• No results found

1 (2 Furyl) 3 phenyl 2 propen 1 one

N/A
N/A
Protected

Academic year: 2020

Share "1 (2 Furyl) 3 phenyl 2 propen 1 one"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1278

Nazan Ocak I´skeleliet al. C

13H10O2 doi:10.1107/S1600536805010615 Acta Cryst.(2005). E61, o1278–o1279

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(2-Furyl)-3-phenyl-2-propen-1-one

Nazan Ocak I´skeleli,a* S¸amil Is¸ık,aZuhal O¨ zdemirb and

Altan Bilginb

aDepartment of Physics, Faculty of Arts and

Sciences, Ondokuz Mayı´s University, TR-55139, Kurupelit-Samsun, Turkey, and

bDepartment of Pharmaceutical Chemistry,

Faculty of Pharmacy, Hacettepe University, TR-06100, Sıhhiye, Ankara, Turkey

Correspondence e-mail: nocak@omu.edu.tr

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.003 A˚

Rfactor = 0.040

wRfactor = 0.079

Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography

Printed in Great Britain – all rights reserved

The molecule of the title compound, C13H10O2 is nearly

planar; the furyl and and phenyl rings are only slightly twisted with respect to each other, making a dihedral angle of 8.56 (6). The crystal structure is stabilized by weak

inter-molecular C—H O contacts and C—H interactions.

Comment

The title compound, (I), is a derivative of chalcone (1,3-di-phenyl-2-propen-1-one). Depending on the substitution pattern on the two aromatic rings, chalcones display an impressive array of pharmacological activities, including antiprotozoal (Nielsen et al., 1998; Li et al., 1995; Liu et al., 2001), anti-inflammatory (Hsieh et al., 1998), nitric oxide inhibition (Rojas et al., 2002) and anticancer. Numerous clinically successful anticancer drugs are themselves either natural products or have been developed from naturally occurring lead compounds (Duckiet al., 1998); activities have been cited in the literature.

The title compound is nearly planar, the furyl and phenyl rings making a dihedral angle of only 8.56 (6). Within the two

rings, the maximum deviations are 0.007 (2) and 0.003 (2) A˚ for C3 and C13, respectively. The bond lengths in the furyl ring

[image:1.610.249.416.409.503.2] [image:1.610.209.461.586.722.2]

Received 29 March 2005 Accepted 5 April 2005 Online 9 April 2005

Figure 1

(2)

are in the normal range and are consistent with those in a related structure (Hernandezet al., 1996).

The structure of (I) contains intermolecular C—H O contacts, which link the molecule into discrete pairs across inversion centres (Table 1, Fig. 2). Further C—H O inter-actions result in the formation of a chain along the b axis. There are also C—H interactions (Table 1).

Experimental

2-Acetylfuran (0.01 mol) and benzaldehyde (0.01 mol) were dissolved in ethanol (25 ml), put in an ice bath and stirred. Sodium hydroxide (0.5 g; 0.0125 mol) dissolved in water (2.5 ml) was then added dropwise to the cooled solution, not allowing the temperature to exceed 303 K during this mixing process. Then, keeping the temperature between 288 and 303 K, the solution was stirred for 3 h. The resulting precipitate was filtered off and washed with water and ethanol. After drying, (I) was crystallized from ethanol.

Crystal data

C13H10O2

Mr= 198.21 Orthorhombic,Pbca a= 10.4874 (10) A˚ b= 12.1216 (14) A˚ c= 16.3091 (16) A˚ V= 2073.3 (4) A˚3

Z= 8

Dx= 1.270 Mg m 3

MoKradiation

Cell parameters from 12064 reflections

= 1.7–29.1

= 0.09 mm1

T= 293 (2) K Plate, colourless 0.800.470.09 mm

Data collection

Stoe IPDS 2 diffractometer

!scans

Absorption correction: by integration (X-RED32; Stoe & Cie, 2002) Tmin= 0.942,Tmax= 0.989

13565 measured reflections

2034 independent reflections 1020 reflections withI>2(I) Rint= 0.100

max= 26.0

h=12!12 k=14!14 l=20!20

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.040

wR(F2) = 0.079

S= 0.84 2034 reflections 137 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0327P)2] whereP= (Fo2+ 2Fc2)/3 (/)max< 0.001

max= 0.12 e A˚

3 min=0.13 e A˚

3

[image:2.610.45.296.67.325.2]

Extinction correction:SHELXL97 Extinction coefficient: 0.0154 (12)

Table 1

Hydrogen-bonding geometry (A˚ ,).

D—H A D—H H A D A D—H A

C1—H1 O1i

0.93 2.48 3.347 (2) 156

C11—H11 O1ii

0.93 2.52 3.345 (2) 149

C13—H13 Cg2iii

0.93 2.58 3.410 (2) 149

Symmetry codes: (i)x;1y;1z; (ii)1 2þx;

1

2y;1z; (iii)x; 1 2y;z

3 2.Cg2 is

the centroid of C1–C6.

All H atoms were included in calculated positions and treated using a riding model [C—H(aromatic) = 0.93 A˚ ;Uiso(H) = 1.2Ueq(C)].

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction:X-RED32(Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows(Farrugia, 1997) andPLATON(Spek, 2003); software used to prepare material for publication:WinGX(Farrugia, 1999).

References

Burnett, M. N. & Johnson, C. K. (1996).ORTEPIII.Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Ducki, S., Forrest, R., Hadfield, J. A., Kendall, A., Lawrence, N. J., McGrown, A. T. & Rennison, D. (1998).Bioorg. Med. Chem. Lett.8, 1051–1056. Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Farrugia, L. J. (1999).J. Appl. Cryst.32, 837–838.

Hernandez, R. P., Rodriguez, J. D., De Armas, H. N. & Toscano, R. A. (1996). C52, 203–205.

Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998).Pharm. Res. 15, 39–46.

Li, R., Kenyon, G. L., Cohen, F. E., Chen, X., Gong, B., Dominguez, J. N., Davidson, E., Kurzban, G., Miller R. E., Nuzum, E. O., Rosenthal, P. J. & McKerrow, J. H. (1995).J. Med. Chem.38, 5031–5037.

Liu, M., Wilairat, P. & Go, M. L. (2001).J. Med. Chem.44, 4443–4452. Nielsen, S. F., Christensen, S. B., Cruciani, G., Kharazmi, A. & Liljefors, T.

(1998).J. Med. Chem.41, 4819–4832.

Rojas, J., Paya, M., Dominguez, J. N. & Ferrandiz, M. L. (2002).Bioorg. Med. Chem. Lett.12, 1951–1954.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Stoe (2002).X-AREA(Version 1.18) andX-RED32(Version 1.04). Stoe & Cie, Darmstadt, Germany.

Figure 2

View of the chain along the baxis formed by C—H O interactions (dashed lines) [symmetry codes: (i)x, 1y, 1z; (ii)1

2+x, 1

(3)

supporting information

sup-1 Acta Cryst. (2005). E61, o1278–o1279

supporting information

Acta Cryst. (2005). E61, o1278–o1279 [https://doi.org/10.1107/S1600536805010615]

1-(2-Furyl)-3-phenyl-2-propen-1-one

Nazan Ocak

Í

skeleli,

Ş

amil I

şı

k, Zuhal

Ö

zdemir and Altan Bilgin

1-(2-furyl)-3-phenyl-2-propen-1-one

Crystal data

C13H10O2 Mr = 198.21

Orthorhombic, Pbca Hall symbol: -P 2ac 2ab a = 10.4874 (10) Å b = 12.1216 (14) Å c = 16.3091 (16) Å V = 2073.3 (4) Å3 Z = 8

F(000) = 832 Dx = 1.270 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 12064 reflections θ = 1.7–29.1°

µ = 0.09 mm−1 T = 293 K Plate, colourless 0.80 × 0.47 × 0.09 mm

Data collection

STOE IPDS 2 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 6.67 pixels mm-1 ω scans

Absorption correction: integration (X-RED32; Stoe & Cie, 2002) Tmin = 0.942, Tmax = 0.989

13565 measured reflections 2034 independent reflections 1020 reflections with I > 2σ(I) Rint = 0.100

θmax = 26.0°, θmin = 2.5° h = −12→12

k = −14→14 l = −20→20

Refinement

Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.040 wR(F2) = 0.079 S = 0.84 2034 reflections 137 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0327P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.12 e Å−3 Δρmin = −0.13 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

C1 0.20381 (18) 0.60643 (15) 0.62210 (11) 0.0647 (5) H1 0.1187 0.6136 0.6070 0.078* C2 0.2559 (2) 0.68105 (16) 0.67614 (12) 0.0747 (6) H2 0.2061 0.7376 0.6976 0.090* C3 0.3816 (2) 0.67153 (18) 0.69808 (13) 0.0790 (6) H3 0.4172 0.7212 0.7350 0.095* C4 0.45488 (18) 0.58827 (17) 0.66530 (13) 0.0775 (6) H4 0.5406 0.5830 0.6794 0.093* C5 0.40303 (17) 0.51287 (16) 0.61194 (11) 0.0655 (5) H5 0.4534 0.4566 0.5907 0.079* C6 0.27555 (16) 0.52057 (15) 0.58962 (10) 0.0551 (5) C7 0.21484 (16) 0.44182 (16) 0.53447 (10) 0.0611 (5) H7 0.1298 0.4557 0.5221 0.073* C8 0.26491 (16) 0.35295 (16) 0.49966 (10) 0.0602 (5) H8 0.3503 0.3367 0.5093 0.072* C9 0.19053 (16) 0.27911 (16) 0.44638 (10) 0.0608 (5) C10 0.26210 (15) 0.19662 (15) 0.40163 (10) 0.0552 (5) C11 0.38618 (16) 0.16970 (16) 0.39844 (11) 0.0640 (5) H11 0.4517 0.2020 0.4285 0.077* C12 0.39871 (18) 0.08397 (17) 0.34148 (12) 0.0750 (6) H12 0.4738 0.0485 0.3265 0.090* C13 0.2832 (2) 0.06328 (17) 0.31323 (12) 0.0763 (6) H13 0.2644 0.0098 0.2742 0.092* O1 0.07453 (11) 0.28654 (13) 0.43924 (8) 0.0906 (5) O2 0.19553 (11) 0.13029 (11) 0.34873 (8) 0.0721 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, o1278–o1279

C8 0.0495 (10) 0.0718 (13) 0.0593 (11) 0.0085 (10) 0.0013 (9) 0.0029 (10) C9 0.0483 (10) 0.0793 (14) 0.0548 (11) 0.0013 (10) −0.0006 (9) 0.0022 (11) C10 0.0513 (9) 0.0655 (12) 0.0488 (10) −0.0033 (10) 0.0013 (9) −0.0005 (9) C11 0.0560 (11) 0.0721 (14) 0.0640 (12) 0.0021 (10) −0.0036 (10) −0.0078 (11) C12 0.0626 (12) 0.0818 (15) 0.0804 (14) 0.0101 (11) 0.0000 (11) −0.0139 (13) C13 0.0822 (14) 0.0736 (14) 0.0732 (14) −0.0002 (12) 0.0084 (12) −0.0175 (11) O1 0.0492 (7) 0.1257 (13) 0.0971 (10) 0.0116 (8) −0.0048 (7) −0.0287 (10) O2 0.0595 (7) 0.0849 (9) 0.0719 (9) −0.0080 (7) −0.0036 (7) −0.0142 (8)

Geometric parameters (Å, º)

C1—C2 1.376 (2) C7—H7 0.9300 C1—C6 1.389 (2) C8—C9 1.471 (2) C1—H1 0.9300 C8—H8 0.9300 C2—C3 1.371 (3) C9—O1 1.2254 (18) C2—H2 0.9300 C9—C10 1.448 (2) C3—C4 1.377 (3) C10—C11 1.343 (2) C3—H3 0.9300 C10—O2 1.3705 (19) C4—C5 1.374 (2) C11—C12 1.400 (2) C4—H4 0.9300 C11—H11 0.9300 C5—C6 1.389 (2) C12—C13 1.320 (2) C5—H5 0.9300 C12—H12 0.9300 C6—C7 1.458 (2) C13—O2 1.357 (2) C7—C8 1.326 (2) C13—H13 0.9300

C2—C1—C6 121.46 (18) C6—C7—H7 115.7 C2—C1—H1 119.3 C7—C8—C9 122.49 (17) C6—C1—H1 119.3 C7—C8—H8 118.8 C3—C2—C1 119.6 (2) C9—C8—H8 118.8 C3—C2—H2 120.2 O1—C9—C10 121.18 (18) C1—C2—H2 120.2 O1—C9—C8 122.52 (18) C2—C3—C4 119.8 (2) C10—C9—C8 116.30 (15) C2—C3—H3 120.1 C11—C10—O2 109.07 (16) C4—C3—H3 120.1 C11—C10—C9 133.63 (17) C5—C4—C3 120.82 (19) O2—C10—C9 117.29 (15) C5—C4—H4 119.6 C10—C11—C12 107.29 (17) C3—C4—H4 119.6 C10—C11—H11 126.4 C4—C5—C6 120.15 (18) C12—C11—H11 126.4 C4—C5—H5 119.9 C13—C12—C11 106.64 (17) C6—C5—H5 119.9 C13—C12—H12 126.7 C5—C6—C1 118.15 (18) C11—C12—H12 126.7 C5—C6—C7 122.56 (17) C12—C13—O2 111.06 (17) C1—C6—C7 119.29 (17) C12—C13—H13 124.5 C8—C7—C6 128.54 (17) O2—C13—H13 124.5 C8—C7—H7 115.7 C13—O2—C10 105.95 (14)

(6)

C2—C3—C4—C5 −1.3 (3) C8—C9—C10—C11 1.3 (3) C3—C4—C5—C6 0.7 (3) O1—C9—C10—O2 2.5 (3) C4—C5—C6—C1 0.5 (3) C8—C9—C10—O2 −177.05 (15) C4—C5—C6—C7 −178.85 (16) O2—C10—C11—C12 0.3 (2) C2—C1—C6—C5 −1.2 (2) C9—C10—C11—C12 −178.19 (18) C2—C1—C6—C7 178.21 (16) C10—C11—C12—C13 0.0 (2) C5—C6—C7—C8 2.0 (3) C11—C12—C13—O2 −0.3 (2) C1—C6—C7—C8 −177.42 (17) C12—C13—O2—C10 0.4 (2) C6—C7—C8—C9 178.54 (16) C11—C10—O2—C13 −0.41 (19) C7—C8—C9—O1 −9.7 (3) C9—C10—O2—C13 178.32 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C1—H1···O1i 0.93 2.48 3.347 (2) 156 C11—H11···O1ii 0.93 2.52 3.345 (2) 149 C13—H13···Cg2iii 0.93 2.58 3.410 (2) 149

Figure

Figure 1
Table 1

References

Related documents

Hindered by the lack of sufficient labeled data, most previous works on cross-domain parsing, in- cluding the aforementioned shared tasks, assume there is no labeled

However, when it comes to comparison tasks like stance classification in threaded discussions, each reply is made against a post or a response to a source post (see Fig. So, we ask,

[Table/Fig-1]: (a) pre-surgical excessive gingival display; (b) pre-surgical short clinical crowns due to APE; (c) recording clinical measurements using UNC-15 probe and the

The post-2009 slump in the EA mainly reflects a combination of adverse aggregate demand and supply shocks, in particular lower productivity growth, and persistent adverse shocks

En effet, des études sur l'analyse sectorielle des canaux de transmission de la politique monétaire dans des pays en développement, en particulier, indiquent que la

to taking care of children and elderly. Still domestic work is not accorded the value it ought to. There are many other care services that are professionalized, for

Panel (b) depicts the wavelet coherency between exchange rate and consumer price. overall, however, there is less

language slot specifies languages when the discourse phenomenon is only applicable to certain languages (e.g. When different languages use different sets of KS's