• No results found

(Z) 2 (4 Meth­oxy­benzyl­­idene) 1 aza­bi­cyclo­[2 2 2]octan 3 one

N/A
N/A
Protected

Academic year: 2020

Share "(Z) 2 (4 Meth­oxy­benzyl­­idene) 1 aza­bi­cyclo­[2 2 2]octan 3 one"

Copied!
7
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o396

Sonaret al. C

15H17NO2 doi:10.1107/S1600536805042637 Acta Cryst.(2006). E62, o396–o397

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(

Z

)-2-(4-Methoxybenzylidene)-1-azabicyclo[2.2.2]-octan-3-one

Vijayakumar N. Sonar,aSean Parkinband Peter A. Crooksa*

a

Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, andbDepartment of

Chemistry, University of Kentucky, Lexington, KY 40506, USA

Correspondence e-mail: pcrooks@uky.edu

Key indicators

Single-crystal X-ray study

T= 90 K

Mean(C–C) = 0.003 A˚

Rfactor = 0.034

wRfactor = 0.077

Data-to-parameter ratio = 10.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2006 International Union of Crystallography Printed in Great Britain – all rights reserved

The title compound, C15H17NO2, was prepared by the base-catalyzed reaction of 4-methoxybenzaldehyde with 1-aza-bicyclo[2.2.2]octan-3-one. The configuration about the olefinic

bond connecting the methoxyphenyl and

1-aza-bicylo[2.2.2]octan-3-one moieties isZ.

Comment

The title compound, (I), was prepared by the base-catalyzed

condensation of 4-methoxybenzaldehyde with

[image:1.610.251.411.384.479.2]

1-aza-bicyclo[2.2.2]octan-3-one, to afford (I) as a single geometrical isomer. In order to confirm the double-bond geometry, and to determine how the molecular conformation in the crystal structure is affected by the position of the para-methoxy group, the X-ray analysis of this positional isomer has been carried out and the results are presented here. This is a companion study together with the previous communication on the isomeric 2-methoxy analogue (Sonaret al., 2006).

Fig. 1 illustrates an ellipsoid plot of (I), with the atom-numbering scheme; selected geometric parameters are listed in Table 1. The configuration about the olefinic bond connecting the 4-methoxyphenyl and 1-azabicylo[2.2.2]octan-3-one moieties is Z. The double bond has a nearly planar atomic arrangement, since the r.m.s. deviation from the mean plane passing through atoms N1, C8, C9, C7 and C1 for (I) is 0.0197 (11) A˚ .

There are no significant differences in the geometric para-meters of (Z

)-2-(2-methoxy-benzylidene)-1-azabicyclo[2.2.2]-octan-3-one and (Z

)-2-(4-methoxy-benzylidene)-1-azabicyclo[2.2.2]octan-3-one. This suggests that the position of the methoxy group does not have much influence on the overall molecular conformation in the 2- and 4-positional isomers.

Experimental

Compound (I) was prepared following the method described previously for the 2-methoxy analogue (Sonar et al., 2006), but utilizing 4-methoxybenzaldehyde in place of

(2)

benzaldehyde. Spectroscopic analysis: 1H NMR (CDCl3,, p.p.m.): 1.99–2.04 (td, 4H), 2.59–2.62 (p, 1H), 2.93–3.03 (m, 2H), 3.09–3.19 (m, 2H), 3.83 (s, 3H), 6.89 (dd, 2H),6.98 (s, 1H), 8.02 (dd, 2H);13C NMR (CDCl3,, p.p.m.): 26.4, 40.6, 47.8, 55.5, 114.1, 125.1, 127.0, 134.1, 143.0, 160.8, 206.4.

Crystal data

C15H17NO2

Mr= 243.30

Orthorhombic,P212121

a= 5.8425 (2) A˚

b= 9.9252 (3) A˚

c= 21.3739 (7) A˚

V= 1239.43 (7) A˚3

Z= 4

Dx= 1.304 Mg m

3

MoKradiation Cell parameters from 1641

reflections = 1.0–27.5

= 0.09 mm1

T= 90.0 (2) K Block, colourless 0.300.200.15 mm

Data collection

Nonius KappaCCD area-detector diffractometer

!scans

Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997)

Tmin= 0.975,Tmax= 0.987

10079 measured reflections

1664 independent reflections 1323 reflections withI> 2(I)

Rint= 0.031

max= 27.5

h=7!7

k=12!12

l=27!27

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.034

wR(F2) = 0.077

S= 1.04 1664 reflections 165 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0341P)2

+ 0.1346P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.20 e A˚

3 min=0.18 e A˚

3

Extinction correction:SHELXL97

(Sheldrick, 1997)

[image:2.610.44.297.70.207.2]

Extinction coefficient: 0.013 (2)

Table 1

Selected geometric parameters (A˚ ,).

C1—C7 1.463 (2)

N1—C8 1.447 (2)

O1—C9 1.227 (2)

O2—C4 1.369 (2)

O2—C15 1.429 (2)

C7—C8 1.336 (2)

C8—C9 1.485 (2)

C9—C10 1.508 (3)

C2—C1—C7 123.56 (17)

C6—C1—C7 118.35 (17)

C4—O2—C15 117.91 (16)

C8—C7—C1 130.35 (17)

C7—C8—C9 121.39 (17)

N1—C8—C9 113.57 (15)

O1—C9—C8 124.48 (17)

C8—C9—C10 110.75 (15)

C15—O2—C4—C3 5.4 (3)

C2—C1—C7—C8 21.9 (3)

C6—C1—C7—C8 160.91 (19)

C7—C8—C9—O1 0.0 (3)

In the absence of significant anomalous dispersion effects, Friedel pairs were averaged. H atoms were positioned geometrically and treated as riding, with C—H distances in the range 0.95–0.99 A˚ and withUiso(H) = 1.2–1.5Ueq(C).

Data collection: COLLECT (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1995); software used to prepare material for publication: SHELX97-2 (Sheldrick, 1997) and local procedures.

This investigation was supported by National Institute of Alcohol Abuse and Alcoholism Grant AA12600.

References

Nonius (1999).COLLECT. Nonius, BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276,

Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick (1995).XP in SHELXTL/PC. Siemens Analytical X-ray Instru-ments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97, SHELXL97 and SHELX97-2. University of Go¨ttingen, Germany.

Sonar, V. N., Parkin, S. & Crooks, P. A. (2006). Acta Cryst. E62, o393– o395.

Figure 1

[image:2.610.314.566.103.226.2]
(3)

supporting information

sup-1

Acta Cryst. (2006). E62, o396–o397

supporting information

Acta Cryst. (2006). E62, o396–o397 [https://doi.org/10.1107/S1600536805042637]

(

Z

)-2-(4-Methoxybenzylidene)-1-azabicyclo[2.2.2]octan-3-one

Vijayakumar N. Sonar, Sean Parkin and Peter A. Crooks

(Z)-2-(4-Methoxybenzylidene)-1-azabicyclo[2.2.2]octan-3-one

Crystal data C15H17NO2 Mr = 243.30

Orthorhombic, P212121 Hall symbol: P 2ac 2ab a = 5.8425 (2) Å b = 9.9252 (3) Å c = 21.3739 (7) Å V = 1239.43 (7) Å3 Z = 4

F(000) = 520 Dx = 1.304 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 1641 reflections θ = 1.0–27.5°

µ = 0.09 mm−1 T = 90 K Block, colourless 0.30 × 0.20 × 0.15 mm

Data collection

Nonius KappaCCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

Detector resolution: 18 pixels mm-1 ω scans at fixed χ = 55°

Absorption correction: multi-scan

(SCALEPACK; Otwinowski & Minor, 1997) Tmin = 0.975, Tmax = 0.987

10079 measured reflections 1664 independent reflections 1323 reflections with I > 2σ(I) Rint = 0.031

θmax = 27.5°, θmin = 1.9° h = −7→7

k = −12→12 l = −27→27

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.034 wR(F2) = 0.077 S = 1.04 1664 reflections 165 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0341P)2 + 0.1346P]

where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001

Δρmax = 0.20 e Å−3 Δρmin = −0.18 e Å−3

(4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Friedel pairs merged to conform to Acta editorial policy.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq C1 0.1826 (3) 0.51863 (18) −0.10865 (8) 0.0178 (4) N1 −0.0833 (3) 0.59447 (15) 0.01274 (7) 0.0191 (4) O1 0.1324 (2) 0.26603 (12) 0.05619 (6) 0.0224 (3) C2 0.0222 (3) 0.61372 (18) −0.12871 (8) 0.0188 (4)

H2 −0.1043 0.6348 −0.1026 0.023*

O2 0.2694 (2) 0.70620 (14) −0.28129 (6) 0.0280 (4) C3 0.0442 (3) 0.67792 (19) −0.18603 (8) 0.0194 (4)

H3 −0.0676 0.7413 −0.1993 0.023*

C4 0.2310 (4) 0.6488 (2) −0.22402 (9) 0.0205 (5) C5 0.3924 (4) 0.55543 (19) −0.20484 (8) 0.0234 (5)

H5 0.5206 0.5364 −0.2307 0.028*

C6 0.3676 (4) 0.4897 (2) −0.14823 (8) 0.0210 (5)

H6 0.4773 0.4242 −0.1360 0.025*

C7 0.1624 (3) 0.44362 (18) −0.05000 (8) 0.0176 (4)

H7 0.2466 0.3618 −0.0486 0.021*

C8 0.0446 (3) 0.47176 (17) 0.00197 (8) 0.0175 (4) C9 0.0357 (3) 0.37575 (18) 0.05523 (9) 0.0183 (4) C10 −0.1118 (3) 0.43046 (19) 0.10727 (9) 0.0207 (4)

H10 −0.1203 0.3658 0.1431 0.025*

C11 −0.0051 (4) 0.56485 (18) 0.12762 (8) 0.0229 (5)

H11A 0.1501 0.5493 0.1448 0.027*

H11B −0.1000 0.6070 0.1606 0.027*

C12 0.0088 (4) 0.65929 (19) 0.06981 (8) 0.0222 (5)

H12A −0.0786 0.7427 0.0785 0.027*

H12B 0.1705 0.6848 0.0626 0.027*

C13 −0.3505 (4) 0.4588 (2) 0.08010 (9) 0.0236 (5)

H13A −0.4500 0.4985 0.1127 0.028*

H13B −0.4212 0.3736 0.0657 0.028*

C14 −0.3269 (3) 0.5581 (2) 0.02424 (9) 0.0228 (5)

H14A −0.3916 0.5162 −0.0139 0.027*

H14B −0.4155 0.6409 0.0332 0.027*

C15 0.0971 (4) 0.7933 (2) −0.30609 (9) 0.0253 (5)

H15A −0.0505 0.7464 −0.3063 0.038*

(5)

supporting information

sup-3

Acta Cryst. (2006). E62, o396–o397

H15C 0.0859 0.8744 −0.2801 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

C1 0.0194 (10) 0.0157 (9) 0.0183 (10) −0.0036 (8) −0.0022 (8) −0.0029 (8) N1 0.0199 (9) 0.0174 (8) 0.0200 (9) 0.0022 (7) 0.0023 (7) −0.0011 (7) O1 0.0220 (7) 0.0176 (7) 0.0275 (8) 0.0007 (6) −0.0014 (6) 0.0016 (6) C2 0.0171 (10) 0.0185 (9) 0.0209 (11) −0.0008 (9) 0.0013 (8) −0.0044 (9) O2 0.0274 (8) 0.0338 (8) 0.0229 (8) 0.0068 (8) 0.0032 (7) 0.0084 (7) C3 0.0205 (10) 0.0169 (10) 0.0208 (11) 0.0021 (9) −0.0034 (9) −0.0010 (9) C4 0.0219 (10) 0.0212 (10) 0.0183 (10) −0.0015 (9) −0.0012 (8) 0.0004 (9) C5 0.0210 (10) 0.0283 (11) 0.0208 (10) 0.0051 (10) 0.0038 (9) 0.0002 (9) C6 0.0201 (10) 0.0197 (10) 0.0231 (11) 0.0044 (10) −0.0013 (9) −0.0010 (9) C7 0.0147 (9) 0.0144 (9) 0.0235 (10) 0.0004 (8) −0.0020 (8) −0.0006 (8) C8 0.0148 (9) 0.0153 (9) 0.0224 (11) −0.0004 (8) −0.0015 (8) −0.0012 (8) C9 0.0156 (9) 0.0167 (10) 0.0225 (11) −0.0036 (9) −0.0030 (9) −0.0001 (9) C10 0.0210 (10) 0.0217 (10) 0.0193 (10) −0.0012 (10) 0.0024 (9) 0.0029 (9) C11 0.0228 (11) 0.0255 (10) 0.0203 (10) 0.0056 (10) 0.0000 (9) −0.0038 (9) C12 0.0238 (11) 0.0182 (10) 0.0246 (11) −0.0023 (10) 0.0009 (9) −0.0035 (9) C13 0.0174 (10) 0.0240 (11) 0.0293 (11) −0.0008 (9) 0.0037 (9) 0.0012 (9) C14 0.0164 (10) 0.0243 (11) 0.0279 (11) 0.0009 (10) 0.0000 (9) 0.0030 (9) C15 0.0256 (11) 0.0257 (11) 0.0246 (11) 0.0034 (10) −0.0017 (10) 0.0032 (9)

Geometric parameters (Å, º)

C1—C2 1.397 (3) C8—C9 1.485 (2)

C1—C6 1.402 (3) C9—C10 1.508 (3)

C1—C7 1.463 (2) C10—C11 1.535 (3)

N1—C8 1.447 (2) C10—C13 1.537 (3)

N1—C12 1.480 (2) C10—H10 1.0000

N1—C14 1.488 (3) C11—C12 1.553 (3)

O1—C9 1.227 (2) C11—H11A 0.9900

C2—C3 1.387 (3) C11—H11B 0.9900

C2—H2 0.9500 C12—H12A 0.9900

O2—C4 1.369 (2) C12—H12B 0.9900

O2—C15 1.429 (2) C13—C14 1.554 (3)

C3—C4 1.390 (3) C13—H13A 0.9900

C3—H3 0.9500 C13—H13B 0.9900

C4—C5 1.384 (3) C14—H14A 0.9900

C5—C6 1.382 (3) C14—H14B 0.9900

C5—H5 0.9500 C15—H15A 0.9800

C6—H6 0.9500 C15—H15B 0.9800

C7—C8 1.336 (2) C15—H15C 0.9800

C7—H7 0.9500

C2—C1—C6 118.04 (17) C9—C10—H10 111.2

(6)

C6—C1—C7 118.35 (17) C13—C10—H10 111.2 C8—N1—C12 108.00 (15) C10—C11—C12 108.68 (14)

C8—N1—C14 108.42 (15) C10—C11—H11A 110.0

C12—N1—C14 108.48 (15) C12—C11—H11A 110.0

C3—C2—C1 121.29 (18) C10—C11—H11B 110.0

C3—C2—H2 119.4 C12—C11—H11B 110.0

C1—C2—H2 119.4 H11A—C11—H11B 108.3

C4—O2—C15 117.91 (16) N1—C12—C11 111.98 (15)

C2—C3—C4 119.53 (18) N1—C12—H12A 109.2

C2—C3—H3 120.2 C11—C12—H12A 109.2

C4—C3—H3 120.2 N1—C12—H12B 109.2

O2—C4—C5 115.58 (18) C11—C12—H12B 109.2

O2—C4—C3 124.36 (18) H12A—C12—H12B 107.9

C5—C4—C3 120.05 (18) C10—C13—C14 109.01 (16)

C6—C5—C4 120.27 (19) C10—C13—H13A 109.9

C6—C5—H5 119.9 C14—C13—H13A 109.9

C4—C5—H5 119.9 C10—C13—H13B 109.9

C5—C6—C1 120.80 (18) C14—C13—H13B 109.9

C5—C6—H6 119.6 H13A—C13—H13B 108.3

C1—C6—H6 119.6 N1—C14—C13 111.43 (16)

C8—C7—C1 130.35 (17) N1—C14—H14A 109.3

C8—C7—H7 114.8 C13—C14—H14A 109.3

C1—C7—H7 114.8 N1—C14—H14B 109.3

C7—C8—N1 125.04 (16) C13—C14—H14B 109.3

C7—C8—C9 121.39 (17) H14A—C14—H14B 108.0

N1—C8—C9 113.57 (15) O2—C15—H15A 109.5

O1—C9—C8 124.48 (17) O2—C15—H15B 109.5

O1—C9—C10 124.76 (17) H15A—C15—H15B 109.5

C8—C9—C10 110.75 (15) O2—C15—H15C 109.5

C9—C10—C11 106.85 (16) H15A—C15—H15C 109.5 C9—C10—C13 107.79 (15) H15B—C15—H15C 109.5 C11—C10—C13 108.46 (16)

(7)

supporting information

sup-5

Acta Cryst. (2006). E62, o396–o397

Figure

Fig. 1 illustrates an ellipsoid plot of (I), with the atom-
Figure 1C15—O2—C4—C3A view of the molecule of (I), with the atom-numbering scheme.C2—C1—C7—C8

References

Related documents

We nd that if individuals dier in initial wealth and if commodity taxes can be evaded at a uniform cost, preferences have to be weakly separable between consumption and labor

Comments This can be a real eye-opener to learn what team members believe are requirements to succeed on your team. Teams often incorporate things into their “perfect team

2 Percentage endorsement rates for items from the DISCO PDA measure stratified by group ( “substantial” PDA features, “some” PDA features and the rest of the sample).. N

ter mean to the prototypes computed from the true labels of all the samples. Similar to the semi-supervised scenario, we use a PN trained in the episodic mode as the feature

Although total labor earnings increase with the unskilled unions’ bargaining power, we can say nothing when the increase in production is due to stronger skilled unions, since

During the thesis work, I measured six different parameters: the number of emergency processes, hash table entry number, caching replacement policy, cache entry

• Storage node - node that runs Account, Container, and Object services • ring - a set of mappings of OpenStack Object Storage data to physical devices To increase reliability, you

• Our goal is to make Pittsburgh Public Schools First Choice by offering a portfolio of quality school options that promote high student achievement in the most equitable and