• No results found

4 Amino (1 eth­oxy­carbonyl­meth­yl)pyridinium iodide

N/A
N/A
Protected

Academic year: 2020

Share "4 Amino (1 eth­oxy­carbonyl­meth­yl)pyridinium iodide"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o2560

Seethalakshmiet al. C

9H13N2O2+I doi:10.1107/S1600536806019283 Acta Cryst.(2006). E62, o2560–o2562 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

4-Amino-(1-ethoxycarbonylmethyl)pyridinium

iodide

T. Seethalakshmi,a

P. Venkatesan,bF. R. Fronczek,c P. Kaliannanaand

S. Thamotharand*

aSchool of Physics, Bharathidasan University,

Tiruchirappalli 620 024, India,bSchool of

Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India,cDepartment of

Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA, anddMolecular

Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India

Correspondence e-mail: thamu_as@yahoo.com

Key indicators

Single-crystal X-ray study T= 115 K

Mean(C–C) = 0.002 A˚ Rfactor = 0.028 wRfactor = 0.068

Data-to-parameter ratio = 41.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 17 May 2006 Accepted 23 May 2006

#2006 International Union of Crystallography All rights reserved

The crystal structure of the title compound, C9H13N2O2 +

I, consists of pyridinium cations and iodide anions stabilized by

intermolecular N—H I hydrogen bonds, forming

one-dimensional chains along [010].

Comment

Pyridinium derivatives often possess antibacterial and anti-fungal activities (Seethalakshmi et al., 2006, and references therein). In continuation of our study of pyridinium deriva-tives, the crystal structure analysis of the title compound, (I), has been undertaken.

The structure of the asymmetric unit of (I), consisting of a pyridinium cation and an iodide anion, is shown in Fig. 1. The bond lengths and angles within the pyridinium ring are normal and comparable with those reported for related structures (Seethalakshmi et al., 2006; Sundar et al., 2004a,b, 2005;

Sundar et al., 2006, 2006a,b). The N1—C6—C7—O1, C6—

C7—O1—C8 and C7—O1—C8—C9 torsion angles in (I) (Table 1) indicate that the ethoxycarbonylmethyl group is in an extended conformation. Atoms N1/C6/C7/O1/C8/C9 form an approximate plane with a maximum deviation of 0.193 (2) A˚ for C6; the dihedral angle between this plane and the pyridinium ring is 66.1 (1).

In the crystal structure of (I), neighbouring pyridinium cations are interconnected by iodide anions through

inter-molecular N—H I hydrogen bonds (Fig. 2 and Table 2),

leading to a one-dimensional chain along [010]. In addition to

(2)

inter-action also is observed, involving the H atom bonded to C1 and I1 [C1 I1 = 3.773 (2) A˚ , H1 I1 = 2.92 A˚ and C1— H1 I1 = 150].

Experimental

A solution of 4-aminopyridine (1 mol, 25 ml) and ethyl-iodoacetate (1 mol, 25 ml) in acetone was stirred at room temperature (303 K) for 1–2 h. The solid that separated was filtered, washed with dry acetone and dried in vacuum to give the stable salt, (I), which recrystallized from an aqueous ethanol (80%v/v) solution (m.p. 449–451 K).

Crystal data

C9H13N2O2+I

Mr= 308.11

Orthorhombic,Pbcn a= 12.5402 (15) A˚

b= 9.8173 (10) A˚

c= 19.135 (2) A˚

V= 2355.7 (4) A˚3

Z= 8

Dx= 1.738 Mg m

3

MoKradiation

= 2.70 mm1

T= 115 (2) K Fragment, colorless 0.250.220.20 mm

Data collection

Bruker–Nonius KappaCCD diffractometer

!scans withoffsets

Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997)

Tmin= 0.524,Tmax= 0.583

36052 measured reflections 5535 independent reflections 4300 reflections withI> 2(I)

Rint= 0.021

max= 36.4

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.028

wR(F2) = 0.068

S= 1.06 5535 reflections 135 parameters

H atoms treated by a mixture of independent and constrained refinement

w= 1/[2

(Fo2) + (0.0272P)2 + 1.6703P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 1.37 e A˚ 3

min=0.96 e A˚ 3

Extinction correction:SHELXL97

Extinction coefficient: 0.00249 (13)

Table 1

Selected torsion angles ().

C8—O1—C7—C6 167.70 (14) N1—C6—C7—O1 161.57 (14)

C7—O1—C8—C9 177.72 (16)

Table 2

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

N2—H21 I1 0.85 (3) 2.79 (3) 3.6384 (17) 173 (2) N2—H22 I1i 0.79 (3) 2.91 (2) 3.6527 (17) 159 (2)

Symmetry code: (i)xþ1 2;y12;z.

The amino H atoms were located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(N). The methyl H atoms were

constrained to an ideal geometry (C—H = 0.98 A˚ ), withUiso(H) =

1.5Ueq(C), but were allowed to rotate freely about the C—C bond.

The remaining H atoms were placed in geometrically idealized positions (C—H = 0.95–0.99 A˚ ) and were constrained to ride on their parent atoms withUiso(H) = 1.2Ueq(C). The highest residual density

peak is 0.68 A˚ from I1 and the deepest hole is 0.67 A˚ from I1.

organic papers

Acta Cryst.(2006). E62, o2560–o2562 Seethalakshmiet al. C

[image:2.610.102.254.72.342.2]

9H13N2O2+I

o2561

Figure 1

[image:2.610.45.294.389.665.2]

The asymmetric unit of (I), showing displacement ellipsoids drawn at the 50% probability level. H atoms are represented by circles of arbitrary radii.

Figure 2

(3)

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomareet al., 1994); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics:ORTEP-3 for Windows(version 1.07; Farrugia, 1997) andPLATON(Spek, 2003); software used to prepare material for publication:SHELXL97.

TS thanks Professors V. Parthasarathi, School of Physics, and M. Nallu, School of Chemistry, Bharathidasan University, Tiruchirappalli, for their generous help.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Nonius (2000).COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Seethalakshmi, T., Kaliannan, P., Venkatesan, P., Fronczek, F. R. & Thamotharan, S. (2006).Acta Cryst.E62, o2353–o2355.

Sheldrick, G. M. (1997).SHELXL97. University of Go¨ttingen, Germany. Spek, A. L. (2003).J. Appl. Cryst.36, 7–13.

Sundar, T. V., Parthasarathi, V., Ravikumar, K., Venkatesan, P. & Nallu, M. (2006).Acta Cryst.E62, o1118–o1120.

Sundar, T. V., Parthasarathi, V., Sarkunam, K., Nallu, M., Walfort, B. & Lang, H. (2004a).Acta Cryst.C60, o464–o466.

Sundar, T. V., Parthasarathi, V., Sarkunam, K., Nallu, M., Walfort, B. & Lang, H. (2004b).Acta Cryst.E60, o2345–o2346.

Sundar, T. V., Parthasarathi, V., Sarkunam, K., Nallu, M., Walfort, B. & Lang, H. (2005).Acta Cryst.E61, o889–o891.

Sundar, T. V., Parthasarathi, V., Sridhar, B., Venkatesan, P. & Nallu, M. (2006a).Acta Cryst.E62, o74–o76.

Sundar, T. V., Parthasarathi, V., Sridhar, B., Venkatesan, P. & Nallu, M. (2006b).Acta Cryst.E62, o482–o484.

organic papers

o2562

Seethalakshmiet al. C

(4)

supporting information

sup-1 Acta Cryst. (2006). E62, o2560–o2562

supporting information

Acta Cryst. (2006). E62, o2560–o2562 [https://doi.org/10.1107/S1600536806019283]

4-Amino-(1-ethoxycarbonylmethyl)pyridinium iodide

T. Seethalakshmi, P. Venkatesan, F. R. Fronczek, P. Kaliannan and S. Thamotharan

4-Amino-(1-ethoxycarbonylmethyl)pyridinium iodide

Crystal data

C9H13N2O2+·I−

Mr = 308.11

Orthorhombic, Pbcn Hall symbol: -P 2n 2ab a = 12.5402 (15) Å b = 9.8173 (10) Å c = 19.135 (2) Å V = 2355.7 (4) Å3

Z = 8

F(000) = 1200 Dx = 1.738 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 5877 reflections θ = 2.5–36.3°

µ = 2.70 mm−1

T = 115 K

Fragment, colorless 0.25 × 0.22 × 0.20 mm

Data collection

Bruker–Nonius KappaCCD diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans with κ offsets

Absorption correction: multi-scan

(SCALEPACK; Otwinowski & Minor, 1997) Tmin = 0.524, Tmax = 0.583

36052 measured reflections 5535 independent reflections 4300 reflections with I > 2σ(I) Rint = 0.021

θmax = 36.4°, θmin = 2.6°

h = −20→20 k = −16→16 l = −31→31

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.028

wR(F2) = 0.068

S = 1.06 5535 reflections 135 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ2(F

o2) + (0.0272P)2 + 1.6703P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 1.37 e Å−3

Δρmin = −0.96 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4

Extinction coefficient: 0.00249 (13)

Special details

(5)

supporting information

sup-2 Acta Cryst. (2006). E62, o2560–o2562

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

I1 0.405389 (9) 0.986511 (11) 0.362361 (7) 0.02060 (4) O1 0.39560 (10) 0.55695 (13) 0.81826 (7) 0.0223 (2) O2 0.33509 (11) 0.45961 (13) 0.71919 (7) 0.0230 (2) N1 0.28417 (12) 0.71539 (13) 0.66589 (7) 0.0182 (2) N2 0.22075 (15) 0.76726 (17) 0.45649 (9) 0.0271 (3) H21 0.264 (2) 0.813 (3) 0.4314 (13) 0.033* H22 0.178 (2) 0.718 (2) 0.4394 (13) 0.033* C1 0.35218 (15) 0.78728 (17) 0.62508 (10) 0.0217 (3) H1 0.4143 0.8258 0.6455 0.026* C2 0.33407 (14) 0.80583 (17) 0.55571 (9) 0.0218 (3) H2 0.3828 0.8576 0.5285 0.026* C3 0.24258 (13) 0.74801 (16) 0.52394 (9) 0.0193 (3) C4 0.17390 (14) 0.67153 (17) 0.56777 (9) 0.0208 (3) H4 0.1123 0.6291 0.5487 0.025* C5 0.19591 (14) 0.65866 (17) 0.63709 (9) 0.0203 (3) H5 0.1483 0.6087 0.6660 0.024* C6 0.30583 (15) 0.69873 (16) 0.74035 (9) 0.0221 (3) H6A 0.2395 0.7148 0.7672 0.027* H6B 0.3591 0.7672 0.7553 0.027* C7 0.34749 (13) 0.55725 (16) 0.75628 (9) 0.0190 (3) C8 0.41984 (15) 0.42220 (18) 0.84688 (10) 0.0233 (3) H8A 0.4700 0.3732 0.8158 0.028* H8B 0.3538 0.3676 0.8512 0.028* C9 0.46905 (18) 0.4435 (2) 0.91722 (11) 0.0326 (4) H9A 0.5376 0.4904 0.9119 0.049* H9B 0.4805 0.3551 0.9398 0.049* H9C 0.4213 0.4991 0.9461 0.049*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

supporting information

sup-3 Acta Cryst. (2006). E62, o2560–o2562

C5 0.0185 (7) 0.0189 (7) 0.0237 (8) −0.0032 (5) 0.0021 (6) 0.0019 (6) C6 0.0302 (9) 0.0184 (7) 0.0177 (7) 0.0015 (6) −0.0025 (6) −0.0020 (5) C7 0.0193 (7) 0.0194 (6) 0.0183 (7) −0.0015 (5) 0.0009 (6) −0.0001 (5) C8 0.0259 (9) 0.0199 (7) 0.0240 (8) 0.0010 (6) −0.0002 (6) 0.0024 (6) C9 0.0408 (11) 0.0314 (9) 0.0257 (9) 0.0055 (8) −0.0081 (9) 0.0019 (7)

Geometric parameters (Å, º)

O1—C7 1.331 (2) C3—C4 1.417 (2) O1—C8 1.464 (2) C4—C5 1.361 (2) O2—C7 1.203 (2) C4—H4 0.9500 N1—C1 1.355 (2) C5—H5 0.9500 N1—C5 1.356 (2) C6—C7 1.515 (2) N1—C6 1.460 (2) C6—H6A 0.9900 N2—C3 1.333 (2) C6—H6B 0.9900 N2—H21 0.85 (3) C8—C9 1.495 (3) N2—H22 0.79 (3) C8—H8A 0.9900 C1—C2 1.359 (3) C8—H8B 0.9900 C1—H1 0.9500 C9—H9A 0.9800 C2—C3 1.417 (2) C9—H9B 0.9800 C2—H2 0.9500 C9—H9C 0.9800

C7—O1—C8 115.45 (14) N1—C6—C7 111.30 (13) C1—N1—C5 119.58 (15) N1—C6—H6A 109.4 C1—N1—C6 120.25 (15) C7—C6—H6A 109.4 C5—N1—C6 120.17 (14) N1—C6—H6B 109.4 C3—N2—H21 119.2 (17) C7—C6—H6B 109.4 C3—N2—H22 117.1 (19) H6A—C6—H6B 108.0 H21—N2—H22 121 (3) O2—C7—O1 125.64 (16) N1—C1—C2 121.84 (16) O2—C7—C6 124.57 (16) N1—C1—H1 119.1 O1—C7—C6 109.74 (14) C2—C1—H1 119.1 O1—C8—C9 107.21 (15) C1—C2—C3 120.04 (16) O1—C8—H8A 110.3 C1—C2—H2 120.0 C9—C8—H8A 110.3 C3—C2—H2 120.0 O1—C8—H8B 110.3 N2—C3—C2 121.66 (16) C9—C8—H8B 110.3 N2—C3—C4 121.56 (16) H8A—C8—H8B 108.5 C2—C3—C4 116.76 (16) C8—C9—H9A 109.5 C5—C4—C3 120.19 (16) C8—C9—H9B 109.5 C5—C4—H4 119.9 H9A—C9—H9B 109.5 C3—C4—H4 119.9 C8—C9—H9C 109.5 N1—C5—C4 121.56 (15) H9A—C9—H9C 109.5 N1—C5—H5 119.2 H9B—C9—H9C 109.5 C4—C5—H5 119.2

(7)

supporting information

sup-4 Acta Cryst. (2006). E62, o2560–o2562

C1—C2—C3—N2 178.11 (18) C8—O1—C7—O2 −9.8 (3) C1—C2—C3—C4 −0.3 (2) C8—O1—C7—C6 167.70 (14) N2—C3—C4—C5 −177.11 (17) N1—C6—C7—O2 −20.9 (3) C2—C3—C4—C5 1.3 (2) N1—C6—C7—O1 161.57 (14) C1—N1—C5—C4 0.3 (3) C7—O1—C8—C9 −177.72 (16) C6—N1—C5—C4 −179.52 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N2—H21···I1 0.85 (3) 2.79 (3) 3.6384 (17) 173 (2) N2—H22···I1i 0.79 (3) 2.91 (2) 3.6527 (17) 159 (2)

Figure

Figure 2

References

Related documents

Baseline As a baseline, we used the current state-of-the-art model using span representation based on BoW ( Potash et al.. For the overall perfor- mance, we calculated averaged

niezależnie od rodzaju konkurencji ilościowej na rynku produktu oraz formy funkcji kosztów całkowitych produkcji, współpraca przedsiębiorstw jedynie na etapie badań i

Different BMIs are modelled as different diameter water cylinders in order to obtain the corresponding factors for organ doses in paediatric patients undergoing

Using brain data to evaluate the representations learned at different layers of each of the lan- guage encoding models, we find that layers of the LSTM based models achieve

(2019) Linking soy oil demand from the US Renewable Fuel Standard to palm oil expansion through an analysis on vegetable oil

is set to 0.5. We use MedNLI, RQE, QA, and MedQuAD in medical domain as in-domain data and MNLI as external data. For MedNLI, we ad- ditionally find that using MedNLI as in-domain

Keywords: Risk Analysis; Intraday Volatility; National Stock Exchange of India; Nifty Futures; Temporal

CSEA Return of Conventional Southeast Asia equity Return of Southeast Asia composite index CTH Return of Conventional Thailand equity Return of Stock Exchange of Thailand SET