• No results found

tert But­oxy­carbonyl L leucyl L valine tri­chloro­ethyl ester (Boc L Leu L Val OTce)

N/A
N/A
Protected

Academic year: 2020

Share "tert But­oxy­carbonyl L leucyl L valine tri­chloro­ethyl ester (Boc L Leu L Val OTce)"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2006). E62, o2347–o2349 doi:10.1107/S1600536806017685 Okuet al. C

18H31Cl3N2O5

o2347

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

tert

-Butoxycarbonyl-

L

-leucyl-

L

-valine

trichloroethyl ester (Boc-

L

-Leu-

L

-Val-OTce)

Hiroyuki Oku,* Teruya Endo, Keiichi Yamada and Ryoichi Katakai

Department of Chemistry, Gunma University, Kiryu, Gunma 376-8515, Japan

Correspondence e-mail: oku@chem.gunma-u.ac.jp

Key indicators

Single-crystal X-ray study

T= 173 K

Mean(C–C) = 0.007 A˚

Rfactor = 0.035

wRfactor = 0.087

Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 2 May 2006 Accepted 12 May 2006

#2006 International Union of Crystallography

All rights reserved

The title compound, C18H31Cl3N2O5, an enantiopure

dipep-tide trichloroethyl ester, is one of two starting fragments in the synthesis of cyclosporin O analogs. In the crystal structure, molecules are linked by N—H O=C hydrogen bonds, forming a-spiral assembly along thecaxis.

Comment

Cyclosporins are naturally occurring physiologically active peptides containingN-methyl amino acid residues, which are potent chemotherapeutic agents (Humpherey & Chamberlin, 1997; Walgate, 1985; Stiller et al., 1984). The 2,2,2-trichloro-ethyl group (–OTce) is widely employed for carboxyl protection, and the compound (I) is one of two starting –OTce protected fragments in our synthetic study of cyclosporin O derivatives (Endoet al., 2003). We have recently reported the crystal structure of the other fragment, Boc-l-Leu-l -Ala-OTce (II) (Oku,et al., 2005). In this paper, we have studied the structure of (I) to assess the enantiopurity and crystallinity.

The molecular structure of (I) and the packing viewed along thecandaaxes are shown in Figs. 1, 2 and 3, respectively. The crystal structure of (I) is isostructural to that of (II) (space groupP65; Okuet al., 2005). The cell lengthsaandcare longer

than those of (II) by 0.140 (5) and 0.477 (13) A˚ , respectively. The main chain torsion angles of (I) deviate by only 2.0–5.3

(2)

Experimental

The title peptide, (I), was prepared by the coupling of Boc-Leu-OH -0.5H2O (4.5 g, 18 mmol) and HClVal-OTce (4.3 g, 15 mmol) in a solution-phase synthesis; yield 6.1 g (87%). Colorless needle crystals of (I) were grown by slow diffusion of hexane vapor into a solution in ethyl acetate. Analytical data (melting point,1H NMR, ESI–MS, and []D

20

) are in accordance with the expected structure; []D

20

=47.6

(c= 0.1, methanol), m.p. 377–379 K.

Crystal data

C18H31Cl3N2O5

Mr= 461.81 Hexagonal,P65

a= 12.245 (5) A˚ c= 27.416 (13) A˚ V= 3560 (3) A˚3

Z= 6

Dx= 1.292 Mg m

3 CuKradiation = 3.75 mm1

T= 173.1 K Needle, colorless 0.200.010.01 mm

Data collection

Rigaku R-AXIS RAPID diffractometer !scans

Absorption correction: none 32841 measured reflections

4352 independent reflections 1558 reflections withF2> 2(F2)

Rint= 0.068 max= 68.2

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.035

wR(F2) = 0.087 S= 0.97 4352 reflections 285 parameters

All H-atom parameters refined

w= 4Fo2/[0.0002Fo2+ 0.2(Fo2) + 0.1]

(/)max< 0.001 max= 1.17 e A˚

3 min=0.93 e A˚

3

Absolute structure: Flack (1983), 2123 Friedel pairs

Flack parameter: 0.015 (15)

Table 1

Selected torsion angles ().

C32—O401—C41—C42 154.9 (4) C41—O401—C32—C31 179.8 (3) C15—N201—C21—C22 96.9 (4) C21—N201—C15—O101 178.5 (4)

C22—N301—C31—C32 63.9 (4) C31—N301—C22—C21 177.7 (3) N201—C21—C22—N301 128.6 (3) N301—C31—C32—O401 155.1 (3)

organic papers

o2348

Okuet al. C

[image:2.610.304.562.71.275.2]

18H31Cl3N2O5 Acta Cryst.(2006). E62, o2347–o2349

Figure 1

A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.

Figure 2

[image:2.610.72.273.75.340.2]

A packing diagram of (I), projected down thecaxis. H atoms have been omitted except for those of NH groups.

Figure 3

[image:2.610.332.536.314.597.2]
(3)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N201—H201 O102i

0.95 1.98 2.902 (4) 162

N301—H301 O201ii

0.94 2.01 2.947 (4) 177

Symmetry codes: (i)xyþ1;x;z1

6; (ii)y;xþyþ1;zþ 1 6.

The ratio of observed/unique reflections was relatively low (36%), although the X-ray measurement was carried out at 173 K with Cu Kradiation. H atoms were positioned geometrically, with C—H and N—H = 0.95 A˚ , and refined using a riding model, with Uiso(H) assigned to be 1.2Ueq(carrier atom). The absolute configuration of (I) agrees with the fact that the1H NMR spectroscopic data detected no racemization in the preparation.

Data collection: RAPID-AUTO(Rigaku, 2003); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku, 2003); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure:CRYSTALS(Betteridgeet al., 2003); molecular graphics:ORTEP(Johnson, 1965); software used to prepare material for publication:CrystalStructure.

HO is grateful for a Grant-in-Aid for Scientific Research on Priority Areas (No. 14078101 and 16033211, Reaction Control of Dynamic Complexes) from the Ministry of Education Culture, Sports, Science and Technology, Japan.

References

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003).J. Appl. Cryst.36, 1487.

Burla, M. C., Camalli, M., Carrozzini, B., Casarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003).J. Appl. Cryst.36, 1103.

Endo, T., Oku, H., Yamada, K. & Katakai, R. (2003).Peptide Science 2002, edited by T. Yamada, pp. 313–316. Osaka: The Japanese Peptide Society. Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Humpherey, J. M. & Chamberlin, A. R. (1997).Chem. Rev.97, 2243–2266. Johnson, C. K. (1965).ORTEP. Oak Ridge National Laboratory, Oak Ridge,

Tennessee, USA.

Oku, H., Endo, T., Yamada, K. & Katakai, R. (2005).Acta Cryst.E61, o3864– o3866.

Rigaku (2003). CrystalStructureand RAPID-AUTO. Rigaku Corporation, Akishima, Tokyo, Japan.

Stiller, C. R., Dupre, J., Gent, M., Jenner, M. R., Keown, P. A., Laupacis, A., Martel, R., Rodger, N. W., von Graffenried, B. & Wolfe, B. M. (1984). Science,223, 1362–1367.

Walgate, R. (1985).Nature (London),318, 3.

organic papers

Acta Cryst.(2006). E62, o2347–o2349 Okuet al. C

(4)

supporting information

sup-1

Acta Cryst. (2006). E62, o2347–o2349

supporting information

Acta Cryst. (2006). E62, o2347–o2349 [https://doi.org/10.1107/S1600536806017685]

tert

-Butoxycarbonyl-

L

-leucyl-

L

-valine trichloroethyl ester (Boc-

L

-Leu-

L

-Val-OTce)

Hiroyuki Oku, Teruya Endo, Keiichi Yamada and Ryoichi Katakai

tert-Butoxycarbonyl-L-Leucyll-L-Valine Trichloroethyl Ester (Boc-L-Leu-L-Val-OTce)

Crystal data

C18H31Cl3N2O5 Mr = 461.81

Hexagonal, P65

Hall symbol: P 65 a = 12.245 (5) Å c = 27.416 (13) Å V = 3560 (3) Å3 Z = 6

F(000) = 1464.00

? # Insert any comments here.

Dx = 1.292 Mg m−3

Melting point = 377–379 K Cu radiation, λ = 1.54187 Å Cell parameters from 30511 reflections θ = 4.2–62.2°

µ = 3.75 mm−1 T = 173 K Needle, colorless 0.20 × 0.01 × 0.01 mm

Data collection

Rigaku RAXIS-RAPID diffractometer

Detector resolution: 10.00 pixels mm-1 ω scans

32841 measured reflections 4352 independent reflections

1558 reflections with F2 > 2σ(F2) Rint = 0.068

θmax = 68.2° h = −14→14 k = −14→14 l = −32→32

Refinement

Refinement on F2 R[F2 > 2σ(F2)] = 0.035 wR(F2) = 0.087 S = 0.97 4352 reflections 285 parameters

All H-atom parameters refined

w = 4Fo2/[0.0002Fo2 + 0.2σ(Fo2) + 0.1]

(Δ/σ)max < 0.001

Δρmax = 1.17 e Å−3

Δρmin = −0.93 e Å−3

Absolute structure: Flack (1983), 2123 Friedel pairs

Absolute structure parameter: 0.015 (15)

Special details

Experimental. ? #Insert any special details here.

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R

-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(5)

supporting information

sup-2

Acta Cryst. (2006). E62, o2347–o2349

O101 1.1143 (2) 1.2369 (2) 0.87504 (9) 0.0424 (8) O102 1.0485 (2) 1.1818 (2) 0.95364 (10) 0.0553 (9) O201 0.8629 (2) 0.8101 (2) 0.88992 (9) 0.0453 (9) O301 0.6407 (2) 0.5842 (2) 0.95051 (12) 0.0569 (10) O401 0.7734 (2) 0.5107 (2) 0.94583 (11) 0.0587 (10) N201 0.9319 (2) 1.0687 (2) 0.88961 (11) 0.0360 (9) N301 0.8433 (3) 0.8209 (3) 0.97106 (11) 0.0365 (10) C11 1.2240 (4) 1.3582 (4) 0.88841 (17) 0.0483 (14) C12 1.1798 (4) 1.4409 (4) 0.9101 (2) 0.0814 (19) C13 1.2840 (4) 1.4074 (4) 0.83940 (18) 0.0781 (18) C14 1.3115 (4) 1.3405 (4) 0.92183 (17) 0.0790 (19) C15 1.0329 (3) 1.1647 (3) 0.91022 (16) 0.0378 (13) C21 0.8321 (3) 0.9759 (3) 0.91912 (12) 0.0369 (12) C22 0.8470 (3) 0.8621 (3) 0.92579 (14) 0.0333 (12) C23 0.7060 (3) 0.9347 (3) 0.89579 (13) 0.0412 (13) C24 0.5939 (4) 0.8571 (4) 0.92894 (17) 0.0529 (14) C25 0.5827 (4) 0.9388 (4) 0.96814 (16) 0.0679 (18) C26 0.4744 (4) 0.7954 (5) 0.8980 (2) 0.111 (2) C31 0.8525 (4) 0.7096 (4) 0.97878 (16) 0.0475 (15) C32 0.7423 (5) 0.5990 (4) 0.95651 (16) 0.0470 (15) C33 0.8691 (6) 0.6886 (5) 1.0327 (2) 0.103 (2) C34 0.9849 (5) 0.7957 (5) 1.0538 (2) 0.112 (2) C35 0.7698 (7) 0.6264 (7) 1.0607 (2) 0.193 (3) C41 0.6773 (4) 0.3997 (4) 0.92419 (18) 0.0642 (18) C42 0.7343 (4) 0.3390 (4) 0.89523 (18) 0.0587 (16)

H121 1.2489 1.5177 0.9191 0.090*

H122 1.1327 1.4542 0.8861 0.090*

H123 1.1299 1.4029 0.9380 0.090*

H131 1.3051 1.3516 0.8248 0.079*

H132 1.2273 1.4161 0.8190 0.079*

H133 1.3564 1.4856 0.8435 0.079*

H141 1.2731 1.3091 0.9525 0.083*

H142 1.3321 1.2842 0.9073 0.083*

H143 1.3845 1.4180 0.9265 0.082*

H201 0.9262 1.0614 0.8550 0.038*

H211 0.8349 1.0103 0.9504 0.041*

H231 0.7033 1.0063 0.8861 0.047*

H232 0.6987 0.8867 0.8678 0.047*

H241 0.6038 0.7943 0.9441 0.060*

H251 0.6554 0.9752 0.9875 0.082*

H252 0.5728 1.0018 0.9532 0.082*

H253 0.5132 0.8894 0.9882 0.082*

H261 0.4641 0.8579 0.8827 0.118*

H262 0.4813 0.7449 0.8737 0.118*

H263 0.4050 0.7463 0.9182 0.118*

H301 0.8357 0.8640 0.9982 0.041*

H311 0.9222 0.7209 0.9606 0.057*

(6)

supporting information

sup-3

Acta Cryst. (2006). E62, o2347–o2349

H341 1.0025 0.7757 1.0851 0.128*

H342 1.0539 0.8198 1.0329 0.128*

H343 0.9683 0.8617 1.0567 0.127*

H351 0.7422 0.6843 1.0642 0.170*

H352 0.7065 0.5530 1.0462 0.170*

H353 0.7894 0.6077 1.0920 0.170*

H411 0.6276 0.3446 0.9492 0.077*

H412 0.6274 0.4181 0.9036 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl401 0.1034 (11) 0.0575 (8) 0.0906 (10) 0.0371 (8) −0.0058 (9) −0.0151 (7) Cl402 0.0947 (10) 0.0741 (9) 0.0612 (7) 0.0470 (8) 0.0238 (7) 0.0145 (7) Cl403 0.1223 (13) 0.0673 (9) 0.0902 (10) 0.0568 (9) −0.0098 (9) 0.0100 (8) O101 0.0398 (17) 0.0307 (17) 0.0330 (15) −0.0003 (14) −0.0011 (14) −0.0010 (13) O102 0.056 (2) 0.052 (2) 0.0266 (17) 0.0036 (17) −0.0074 (14) −0.0023 (16) O201 0.068 (2) 0.0373 (17) 0.0338 (15) 0.0282 (16) 0.0124 (15) −0.0013 (14) O301 0.039 (2) 0.0407 (19) 0.081 (2) 0.0129 (17) 0.0064 (18) −0.0004 (16) O401 0.062 (2) 0.050 (2) 0.066 (2) 0.0284 (19) 0.0020 (17) −0.0130 (17) N201 0.043 (2) 0.0240 (18) 0.0272 (18) 0.0060 (17) 0.0028 (17) 0.0016 (15) N301 0.048 (2) 0.035 (2) 0.0215 (17) 0.0165 (18) 0.0056 (16) 0.0021 (16) C11 0.036 (2) 0.035 (2) 0.053 (3) 0.003 (2) −0.003 (2) 0.002 (2) C12 0.063 (3) 0.031 (2) 0.130 (5) 0.009 (2) 0.007 (3) −0.019 (3) C13 0.063 (3) 0.060 (3) 0.074 (3) 0.003 (3) 0.006 (3) 0.005 (2) C14 0.050 (3) 0.069 (3) 0.087 (4) 0.007 (2) −0.001 (3) −0.003 (3) C15 0.037 (2) 0.029 (2) 0.042 (2) 0.012 (2) 0.000 (2) 0.007 (2) C21 0.043 (2) 0.033 (2) 0.027 (2) 0.013 (2) 0.008 (2) −0.0028 (19) C22 0.034 (2) 0.026 (2) 0.033 (2) 0.010 (2) 0.011 (2) 0.001 (2) C23 0.041 (2) 0.033 (2) 0.043 (2) 0.013 (2) 0.006 (2) −0.001 (2) C24 0.045 (2) 0.037 (2) 0.068 (3) 0.015 (2) 0.013 (2) 0.008 (2) C25 0.066 (3) 0.071 (3) 0.067 (3) 0.034 (3) 0.022 (2) 0.004 (3) C26 0.044 (3) 0.129 (5) 0.121 (5) 0.014 (3) 0.009 (3) −0.008 (4) C31 0.047 (3) 0.045 (3) 0.050 (3) 0.023 (2) 0.007 (2) 0.013 (2) C32 0.050 (3) 0.042 (3) 0.044 (2) 0.019 (2) 0.012 (2) 0.011 (2) C33 0.109 (5) 0.057 (4) 0.080 (4) −0.004 (3) −0.034 (4) 0.027 (3) C34 0.129 (5) 0.063 (3) 0.127 (5) 0.035 (4) −0.067 (4) 0.006 (3) C35 0.200 (8) 0.170 (8) 0.054 (4) −0.024 (6) 0.010 (5) 0.019 (5) C41 0.076 (3) 0.048 (3) 0.068 (3) 0.030 (3) 0.009 (3) −0.014 (2) C42 0.076 (3) 0.047 (3) 0.050 (2) 0.029 (2) 0.010 (2) 0.006 (2)

Geometric parameters (Å, º)

Cl401—C42 1.773 (4) C12—H121 0.932

Cl402—C42 1.753 (4) C12—H122 0.940

Cl403—C42 1.744 (6) C12—H123 0.944

O101—C11 1.466 (4) C13—H131 0.934

(7)

supporting information

sup-4

Acta Cryst. (2006). E62, o2347–o2349

O102—C15 1.207 (5) C13—H133 0.931

O201—C22 1.239 (5) C14—H141 0.947

O301—C32 1.175 (7) C14—H142 0.934

O401—C32 1.346 (8) C14—H143 0.931

O401—C41 1.409 (4) C21—H211 0.947

N201—C15 1.332 (4) C23—H231 0.932

N201—C21 1.432 (4) C23—H232 0.944

N301—C22 1.332 (5) C24—H241 0.934

N301—C31 1.439 (7) C25—H251 0.937

C11—C12 1.489 (8) C25—H252 0.934

C11—C13 1.505 (6) C25—H253 0.937

C11—C14 1.506 (7) C26—H261 0.934

C21—C22 1.505 (7) C26—H262 0.941

C21—C23 1.506 (5) C26—H263 0.937

C23—C24 1.519 (5) C31—H311 0.936

C24—C25 1.520 (7) C33—H331 0.930

C24—C26 1.525 (6) C34—H341 0.948

C31—C32 1.483 (5) C34—H342 0.938

C31—C33 1.531 (7) C34—H343 0.930

C33—C34 1.485 (7) C35—H351 0.931

C33—C35 1.312 (9) C35—H352 0.934

C41—C42 1.480 (8) C35—H353 0.947

N201—H201 0.951 C41—H411 0.941

N301—H301 0.943 C41—H412 0.937

C11—O101—C15 119.1 (3) H132—C13—H133 109.5 C32—O401—C41 115.6 (4) C11—C14—H141 110.7 C15—N201—C21 120.5 (3) C11—C14—H142 108.7 C22—N301—C31 119.5 (3) C11—C14—H143 109.1 O101—C11—C12 109.2 (3) H141—C14—H142 110.0 O101—C11—C13 101.5 (3) H141—C14—H143 108.8 O101—C11—C14 111.3 (3) H142—C14—H143 109.5 C12—C11—C13 110.7 (4) N201—C21—H211 109.3

C12—C11—C14 112.5 (4) C22—C21—H211 107.9

C13—C11—C14 111.1 (4) C23—C21—H211 109.7

O101—C15—O102 126.1 (3) C21—C23—H231 108.5 O101—C15—N201 109.3 (3) C21—C23—H232 108.4 O102—C15—N201 124.6 (3) C24—C23—H231 108.2 N201—C21—C22 110.6 (3) C24—C23—H232 108.9 N201—C21—C23 110.6 (3) H231—C23—H232 108.5

C22—C21—C23 108.7 (3) C23—C24—H241 109.4

O201—C22—N301 122.0 (4) C25—C24—H241 108.6 O201—C22—C21 120.2 (3) C26—C24—H241 109.1 N301—C22—C21 117.8 (3) C24—C25—H251 109.7

C21—C23—C24 114.2 (3) C24—C25—H252 109.0

C23—C24—C25 111.2 (3) C24—C25—H253 110.0

(8)

supporting information

sup-5

Acta Cryst. (2006). E62, o2347–o2349

N301—C31—C32 109.7 (4) H252—C25—H253 109.9 N301—C31—C33 112.3 (4) C24—C26—H261 109.4

C32—C31—C33 112.4 (3) C24—C26—H262 109.9

O301—C32—O401 123.2 (3) C24—C26—H263 109.1 O301—C32—C31 127.5 (5) H261—C26—H262 108.3 O401—C32—C31 109.2 (5) H261—C26—H263 109.9 C31—C33—C34 112.1 (4) H262—C26—H263 110.2 C31—C33—C35) 120.1 (6) N301—C31—H311 106.2 C34—C33—C35) 118.9 (5) C32—C31—H311 105.2 O401—C41—C42 109.5 (4) C33—C31—H311 110.6 Cl401—C42—Cl402 108.8 (2) C31—C33—H331 101.1 Cl401—C42—Cl403 109.8 (2) C34—C33—H331 101.7 Cl401—C42—C41 106.8 (3) C35—C33—H331 97.4 Cl402—C42—Cl403 108.6 (2) C33—C34—H341 111.4 Cl402—C42—C41 111.0 (3) C33—C34—H342 110.7 Cl403—C42—C41 111.7 (3) C33—C34—H343 105.9

C15—N201—H201 119.8 H341—C34—H342 110.4

C21—N201—H201 119.7 H341—C34—H343 108.9

C22—N301—H301 121.2 H342—C34—H343 109.5

C31—N301—H301 119.4 C33—C35—H351 101.6

C11—C12—H121 109.7 C33—C35—H352 113.0

C11—C12—H122 107.6 C33—C35—H353 113.4

C11—C12—H123 110.7 H351—C35—H352 109.5

H121—C12—H122 109.7 H351—C35—H353 108.9

H121—C12—H123 108.6 H352—C35—H353 110.0

H122—C12—H123 110.5 O401—C41—H411 108.3

C11—C13—H131 110.4 O401—C41—H412 110.6

C11—C13—H132 109.7 C42—C41—H411 109.2

C11—C13—H133 109.1 C42—C41—H412 109.0

H131—C13—H132 108.6 H411—C41—H412 110.2

H131—C13—H133 109.5

(9)

supporting information

sup-6

Acta Cryst. (2006). E62, o2347–o2349

N201—C21—C22—O201 −51.1 (4) O401—C41—C42—Cl403 64.0 (4) N201—C21—C22—N301 128.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N201—H201···O102i 0.95 1.98 2.902 (4) 162

N301—H301···O201ii 0.94 2.01 2.947 (4) 177

Figure

Figure 3

References

Related documents

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO ; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO ; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO ; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO ; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO ; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure:

Data collection: RAPID AUTO (Rigaku, 1998); cell refinement: RAPID AUTO ; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO ; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97

Data collection: RAPID - AUTO (Molecular Structure Corpora- tion &amp; Rigaku Corporation, 2003); cell re®nement: RAPID - AUTO ; data reduction: CrystalStructure (Molecular