 0.0112 (9) 0.0188 (11) 0.0195 (10) 0.0134 (8) 0.0198 (10) 0.0240 (14) 0.0346 (14) 0.0235 (12) 0.0355 (15) 0.0339 (14). Geometric parameters (Å, º) Cd1—N1 Cd1—N3 Cd1—O1 Cd1—O2 Cd1—O5i Cd1—O6i Cd1—O6ii C1—O1 C1—O2 C10—O5 C10—O6 N1—C11 N1—C13 N2—C11 N2—C12 N2—H17 N3—C14 N3—C16 N4—C14 N4—C15 N4—H18. Acta Cryst. (2004). E60, m1878–m1880. 2.239 (2) 2.299 (2) 2.476 (2) 2.367 (2) 2.771 (2) 2.251 (2) 2.636 (2) 1.248 (3) 1.249 (3) 1.232 (3) 1.261 (3) 1.308 (3) 1.373 (3) 1.321 (3) 1.363 (4) 0.8600 1.316 (3) 1.374 (3) 1.336 (4) 1.346 (4) 0.8600. O6—Cd1ii C1—C2 C2—H2B C2—H2C C3—C4 C3—C8 C4—C5 C4—H4 C5—C6 C5—H5 C6—C7 C6—H6 C7—C8 C8—H8 C9—C10 C9—H9A C9—H9B C11—H11 C12—C13 C12—H12 C13—H13. 2.636 (2) 1.521 (4) 0.9700 0.9700 1.375 (4) 1.401 (3) 1.391 (5) 0.9300 1.386 (4) 0.9300 1.391 (4) 0.9300 1.383 (4) 0.9300 1.514 (3) 0.9700 0.9700 0.9300 1.348 (4) 0.9300 0.9300. sup-3.

(8) supporting information O3—C2 O3—C3 O4—C7 O4—C9 O6—Cd1iii. 1.425 (3) 1.370 (4) 1.376 (3) 1.417 (3) 2.251 (2). C14—H14 C15—C16 C15—H15 C16—H16. 0.9300 1.347 (4) 0.9300 0.9300. N1—Cd1—N3 N1—Cd1—O1 N1—Cd1—O2 N1—Cd1—O5i N1—Cd1—O6i N1—Cd1—O6ii N3—Cd1—O1 N3—Cd1—O2 N3—Cd1—O5i N3—Cd1—O6ii O1—Cd1—O5i O1—Cd1—O6ii O2—Cd1—O1 O2—Cd1—O5i O2—Cd1—O6ii O5i—Cd1—O6ii O6i—Cd1—N3 O6i—Cd1—O1 O6i—Cd1—O2 O6i—Cd1—O5i O6i—Cd1—O6ii Cd1iii—O6—Cd1ii N1—C11—N2 N1—C11—H11 N1—C13—H13 N2—C11—H11 N2—C12—H12 N3—C14—N4 N3—C14—H14 N3—C16—H16 N4—C14—H14 N4—C15—C16 N4—C15—H15 O1—C1—Cd1 O1—C1—O2 O1—C1—C2 O2—C1—Cd1 O2—C1—C2 O3—C2—C1 O3—C2—H2B O3—C2—H2C O3—C3—C4. 94.28 (8) 100.19 (8) 151.85 (8) 99.27 (8) 104.64 (8) 83.11 (7) 83.76 (7) 93.42 (8) 78.37 (7) 162.59 (7) 154.42 (6) 79.79 (6) 53.89 (6) 108.80 (7) 81.51 (7) 119.04 (7) 127.24 (7) 137.56 (6) 91.95 (7) 50.48 (6) 69.81 (7) 110.19 (7) 111.6 (2) 124.2 125.5 124.2 127.0 111.4 (3) 124.3 125.3 124.3 106.6 (3) 126.7 64.2 (1) 123.2 (2) 119.5 (2) 59.2 (1) 117.3 (2) 113.8 (2) 108.8 108.8 125.6 (2). O5—C10—C9 O6—C10—C9 C1—O1—Cd1 C1—O2—Cd1 C1—C2—H2B C1—C2—H2C C2—C1—Cd1 C3—O3—C2 C3—C4—C5 C3—C4—H4 C3—C8—H8 C4—C3—C8 C4—C5—H5 C5—C4—H4 C5—C6—C7 C5—C6—H6 C6—C5—C4 C6—C5—H5 C7—O4—C9 C7—C6—H6 C7—C8—C3 C7—C8—H8 C8—C7—C6 C10—O6—Cd1iii C10—O6—Cd1ii C10—C9—H9A C10—C9—H9B C11—N1—Cd1 C11—N1—C13 C11—N2—C12 C11—N2—H17 C12—N2—H17 C12—C13—N1 C12—C13—H13 C13—N1—Cd1 C13—C12—N2 C13—C12—H12 C14—N3—Cd1 C14—N3—C16 C14—N4—C15 C14—N4—H18 C15—N4—H18. 121.9 (2) 114.9 (2) 88.8 (2) 93.9 (2) 108.8 108.8 172.0 (2) 117.5 (3) 118.8 (2) 120.6 120.1 120.5 (3) 119.1 120.6 118.5 (3) 120.8 121.9 (3) 119.1 116.1 (2) 120.8 119.7 (2) 120.1 120.6 (2) 105.1 (1) 143.3 (2) 109.6 109.6 125.8 (2) 105.6 (2) 107.6 (2) 126.2 126.2 109.1 (3) 125.5 128.4 (2) 106.1 (3) 127.0 127.1 (2) 105.0 (2) 107.5 (2) 126.2 126.2. Acta Cryst. (2004). E60, m1878–m1880. sup-4.

(9) supporting information O3—C3—C8 O4—C7—C6 O4—C7—C8 O4—C9—C10 O4—C9—H9A O4—C9—H9B O5—C10—O6. 113.9 (2) 115.8 (2) 123.6 (2) 110.5 (2) 109.6 109.6 123.2 (2). C15—C16—N3 C15—C16—H16 C16—N3—Cd1 C16—C15—H15 H2B—C2—H2C H9A—C9—H9B. 109.4 (3) 125.3 127.9 (2) 126.7 107.7 108.1. Cd1—N1—C11—N2 Cd1—N1—C13—C12 Cd1—N3—C14—N4 Cd1—N3—C16—C15 Cd1—O1—C1—O2 Cd1—O1—C1—C2 Cd1—O2—C1—O1 Cd1—O2—C1—C2 Cd1iii—O6—C10—O5 Cd1ii—O6—C10—O5 Cd1iii—O6—C10—C9 Cd1ii—O6—C10—C9 N1—Cd1—N3—C14 N1—Cd1—N3—C16 N1—Cd1—O1—C1 N1—Cd1—O2—C1 N1—Cd1—C1—O1 N1—Cd1—C1—O2 N2—C12—C13—N1 N3—Cd1—N1—C11 N3—Cd1—N1—C13 N3—Cd1—O1—C1 N3—Cd1—O2—C1 N3—Cd1—C1—O1 N3—Cd1—C1—O2 O1—Cd1—N1—C11 O1—Cd1—N1—C13 O1—Cd1—N3—C14 O1—Cd1—N3—C16 O1—Cd1—O2—C1 O1—Cd1—C1—O2 O1—C1—C2—O3 O2—Cd1—N1—C11 O2—Cd1—N1—C13 O2—Cd1—N3—C14 O2—Cd1—N3—C16 O2—Cd1—O1—C1 O2—Cd1—C1—O1 O2—C1—C2—O3 O3—C3—C4—C5. 175.7 (2) −175.2 (2) 178.7 (2) −177.9 (2) −5.1 (2) 172.0 (2) 5.3 (3) −171.8 (2) 5.5 (3) −157.9 (2) −175.0 (2) 21.7 (4) 66.5 (2) −115.5 (3) −165.1 (1) 23.2 (2) 18.23 (17) −166.7 (1) −0.8 (4) 21.2 (2) −163.6 (3) 101.6 (2) −82.5 (2) −76.8 (2) 98.2 (2) −63.3 (2) 112.0 (3) 166.3 (2) −15.7 (2) −2.8 (1) 175.0 (2) 16.5 (4) −84.3 (3) 90.9 (3) −140.6 (2) 37.4 (3) 2.78 (13) −175.0 (2) −166.3 (3) 179.8 (3). O4—C9—C10—O6 O6i—Cd1—N1—C11 O6ii—Cd1—N1—C11 O6i—Cd1—N1—C13 O6ii—Cd1—N1—C13 O6i—Cd1—N3—C14 O6ii—Cd1—N3—C14 O6i—Cd1—N3—C16 O6ii—Cd1—N3—C16 O6i—Cd1—O1—C1 O6ii—Cd1—O1—C1 O6i—Cd1—O2—C1 O6ii—Cd1—O2—C1 O6i—Cd1—C1—O1 O6ii—Cd1—C1—O1 O6i—Cd1—C1—O2 O6ii—Cd1—C1—O2 C1—Cd1—N1—C11 C1—Cd1—N1—C13 C1—Cd1—N3—C14 C1—Cd1—N3—C16 C2—O3—C3—C4 C2—O3—C3—C8 C3—O3—C2—C1 C3—C4—C5—C6 C4—C3—C8—C7 C4—C5—C6—C7 C5—C6—C7—O4 C5—C6—C7—C8 C6—C7—C8—C3 C7—O4—C9—C10 C8—C3—C4—C5 C9—O4—C7—C6 C9—O4—C7—C8 C11—N2—C12—C13 C11—N1—C13—C12 C12—N2—C11—N1 C13—N1—C11—N2 C14—N3—C16—C15 C14—N4—C15—C16. 168.9 (2) 151.5 (2) −141.5 (2) −33.3 (3) 33.7 (3) −45.5 (3) 147.1 (2) 132.5 (2) −34.9 (4) −39.9 (2) −84.1 (1) 150.0 (2) 80.7 (2) 151.5 (1) 90.6 (1) −33.5 (2) −94.4 (2) −71.6 (2) 103.7 (3) −167.3 (2) 10.7 (2) 5.9 (4) −175.2 (2) 72.9 (4) −1.5 (5) 0.7 (4) 0.4 (5) 179.9 (3) 1.3 (4) −1.9 (4) −176.3 (2) 1.0 (4) 169.3 (2) −12.2 (4) 0.6 (4) 0.8 (4) −0.1 (4) −0.4 (3) 0.5 (4) 1.1 (4). Acta Cryst. (2004). E60, m1878–m1880. sup-5.

(10) supporting information O3—C3—C8—C7 O4—C7—C8—C3 O4—C9—C10—O5. −178.3 (2) 179.7 (2) −11.5 (4). C15—N4—C14—N3 C16—N3—C14—N4. −0.9 (4) 0.3 (3). Symmetry codes: (i) x+1, y+1, z; (ii) −x, −y, −z+1; (iii) x−1, y−1, z.. Hydrogen-bond geometry (Å, º) D—H···A iv. N2—H17···O1 N4—H18···O4v N4—H18···O5v. D—H. H···A. D···A. D—H···A. 0.86 0.86 0.86. 1.96 2.57 2.02. 2.786 (3) 3.148 (3) 2.792 (3). 160 125 149. Symmetry codes: (iv) −x+1, −y, −z+1; (v) −x+1, −y, −z+2.. Acta Cryst. (2004). E60, m1878–m1880. sup-6.

(11)

New documents

At week 8, SCr levels in the She Jing Xiao Bai cap- sule, irbesartan, and She Jing Xiao Bai capsule plus irbesartan groups were significantly lower than that in model control group

The PairingWords system Han et al., 2013 uses a state-of-the-art word similarity measure to align words in the sentence pair and computes the STS score using a simple metric that

Similarity scores using optimal alignment of words where word-to-word similarity was cal- culated using vector based methods using word representations from Mikolov, GloVe, LSA Wiki

Original Article Myeloperoxidase G-463A polymorphism and coronary artery disease susceptibility in the Chinese population: an updated meta-analysis and review.. 1Department of

This work uses a support vector machine SVM to determine the similarity of sentence pairs, tak- ing as input the similarity judgments of four subsys- tems: a set of surface features,

Our study also suggested that except for Hcy level, the diabetic duration and HbAlc of patients in DPN group were significantly higher than those in SDM group, and Hcy, course of

using our defined word sense similarity method.. From this point, the remaining steps are

The SemEval Semantic Textual Similarity STS task series Agirre et al., 2012; Agirre et al., 2013; Agirre et al., 2014; Agirre et al., 2015 has become a central platform for the task: a

Original Article Recombinant human erythropoietin promotes angiogenesis by activating SMAD3 and stimulating endothelial progenitor cells during wound healing.. 1The First Affiliated

Using the domain- specific W2V corpus, we compute the feature do- main w2v cosine similarity in a similar fashion to the Sum W2V feature – we compute the centroid vector of the content