• No results found

Triamcinolone di­acetate chloro­form solvate

N/A
N/A
Protected

Academic year: 2020

Share "Triamcinolone di­acetate chloro­form solvate"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o788

Suitchmezianet al. C

25H31FO8CHCl3 doi:10.1107/S1600536806001711 Acta Cryst.(2006). E62, o788–o790

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Triamcinolone diacetate chloroform solvate

Viktor Suitchmezian, Inke Jess and Christian Na¨ther*

Institut fu¨r Anorganische Chemie, Christian-Albrechts-Universita¨t Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany

Correspondence e-mail: cnaether@ac.uni-kiel.de

Key indicators

Single-crystal X-ray study T= 170 K

Mean(C–C) = 0.004 A˚ Rfactor = 0.047 wRfactor = 0.122

Data-to-parameter ratio = 17.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 4 January 2006 Accepted 16 January 2006

#2006 International Union of Crystallography All rights reserved

In the crystal structure of the title compound, 16 ,21-diacetoxy-9-fluoro-11,17 -dihydroxy-1,4-pregnadiene-3,20-dione chloroform solvate, C25H31FO8CHCl3, the molecules

are connectedviaO—H O hydrogen bonding. Channels, in which the chloroform molecules are located, are formed in the direction of the crystallographicaaxis.

Comment

Triamcinolone diacetate, also known as 16,21-diacetoxy-9 -fluoro-11,17-dihydroxyl-1,4-pregnadiene-3,20-dione or 9 -fluoro-16-prednisolone-16,21-diacetate, belongs to the class of glucocorticoids which are adrenal cortical hormones.

Synthetic and natural glucocorticoids are amongst the most effective drugs against inflammatory and immune responses (Barnes, 1998; Buttgereit, 2000; Falkensteinet al., 2000). They are essential for chronic inflammatory disease therapy for multiple sclerosis, rheumatoid arthritis, allergic asthma and Morbus Crohn, and also for severe symptoms of psoriasis and allergic dermatitis. In the human body, glucocorticoids are a part of many catabolic processes. This is the reason why, in long-term treatment, glucocorticoids show some adverse effects, such as decomposition of skeletal muscles and skin atrophy. In some cases, a reallocation of adipose tissues (Cushing’s syndrome) and osteoporosis are observed. One very important glucocorticoid is triamcinolone, which has been used in therapy for several decades, mainly as the acet-onide and the diacetate. Despite their great importance, no crystal structures are available in the Cambridge Structural Database (CSD) for the diacetate or the pure triamcinolone (Allen, 2002; ConQuest Version 1.6, CSD Version 5.26 of November 2004). The acetonide has been structurally char-acterized only as a methanol solvate (Surcouf, 1979).

(2)

In the crystal structure of the title compound, (I) (Fig. 1), the molecules are connectedviaO—H O hydrogen bonding between the hydroxyl H atom at O2 and carbonyl atom O8, and between the hydroxyl H atom at O3 and carbonyl atom O1 (Fig. 2 and Table 1). The O O distances and O—H O angles show that these are strong interactions (Table 1). In the direction of the a axis, channels are formed in which the chloroform molecules are located (Fig. 2).

Experimental

The title compound was obtained from HPP (Hommel Pharmaceu-ticals Production GmbH, Germany) as an enantiopure compound and was recrystallized from chloroform. The homogeneity was confirmed by X-ray powder diffraction. The compound decomposes at room temperature within a few days.

Crystal data

C25H31FO8CHCl3

Mr= 597.87

Orthorhombic,P212121

a= 8.0465 (4) A˚

b= 14.5972 (7) A˚

c= 23.7454 (14) A˚

V= 2789.0 (3) A˚3

Z= 4

Dx= 1.424 Mg m 3

MoKradiation Cell parameters from 8000

reflections = 11.6–25

= 0.38 mm1

T= 170 (2) K Block, colourless 0.20.20.15 mm

Data collection

Stoe IPDS-1 diffractometer ’scans

Absorption correction: none 17821 measured reflections 6150 independent reflections 4683 reflections withI> 2(I)

Rint= 0.054 max= 27.1

h=10!8

k=18!16

l=30!30

Refinement

Refinement onF2

R[F2> 2(F2)] = 0.047

wR(F2) = 0.122

S= 1.03 6150 reflections 347 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0585P)2

+ 1.0803P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.59 e A˚

3 min=0.45 e A˚ 3

Extinction correction:SHELXL97

Extinction coefficient: 0.0083 (12) Absolute structure: Flack (1983),

with 2672 Friedel pairs Flack parameter: 0.06 (8)

[image:2.610.314.566.71.289.2] [image:2.610.92.532.294.722.2]

organic papers

Figure 1

View of the asymmetric unit of (I), showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.

Figure 2

(3)

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O2—H1O2 O8i

0.84 1.92 2.750 (3) 169

O3—H1O3 O1ii

0.84 1.95 2.747 (3) 157

Symmetry codes: (i)xþ1;yþ1 2;zþ

3 2; (ii)xþ

1 2;yþ

3 2;zþ1.

The H atoms were positioned with idealized geometry and were refined with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)] using a riding model, with C—H = 0.95 A˚ for olefin, 1.00 A˚ for methine and 0.99 A˚ for methylene H atoms. The positions of the methyl (except C18 and C19) and hydroxy H atoms were idealized (C—H = 0.98 A˚ and O—H = 0.84 A˚), then refined with fixed isotropic displacement parameters [Uiso(H)= 1.5Ueq(C,O)] as rigid groups allowed to rotate but not tip. Although the absolute configuration was known in advance, it was additionally determined on the basis of anomalous scattering effects.

Data collection:IPDS Program Package(Stoe & Cie, 1998); cell refinement:IPDS Program Package; data reduction:IPDS Program Package; program(s) used to solve structure:SHELXS97(Sheldrick,

1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics:XPinSHELXTL(Bruker, 1998); software used to prepare material for publication:CIFTABinSHELXTL.

This work was supported by the state of Schleswig– Holstein. We are very grateful to Professor Dr Wolfgang Bensch for financial support and the opportunity to use his experimental equipment.

References

Allen, F. H. (2002).Acta Cryst.B58, 380–388. Barnes, P. J. (1998).Clin. Sci.94, 557–572.

Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Buttgereit, F. (2000).Z. Rheumatol.59, 119–123.

Falkenstein, E., Tilmann, H. C., Christ, M., Feuring, M. & Wehling, M. (2000).

Pharmacol. Rev.52, 513–556.

Flack, H. D. (1983).Acta Cryst.A39, 876–881.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Stoe & Cie (1998). IPDS Program Package. Version 2.89. Stoe & Cie, Darmstadt, Germany.

Surcouf, E. (1979).Acta Cryst.B35, 2638–2641.

organic papers

o790

Suitchmezianet al. C

(4)

supporting information

sup-1 Acta Cryst. (2006). E62, o788–o790

supporting information

Acta Cryst. (2006). E62, o788–o790 [https://doi.org/10.1107/S1600536806001711]

Triamcinolone diacetate chloroform solvate

Viktor Suitchmezian, Inke Jess and Christian N

ä

ther

16α,21-diacetoxy-9α-fluoro-11β,17α-dihydroxy-1,4-pregnadiene-3,20-dione chloroform solvate

Crystal data

C25H31FO8·CHCl3 Mr = 597.87

Orthorhombic, P212121

Hall symbol: P 2ac 2ab

a = 8.0465 (4) Å

b = 14.5972 (7) Å

c = 23.7454 (14) Å

V = 2789.0 (3) Å3

Z = 4

F(000) = 1248

Dx = 1.424 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 8000 reflections

θ = 11.6–25°

µ = 0.38 mm−1

T = 170 K

Block, colourless 0.2 × 0.2 × 0.15 mm

Data collection

IPDS-1

diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ scans

17821 measured reflections 6150 independent reflections

4683 reflections with I > 2σ(I) Rint = 0.054

θmax = 27.1°, θmin = 2.7°

h = −10→8

k = −18→16

l = −30→30

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.047 wR(F2) = 0.122

S = 1.03

6150 reflections 347 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0585P)2 + 1.0803P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001 Δρmax = 0.59 e Å−3 Δρmin = −0.45 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0083 (12) Absolute structure: Flack (1983) Absolute structure parameter: 0.06 (8)

Special details

(5)

supporting information

sup-2 Acta Cryst. (2006). E62, o788–o790

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 −0.0183 (4) 0.97252 (17) 0.45783 (8) 0.0456 (7)

O2 0.1598 (3) 0.84146 (16) 0.72423 (8) 0.0290 (5)

H1O2 0.2269 0.8510 0.7507 0.043*

O3 0.5455 (2) 0.57657 (13) 0.65175 (7) 0.0202 (4)

H1O3 0.5024 0.5550 0.6224 0.030*

O4 0.4981 (3) 0.52941 (15) 0.79451 (7) 0.0287 (5)

O5 0.8104 (3) 0.60134 (14) 0.79262 (8) 0.0275 (5)

O6 0.6813 (4) 0.73584 (19) 0.79491 (11) 0.0570 (8)

O7 0.3769 (3) 0.42113 (13) 0.64608 (7) 0.0218 (4)

O8 0.5966 (3) 0.38785 (14) 0.69968 (8) 0.0303 (5)

F1 0.2131 (2) 0.77127 (11) 0.58201 (6) 0.0221 (4)

C1 −0.0230 (4) 0.9364 (2) 0.50524 (10) 0.0266 (7)

C2 0.0622 (4) 0.9803 (2) 0.55238 (11) 0.0281 (6)

H2 0.1179 1.0370 0.5467 0.034*

C3 0.0628 (4) 0.9421 (2) 0.60301 (11) 0.0257 (6)

H3 0.1189 0.9734 0.6325 0.031*

C4 −0.0190 (4) 0.85279 (19) 0.61684 (10) 0.0204 (6)

C5 0.1182 (4) 0.78061 (19) 0.63230 (10) 0.0184 (6)

C6 0.2486 (4) 0.81372 (19) 0.67543 (11) 0.0218 (6)

H6 0.3056 0.8688 0.6594 0.026*

C7 0.3805 (4) 0.7411 (2) 0.68746 (11) 0.0215 (6)

H7A 0.4530 0.7349 0.6540 0.026*

H7B 0.4505 0.7621 0.7192 0.026*

C8 0.3089 (3) 0.64724 (19) 0.70195 (10) 0.0181 (5)

C9 0.4345 (4) 0.56541 (19) 0.69759 (10) 0.0190 (5)

C10 0.3171 (3) 0.4810 (2) 0.68987 (10) 0.0202 (5)

H10 0.3042 0.4470 0.7261 0.024*

C11 0.1487 (4) 0.5187 (2) 0.66976 (12) 0.0240 (6)

H11A 0.1085 0.4850 0.6363 0.029*

H11B 0.0641 0.5146 0.6999 0.029*

C12 0.1872 (3) 0.61828 (19) 0.65535 (11) 0.0197 (5)

H12 0.2534 0.6167 0.6197 0.024*

C13 0.0456 (4) 0.68581 (18) 0.64507 (11) 0.0197 (5)

H13 −0.0228 0.6901 0.6801 0.024*

C14 −0.0660 (4) 0.6519 (2) 0.59694 (12) 0.0262 (6)

H14A 0.0048 0.6350 0.5645 0.031*

H14B −0.1251 0.5960 0.6095 0.031*

C15 −0.1946 (4) 0.7228 (2) 0.57750 (14) 0.0306 (7)

H15A −0.2489 0.7013 0.5425 0.037*

(6)

supporting information

sup-3 Acta Cryst. (2006). E62, o788–o790

C16 −0.1121 (4) 0.8130 (2) 0.56707 (11) 0.0238 (6)

C17 −0.1103 (4) 0.8522 (2) 0.51639 (11) 0.0267 (6)

H17 −0.1688 0.8234 0.4865 0.032*

C18 −0.1447 (4) 0.8721 (2) 0.66478 (12) 0.0333 (8)

H18A −0.2015 0.8152 0.6751 0.050*

H18B −0.2267 0.9172 0.6519 0.050*

H18C −0.0855 0.8964 0.6976 0.050*

C19 0.2264 (4) 0.6485 (2) 0.76054 (11) 0.0264 (6)

H19A 0.1813 0.5876 0.7690 0.040*

H19B 0.1363 0.6936 0.7608 0.040*

H19C 0.3093 0.6650 0.7890 0.040*

C20 0.5476 (4) 0.55670 (19) 0.74946 (10) 0.0205 (5)

C21 0.7262 (4) 0.5850 (2) 0.74056 (11) 0.0261 (6)

H21A 0.7850 0.5363 0.7195 0.031*

H21B 0.7292 0.6415 0.7175 0.031*

C22 0.7784 (4) 0.6843 (2) 0.81543 (12) 0.0317 (7)

C23 0.8769 (6) 0.7002 (3) 0.86730 (16) 0.0507 (11)

H23A 0.9478 0.6469 0.8746 0.076*

H23B 0.8015 0.7094 0.8992 0.076*

H23C 0.9463 0.7547 0.8624 0.076*

C24 0.5208 (4) 0.37819 (19) 0.65628 (11) 0.0245 (6)

C25 0.5737 (5) 0.3199 (2) 0.60850 (13) 0.0371 (8)

H25A 0.6830 0.2935 0.6166 0.056*

H25B 0.5803 0.3571 0.5742 0.056*

H25C 0.4928 0.2705 0.6030 0.056*

Cl1 0.75360 (18) 0.16996 (9) 0.50858 (5) 0.0702 (4)

Cl2 0.43668 (17) 0.10105 (11) 0.47032 (5) 0.0741 (4)

Cl3 0.56404 (19) 0.04954 (9) 0.57946 (5) 0.0718 (4)

C26 0.6164 (6) 0.0769 (3) 0.50941 (17) 0.0529 (10)

H26 0.6733 0.0229 0.4921 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.082 (2) 0.0385 (13) 0.0167 (9) 0.0030 (14) −0.0052 (11) 0.0058 (9)

O2 0.0291 (12) 0.0355 (12) 0.0224 (9) 0.0079 (11) −0.0059 (8) −0.0120 (9)

O3 0.0188 (10) 0.0264 (10) 0.0155 (8) −0.0011 (9) 0.0042 (7) 0.0004 (7)

O4 0.0309 (11) 0.0395 (12) 0.0157 (8) −0.0026 (10) 0.0011 (8) 0.0043 (8)

O5 0.0278 (11) 0.0256 (11) 0.0292 (10) 0.0027 (9) −0.0103 (9) −0.0017 (8)

O6 0.076 (2) 0.0403 (15) 0.0551 (15) 0.0257 (15) −0.0329 (15) −0.0143 (12)

O7 0.0268 (11) 0.0192 (10) 0.0194 (8) 0.0018 (9) −0.0039 (7) 0.0008 (7)

O8 0.0336 (13) 0.0258 (11) 0.0316 (10) 0.0037 (10) −0.0097 (9) 0.0051 (9)

F1 0.0242 (9) 0.0244 (8) 0.0176 (7) 0.0001 (7) 0.0066 (6) −0.0035 (6)

C1 0.0377 (18) 0.0264 (14) 0.0159 (11) 0.0077 (14) −0.0023 (11) −0.0012 (10)

C2 0.0373 (17) 0.0251 (15) 0.0220 (12) −0.0019 (15) −0.0031 (12) −0.0003 (11)

C3 0.0357 (17) 0.0217 (13) 0.0197 (12) 0.0014 (14) −0.0078 (12) −0.0044 (10)

C4 0.0252 (15) 0.0199 (13) 0.0161 (11) 0.0041 (13) 0.0007 (10) −0.0022 (10)

(7)

supporting information

sup-4 Acta Cryst. (2006). E62, o788–o790

C6 0.0227 (15) 0.0197 (13) 0.0231 (12) 0.0001 (13) −0.0006 (11) −0.0027 (10)

C7 0.0198 (14) 0.0225 (14) 0.0221 (12) −0.0023 (12) 0.0009 (10) −0.0022 (10)

C8 0.0178 (13) 0.0201 (13) 0.0163 (11) 0.0005 (11) 0.0020 (10) 0.0002 (10)

C9 0.0208 (13) 0.0221 (13) 0.0140 (11) −0.0032 (12) 0.0040 (10) 0.0018 (10)

C10 0.0209 (13) 0.0228 (13) 0.0169 (11) −0.0007 (12) 0.0019 (10) 0.0001 (10)

C11 0.0192 (14) 0.0203 (13) 0.0325 (14) −0.0037 (12) −0.0014 (11) 0.0022 (11)

C12 0.0180 (13) 0.0204 (13) 0.0206 (12) −0.0018 (12) 0.0004 (10) 0.0001 (10)

C13 0.0171 (13) 0.0193 (13) 0.0226 (12) −0.0008 (12) −0.0008 (10) 0.0008 (10)

C14 0.0217 (15) 0.0238 (14) 0.0330 (14) 0.0011 (13) −0.0068 (12) −0.0016 (12)

C15 0.0224 (16) 0.0321 (16) 0.0372 (15) −0.0016 (14) −0.0083 (13) 0.0039 (13)

C16 0.0188 (14) 0.0250 (14) 0.0275 (13) 0.0048 (12) −0.0046 (11) −0.0028 (11)

C17 0.0343 (17) 0.0275 (15) 0.0184 (12) 0.0055 (14) −0.0105 (11) −0.0056 (11)

C18 0.0312 (18) 0.046 (2) 0.0230 (13) 0.0150 (16) 0.0029 (12) 0.0032 (13)

C19 0.0268 (16) 0.0310 (15) 0.0212 (12) 0.0019 (14) 0.0068 (11) −0.0010 (11)

C20 0.0208 (14) 0.0195 (13) 0.0211 (12) 0.0000 (12) 0.0012 (11) 0.0000 (10)

C21 0.0188 (14) 0.0336 (16) 0.0258 (13) −0.0017 (13) −0.0015 (11) −0.0034 (11)

C22 0.0341 (18) 0.0294 (17) 0.0316 (15) 0.0021 (15) −0.0049 (13) −0.0036 (12)

C23 0.066 (3) 0.044 (2) 0.0424 (19) 0.000 (2) −0.0219 (19) −0.0143 (16)

C24 0.0287 (16) 0.0181 (13) 0.0268 (13) 0.0004 (13) −0.0019 (12) 0.0052 (11)

C25 0.043 (2) 0.0351 (18) 0.0332 (15) 0.0094 (18) 0.0031 (15) −0.0038 (13)

Cl1 0.0775 (9) 0.0749 (8) 0.0581 (6) −0.0044 (7) 0.0235 (6) −0.0096 (5)

Cl2 0.0620 (7) 0.1045 (10) 0.0557 (6) 0.0281 (8) −0.0016 (5) 0.0062 (6)

Cl3 0.0846 (9) 0.0693 (7) 0.0616 (6) 0.0121 (7) 0.0006 (6) 0.0265 (5)

C26 0.054 (3) 0.051 (2) 0.054 (2) 0.020 (2) 0.0065 (18) −0.0024 (18)

Geometric parameters (Å, º)

O1—C1 1.244 (3) C11—C12 1.525 (4)

O2—C6 1.421 (3) C11—H11A 0.9900

O2—H1O2 0.8400 C11—H11B 0.9900

O3—C9 1.418 (3) C12—C13 1.527 (4)

O3—H1O3 0.8400 C12—H12 1.0000

O4—C20 1.209 (3) C13—C14 1.535 (4)

O5—C22 1.351 (4) C13—H13 1.0000

O5—C21 1.430 (3) C14—C15 1.534 (4)

O6—C22 1.189 (4) C14—H14A 0.9900

O7—C24 1.338 (4) C14—H14B 0.9900

O7—C10 1.441 (3) C15—C16 1.496 (4)

O8—C24 1.206 (3) C15—H15A 0.9900

F1—C5 1.424 (3) C15—H15B 0.9900

C1—C17 1.441 (5) C16—C17 1.332 (4)

C1—C2 1.461 (4) C17—H17 0.9500

C2—C3 1.326 (4) C18—H18A 0.9800

C2—H2 0.9500 C18—H18B 0.9800

C3—C4 1.497 (4) C18—H18C 0.9800

C3—H3 0.9500 C19—H19A 0.9800

C4—C16 1.515 (4) C19—H19B 0.9800

(8)

supporting information

sup-5 Acta Cryst. (2006). E62, o788–o790

C4—C5 1.570 (4) C20—C21 1.510 (4)

C5—C13 1.533 (4) C21—H21A 0.9900

C5—C6 1.544 (4) C21—H21B 0.9900

C6—C7 1.527 (4) C22—C23 1.483 (5)

C6—H6 1.0000 C23—H23A 0.9800

C7—C8 1.525 (4) C23—H23B 0.9800

C7—H7A 0.9900 C23—H23C 0.9800

C7—H7B 0.9900 C24—C25 1.480 (4)

C8—C12 1.537 (4) C25—H25A 0.9800

C8—C19 1.542 (3) C25—H25B 0.9800

C8—C9 1.568 (4) C25—H25C 0.9800

C9—C20 1.537 (4) Cl1—C26 1.750 (5)

C9—C10 1.563 (4) Cl2—C26 1.754 (5)

C10—C11 1.539 (4) Cl3—C26 1.762 (4)

C10—H10 1.0000 C26—H26 1.0000

C6—O2—H1O2 109.5 C12—C13—C14 110.4 (2)

C9—O3—H1O3 109.5 C5—C13—C14 111.5 (2)

C22—O5—C21 113.9 (2) C12—C13—H13 108.5

C24—O7—C10 116.3 (2) C5—C13—H13 108.5

O1—C1—C17 122.9 (3) C14—C13—H13 108.5

O1—C1—C2 119.6 (3) C15—C14—C13 113.7 (2)

C17—C1—C2 117.5 (2) C15—C14—H14A 108.8

C3—C2—C1 120.8 (3) C13—C14—H14A 108.8

C3—C2—H2 119.6 C15—C14—H14B 108.8

C1—C2—H2 119.6 C13—C14—H14B 108.8

C2—C3—C4 124.3 (3) H14A—C14—H14B 107.7

C2—C3—H3 117.8 C16—C15—C14 110.1 (3)

C4—C3—H3 117.8 C16—C15—H15A 109.6

C3—C4—C16 112.3 (2) C14—C15—H15A 109.6

C3—C4—C18 106.8 (2) C16—C15—H15B 109.6

C16—C4—C18 108.7 (3) C14—C15—H15B 109.6

C3—C4—C5 109.1 (2) H15A—C15—H15B 108.2

C16—C4—C5 105.8 (2) C17—C16—C15 122.1 (3)

C18—C4—C5 114.2 (2) C17—C16—C4 122.4 (3)

F1—C5—C13 106.5 (2) C15—C16—C4 115.3 (2)

F1—C5—C6 102.8 (2) C16—C17—C1 122.5 (3)

C13—C5—C6 114.2 (2) C16—C17—H17 118.8

F1—C5—C4 104.19 (19) C1—C17—H17 118.8

C13—C5—C4 112.6 (2) C4—C18—H18A 109.5

C6—C5—C4 115.0 (2) C4—C18—H18B 109.5

O2—C6—C7 113.3 (2) H18A—C18—H18B 109.5

O2—C6—C5 106.7 (2) C4—C18—H18C 109.5

C7—C6—C5 112.3 (2) H18A—C18—H18C 109.5

O2—C6—H6 108.1 H18B—C18—H18C 109.5

C7—C6—H6 108.1 C8—C19—H19A 109.5

C5—C6—H6 108.1 C8—C19—H19B 109.5

(9)

supporting information

sup-6 Acta Cryst. (2006). E62, o788–o790

C8—C7—H7A 108.8 C8—C19—H19C 109.5

C6—C7—H7A 108.8 H19A—C19—H19C 109.5

C8—C7—H7B 108.8 H19B—C19—H19C 109.5

C6—C7—H7B 108.8 O4—C20—C21 121.8 (2)

H7A—C7—H7B 107.7 O4—C20—C9 122.8 (3)

C7—C8—C12 109.0 (2) C21—C20—C9 115.4 (2)

C7—C8—C19 110.8 (2) O5—C21—C20 112.1 (2)

C12—C8—C19 112.3 (2) O5—C21—H21A 109.2

C7—C8—C9 115.2 (2) C20—C21—H21A 109.2

C12—C8—C9 98.8 (2) O5—C21—H21B 109.2

C19—C8—C9 110.2 (2) C20—C21—H21B 109.2

O3—C9—C20 104.6 (2) H21A—C21—H21B 107.9

O3—C9—C10 112.4 (2) O6—C22—O5 121.9 (3)

C20—C9—C10 112.8 (2) O6—C22—C23 126.3 (3)

O3—C9—C8 111.7 (2) O5—C22—C23 111.8 (3)

C20—C9—C8 113.1 (2) C22—C23—H23A 109.5

C10—C9—C8 102.6 (2) C22—C23—H23B 109.5

O7—C10—C11 106.7 (2) H23A—C23—H23B 109.5

O7—C10—C9 111.2 (2) C22—C23—H23C 109.5

C11—C10—C9 106.7 (2) H23A—C23—H23C 109.5

O7—C10—H10 110.7 H23B—C23—H23C 109.5

C11—C10—H10 110.7 O8—C24—O7 122.5 (3)

C9—C10—H10 110.7 O8—C24—C25 125.2 (3)

C12—C11—C10 103.4 (2) O7—C24—C25 112.3 (2)

C12—C11—H11A 111.1 C24—C25—H25A 109.5

C10—C11—H11A 111.1 C24—C25—H25B 109.5

C12—C11—H11B 111.1 H25A—C25—H25B 109.5

C10—C11—H11B 111.1 C24—C25—H25C 109.5

H11A—C11—H11B 109.1 H25A—C25—H25C 109.5

C11—C12—C13 120.0 (2) H25B—C25—H25C 109.5

C11—C12—C8 103.3 (2) Cl1—C26—Cl2 111.0 (2)

C13—C12—C8 114.4 (2) Cl1—C26—Cl3 109.7 (2)

C11—C12—H12 106.1 Cl2—C26—Cl3 110.3 (3)

C13—C12—H12 106.1 Cl1—C26—H26 108.6

C8—C12—H12 106.1 Cl2—C26—H26 108.6

C12—C13—C5 109.3 (2) Cl3—C26—H26 108.6

O1—C1—C2—C3 −178.2 (3) C10—C11—C12—C8 −38.6 (3)

C17—C1—C2—C3 2.0 (5) C7—C8—C12—C11 170.8 (2)

C1—C2—C3—C4 0.6 (5) C19—C8—C12—C11 −66.0 (3)

C2—C3—C4—C16 −3.3 (4) C9—C8—C12—C11 50.2 (2)

C2—C3—C4—C18 −122.4 (3) C7—C8—C12—C13 −57.1 (3)

C2—C3—C4—C5 113.7 (3) C19—C8—C12—C13 66.1 (3)

C3—C4—C5—F1 −63.0 (2) C9—C8—C12—C13 −177.7 (2)

C16—C4—C5—F1 58.1 (3) C11—C12—C13—C5 179.2 (2)

C18—C4—C5—F1 177.6 (2) C8—C12—C13—C5 55.6 (3)

C3—C4—C5—C13 −177.9 (2) C11—C12—C13—C14 −57.8 (3)

(10)

supporting information

sup-7 Acta Cryst. (2006). E62, o788–o790

C18—C4—C5—C13 62.6 (3) F1—C5—C13—C12 62.2 (3)

C3—C4—C5—C6 48.8 (3) C6—C5—C13—C12 −50.5 (3)

C16—C4—C5—C6 169.8 (2) C4—C5—C13—C12 175.8 (2)

C18—C4—C5—C6 −70.6 (3) F1—C5—C13—C14 −60.0 (3)

F1—C5—C6—O2 169.3 (2) C6—C5—C13—C14 −172.8 (2)

C13—C5—C6—O2 −75.8 (3) C4—C5—C13—C14 53.6 (3)

C4—C5—C6—O2 56.7 (3) C12—C13—C14—C15 −170.7 (2)

F1—C5—C6—C7 −66.1 (3) C5—C13—C14—C15 −49.1 (3)

C13—C5—C6—C7 48.9 (3) C13—C14—C15—C16 49.5 (3)

C4—C5—C6—C7 −178.6 (2) C14—C15—C16—C17 117.8 (3)

O2—C6—C7—C8 70.7 (3) C14—C15—C16—C4 −57.4 (3)

C5—C6—C7—C8 −50.3 (3) C3—C4—C16—C17 3.7 (4)

C6—C7—C8—C12 53.3 (3) C18—C4—C16—C17 121.7 (3)

C6—C7—C8—C19 −70.7 (3) C5—C4—C16—C17 −115.2 (3)

C6—C7—C8—C9 163.2 (2) C3—C4—C16—C15 179.0 (3)

C7—C8—C9—O3 −37.0 (3) C18—C4—C16—C15 −63.0 (3)

C12—C8—C9—O3 78.9 (2) C5—C4—C16—C15 60.1 (3)

C19—C8—C9—O3 −163.3 (2) C15—C16—C17—C1 −176.4 (3)

C7—C8—C9—C20 80.6 (3) C4—C16—C17—C1 −1.5 (5)

C12—C8—C9—C20 −163.5 (2) O1—C1—C17—C16 178.7 (3)

C19—C8—C9—C20 −45.7 (3) C2—C1—C17—C16 −1.6 (5)

C7—C8—C9—C10 −157.6 (2) O3—C9—C20—O4 −165.7 (3)

C12—C8—C9—C10 −41.7 (2) C10—C9—C20—O4 −43.3 (4)

C19—C8—C9—C10 76.0 (2) C8—C9—C20—O4 72.6 (3)

C24—O7—C10—C11 −177.6 (2) O3—C9—C20—C21 14.5 (3)

C24—O7—C10—C9 66.4 (3) C10—C9—C20—C21 136.9 (2)

O3—C9—C10—O7 15.1 (3) C8—C9—C20—C21 −107.2 (3)

C20—C9—C10—O7 −102.8 (2) C22—O5—C21—C20 −80.2 (3)

C8—C9—C10—O7 135.2 (2) O4—C20—C21—O5 −17.2 (4)

O3—C9—C10—C11 −100.8 (2) C9—C20—C21—O5 162.6 (2)

C20—C9—C10—C11 141.3 (2) C21—O5—C22—O6 4.0 (5)

C8—C9—C10—C11 19.3 (2) C21—O5—C22—C23 −176.3 (3)

O7—C10—C11—C12 −107.6 (2) C10—O7—C24—O8 0.6 (4)

C9—C10—C11—C12 11.3 (3) C10—O7—C24—C25 −178.8 (2)

C10—C11—C12—C13 −167.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O2—H1O2···O8i 0.84 1.92 2.750 (3) 169

O3—H1O3···O1ii 0.84 1.95 2.747 (3) 157

Figure

Figure 1

References

Related documents

Specifically, we design a novel focus- attention mechanism and saliency-selection net- work equipped in the encoder and decoder respec- tively: (1) To comprehensively encode the

A concept is defined as a set of units that has two subsets: (i) a defining set of words from the ten pivot languages and (ii) a set of target units (words or n -grams) that are

Thus, the aim of this study was to evaluate the immunohistochemical expression of EMMPRIN marker in cases of CNS astrocytomic tumours and correlation between

The paper also proves that for the levered firm, (i) under riskless debt, increasing the debt-equity ratio increases the variance of the rate of return on equity

We present an empirical restatement of the classical economic theory of imperialism and the origins of World War I. Using recent data, we show 1) inequality was at historical highs

In this work, we presented an approach to perform frame annotation with crowdsourcing techniques, based on a single annotation step and on manu- ally simplified FE definitions..

The main issue may be there are many conceptual rules that govern sentiment, and there are even more clues (possibly unlimited) that can convey these concepts from

Future areas for further work on payment security mechanisms include: the impact of payment security mechanisms on the cost of debt for a renewable energy project;