• No results found

catena Poly­[[[bis­(μ 4 cyano­benzoato κ2O:O)­bis­­[(4 cyano­benzoato κ2O,O′)­cobalt(II)]] di μ 4,4′ bi­pyridine κ4N:N′] dihydrate di­methyl­form­amide tetrasolvate]

N/A
N/A
Protected

Academic year: 2020

Share "catena Poly­[[[bis­(μ 4 cyano­benzoato κ2O:O)­bis­­[(4 cyano­benzoato κ2O,O′)­cobalt(II)]] di μ 4,4′ bi­pyridine κ4N:N′] dihydrate di­methyl­form­amide tetrasolvate]"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m311±m313 doi:10.1107/S1600536805001054 Heet al. [Co2(C8H4NO2)4(C10H8N2)2]2H2O.4C3H7NO

m311

Acta Crystallographica Section E

Structure Reports

Online ISSN 1600-5368

catena

-Poly[[[bis(

l

-4-cyanobenzoato-

j

2

O

:

O

)-bis[(4-cyanobenzoato-

j

2

O,O

000

)cobalt(II)]]-di-

l

-4,4

000

-bipyridine-

j

4

N

:

N

000

] dihydrate

dimethyl-formamide tetrasolvate]

Hong-Yin He,aLong-Guan Zhua*

and Seik Weng Ngb

aDepartment of Chemistry, Zhejiang University,

Hangzhou 310007, People's Republic of China, andbDepartment of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: [email protected]

Key indicators

Single-crystal X-ray study T= 173 K

Mean(C±C) = 0.007 AÊ Rfactor = 0.065 wRfactor = 0.188

Data-to-parameter ratio = 13.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain ± all rights reserved

The crystal structure of the title compound, {[Co2(C8H4

-NO2)4(C10H8N2)2]2H2O4C3H7NO}n, features a

centrosym-metric eight-membered ±CoÐOÐCÐOÐCoÐOÐCÐO-ring that arises from the bridging of two Co atoms by two cyanobenzoate units across a center of symmetry. Each Co atom is also chelated by a cyanobenzoate unit and the two remaining coordination sites, trans to each other in the distorted octahedron, are occupied by the N atoms of the heterocycle, resulting in a polymeric ribbon structure. The water and dimethylformamide molecules occupy the space between the chains.

Comment

In the crystal structure of the cobalt(II) derivative of 4-cyanobenzoic acid, the anionic units bridge adjacent metal atoms, giving rise to a layer motif. As the metal atom is coordinated by two water molecules, hydrogen-bonding interactions are present that further consolidate a tightly held layer motif (Heet al., 2004).

The introduction of 4,40-bipyridine modi®es the layer

structure to one in which the amine ligand now serves as a bridging entity, but the resulting compound, viz. [Co(C8H

4-NO2)2(C10H8N2)(H2O)2], (II), retains its two water molecules

in the coordination sphere (Heet al., 2003).

A modi®cation of the synthesis of (II), with dimethyl-formamide/water as solvent in place of methanol, has yielded a compound without water in the cobalt coordination sphere,

(2)

namely catena-poly[[[bis( -4-cyanobenzoato)bis[(4-cyano-benzoato)cobalt(II)]]-di--4,40-bipyridine] dihydrate

dimeth-ylformamide tetrasolvate], (I) (Fig. 1).

In (I), one anion bonds to two Co atoms to form, when inversion symmetry is taken into account, a centrosymmetric eight-membered ÐCoÐOÐCÐOÐCoÐOÐCÐOÐ ring. Each Co atom is also chelated by a 4-cyanobenzoate anion, resulting in a very acute O3ÐCo1ÐO4 bond angle (Table 1). The four O atoms surrounding the Co atom approximate to a square plane and the axial coordination sites of the octahe-dron are occupied by the N atoms of theN-heterocycle, thus forming a polymeric ribbon propagating along [010]. The two pyridyl rings of the heterocycle are twisted with respect to each other by 23.3 (3).

The solvent (water and dimethylformamide) molecules occupy the space between the chains and may be disordered. There are probable OÐH O hydrogen bonds involving the water molecule (Table 2).

Experimental

Cobalt(II) acetate tetrahydrate (0.125 g, 0.5 mmol), 4-cyanobenzoic acid (0.159 g, 1.0 mmol) and 4,40-bipyridine (0.078 g, 0.5 mmol) were

dissolved in an N,N-dimethylformamide (20 ml), methanol (20 ml and water (10 ml) mixture. Red block-shaped crystals of (I) separated from the solution afer two weeks.

Crystal data

[Co2(C8H4NO2)4(C10H8N2)2] -2H2O4C3H7NO

Mr= 1343.14

Monoclinic,P21=c

a= 17.6227 (9) AÊ

b= 11.3661 (5) AÊ

c= 17.1939 (7) AÊ

= 110.011 (2)

V= 3236.0 (3) AÊ3

Z= 2

Dx= 1.378 Mg mÿ3

MoKradiation

Cell parameters from 29299 re¯ections

= 1.2±27.5

= 0.59 mmÿ1

T= 173 (2) K Block, red

0.300.180.09 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

!scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995)

Tmin= 0.641,Tmax= 0.949 23077 measured re¯ections

5653 independent re¯ections 4559 re¯ections withI> 2(I)

Rint= 0.050

max= 25.0

h=ÿ20!20

k=ÿ13!11

l=ÿ20!20

Refinement

Re®nement onF2

R[F2> 2(F2)] = 0.065

wR(F2) = 0.188

S= 1.11 5653 re¯ections 419 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0939P)2

+ 6.7732P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 1.06 e AÊÿ3

min=ÿ0.60 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Co1ÐO1 2.046 (3)

Co1ÐO2i 2.025 (3)

Co1ÐO3 2.181 (3)

Co1ÐO4 2.211 (3)

Co1ÐN1 2.127 (3)

Co1ÐN2ii 2.135 (3)

O1ÐCo1ÐO2i 119.1 (1) O1ÐCo1ÐO3 150.2 (1) O1ÐCo1ÐO4 90.2 (1) O1ÐCo1ÐN1 88.5 (1) O1ÐCo1ÐN2ii 90.5 (1) O2iÐCo1ÐO3 90.7 (1) O2iÐCo1ÐO4 150.5 (1) O2iÐCo1ÐN1 92.3 (1)

O2iÐCo1ÐN2ii 87.5 (1) O3ÐCo1ÐO4 60.0 (1) O3ÐCo1ÐN1 92.2 (1) O3ÐCo1ÐN2ii 89.0 (1) O4ÐCo1ÐN1 92.0 (1) O4ÐCo1ÐN2ii 88.7 (1) N1ÐCo1ÐN2ii 178.7 (1)

Symmetry codes: (i) 1ÿx;1ÿy;1ÿz; (ii)x;1‡y;z.

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O1wÐH1w1 O3 0.88 2.29 3.14 (2) 165 O1wÐH1w2 O5 0.89 2.15 3.02 (2) 165

The methyl H atoms were allowed to rotate to ®t the electron density [CÐH = 0.98 AÊ andUiso(H) = 1.5Ueq(C)]. The other carbon-bound H atoms were positioned geometrically and re®ned as riding [aromatic CÐH = 0.95 AÊ andUiso(H) = 1.2Ueq(carrier)]. The H atoms of the water molecule were placed at chemically reasonable positions on the basis of possible hydrogen-bonding interactions with O atoms, but their positions were not re®ned. The structure apparently has some disorder in the two dimethylformamide molecules, but attempts at re®nement using split-site models did not lead to a meaningful outcome. Similarly, the re®nement of the water molecule as two half-occupancy water molecules was not undertaken. The largest peak in the ®nal difference Fourier map is about 1 AÊ from atoms O5 and N5. Data collection:RAPID-AUTO (Rigaku, 1998); cell re®nement:

RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure:SHELXL97(Sheldrick, 1997); molecular graphics:ORTEPII(Johnson, 1976); software used to prepare material for publication:SHELXL97.

We thank the National Natural Science Foundation of China (No. 50073019) and the University of Malaya for supporting this study.

metal-organic papers

m312

Heet al. [Co2(C8H4NO2)4(C10H8N2)2]2H2O.4C3H7NO Acta Cryst.(2005). E61, m311±m313 Figure 1
(3)

References

Gao, S., Huo, L.-H., Shu, H. & Ng, S. W. (2005). Acta Cryst.E61, m290± m292.

He, H.-Y., Chen, J., Wang, X.-H. & Zhu, L.-G. (2004).Acta Cryst.C60, m540± m542.

He, H.-Y., Ma, A.-Q. & Zhu, L. G. (2003).Acta Cryst.E59, m333±m335.

Higashi, T. (1995).ABSCOR.Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Rigaku (1998).RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails

Drive, The Woodlands, TX 77381-5209, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of GoÈttingen, Germany.

metal-organic papers

(4)

supporting information

sup-1 Acta Cryst. (2005). E61, m311–m313

supporting information

Acta Cryst. (2005). E61, m311–m313 [https://doi.org/10.1107/S1600536805001054]

catena

-Poly[[[bis(µ-4-cyanobenzoato-κ

2

O

:

O

)bis[(4-cyanobenzoato-κ

2

O,O

)cobalt(II)]]-di-

µ

-4,4

-bipyridine-

κ

4

N

:

N

] dihydrate dimethylformamide

tetrasolvate]

Hong-Yin He, Long-Guan Zhu and Seik Weng Ng

catena-Poly[[[bis(µ-4-cyanobenzoato-κ2O:O)bis[(4-cyanobenzoato- κ2O,O′)cobalt(II)]]-di-µ-4,4′ -bipyridine-κ4N:N′] dihydrate dimethylformamide tetrasolvate]

Crystal data

[Co2(C8H4NO2)4(C10H8N2)2]·2H2O·4C3H7NO Mr = 1343.14

Monoclinic, P21/c

Hall symbol: -P 2ybc a = 17.6227 (9) Å b = 11.3661 (5) Å c = 17.1939 (7) Å β = 110.011 (2)° V = 3236.0 (3) Å3 Z = 2

F(000) = 1396 Dx = 1.378 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 29299 reflections θ = 1.2–27.5°

µ = 0.59 mm−1 T = 173 K Needle, red

0.30 × 0.18 × 0.09 mm

Data collection

Rigaku R-AXIS RAPID diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) Tmin = 0.641, Tmax = 0.949

23077 measured reflections 5653 independent reflections 4559 reflections with I > 2σ(I) Rint = 0.050

θmax = 25.0°, θmin = 1.2° h = −20→20

k = −13→11 l = −20→20

Refinement

Refinement on F2

Least-squares matrix: full R[F2 > 2σ(F2)] = 0.065 wR(F2) = 0.188 S = 1.11 5653 reflections 419 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.0939P)2 + 6.7732P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 1.06 e Å−3

(5)

supporting information

sup-2 Acta Cryst. (2005). E61, m311–m313

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Co1 0.43203 (3) 0.53041 (4) 0.37799 (3) 0.0232 (2)

O1 0.5503 (2) 0.5222 (2) 0.3853 (2) 0.0296 (6)

O2 0.5940 (2) 0.4636 (3) 0.5162 (2) 0.0344 (7)

O3 0.3040 (2) 0.5428 (3) 0.3044 (2) 0.0369 (7)

O4 0.3935 (2) 0.5408 (3) 0.2415 (2) 0.0337 (7)

O5 0.1870 (3) 0.9846 (6) 0.3173 (4) 0.099 (2)

O6 0.2909 (4) 0.2142 (5) 0.5336 (4) 0.106 (2)

O1w 0.173 (1) 0.720 (2) 0.3202 (11) 0.318 (8)

N5 0.0881 (5) 1.1194 (8) 0.2967 (4) 0.103 (3)

N6 0.2234 (2) 0.2451 (4) 0.6211 (3) 0.044 (1)

N1 0.4290 (2) 0.3434 (3) 0.3754 (2) 0.0266 (7)

N2 0.4378 (2) −0.2820 (3) 0.3824 (2) 0.0296 (8)

N3 0.9794 (3) 0.3747 (7) 0.4301 (4) 0.092 (2)

N4 0.0137 (3) 0.6357 (6) −0.1281 (3) 0.078 (2)

C1 0.4700 (3) 0.2827 (4) 0.3357 (3) 0.0305 (9)

C2 0.4736 (3) 0.1613 (4) 0.3339 (3) 0.0307 (9)

C3 0.4328 (2) 0.0952 (3) 0.3768 (2) 0.0262 (8)

C4 0.3910 (3) 0.1582 (4) 0.4181 (3) 0.0303 (9)

C5 0.3900 (3) 0.2796 (4) 0.4160 (3) 0.0299 (9)

C6 0.3787 (3) −0.2203 (4) 0.3949 (4) 0.051 (2)

C7 0.3749 (3) −0.0995 (4) 0.3931 (4) 0.049 (1)

C8 0.4352 (2) −0.0352 (3) 0.3782 (3) 0.0274 (9)

C9 0.4962 (3) −0.0985 (4) 0.3646 (3) 0.0315 (9)

C10 0.4948 (3) −0.2201 (4) 0.3671 (3) 0.0304 (9)

C11 0.6038 (3) 0.4843 (3) 0.4491 (3) 0.0262 (9)

C12 0.6860 (2) 0.4605 (3) 0.4438 (3) 0.0275 (9)

C13 0.6959 (3) 0.4482 (4) 0.3682 (3) 0.037 (1)

C14 0.7713 (3) 0.4246 (5) 0.3628 (3) 0.045 (1)

C15 0.8373 (3) 0.4161 (5) 0.4361 (3) 0.046 (1)

C16 0.8280 (3) 0.4290 (5) 0.5120 (3) 0.049 (1)

C17 0.7527 (3) 0.4495 (4) 0.5164 (3) 0.039 (1)

C18 0.9170 (3) 0.3919 (6) 0.4319 (4) 0.063 (2)

C19 0.3216 (3) 0.5499 (3) 0.2394 (3) 0.0295 (9)

C20 0.2553 (3) 0.5700 (4) 0.1578 (3) 0.033 (1)

C21 0.1755 (3) 0.5627 (5) 0.1540 (3) 0.043 (1)

C22 0.1138 (3) 0.5805 (5) 0.0795 (3) 0.052 (1)

C23 0.1322 (3) 0.6053 (5) 0.0091 (3) 0.045 (1)

C24 0.2115 (3) 0.6130 (5) 0.0123 (3) 0.049 (1)

C25 0.2734 (3) 0.5951 (5) 0.0873 (3) 0.043 (1)

C26 0.0662 (3) 0.6229 (6) −0.0688 (3) 0.057 (2)

C27 0.1618 (8) 1.0708 (13) 0.3334 (7) 0.146 (5)

C28 0.0255 (9) 1.0816 (15) 0.2338 (8) 0.23 (1)

C29 0.082 (1) 1.234 (1) 0.3260 (7) 0.215 (9)

C30 0.2831 (7) 0.2219 (8) 0.5971 (9) 0.139 (5)

(6)

supporting information

sup-3 Acta Cryst. (2005). E61, m311–m313

C32 0.2368 (9) 0.2518 (9) 0.7068 (5) 0.161 (6)

H1w1 0.2150 0.6829 0.3149 0.382*

H1w2 0.1862 0.7951 0.3181 0.382*

H1 0.4983 0.3258 0.3070 0.037*

H2 0.5032 0.1230 0.3043 0.037*

H4 0.3629 0.1176 0.4481 0.036*

H5 0.3603 0.3202 0.4445 0.036*

H6 0.3368 −0.2623 0.4058 0.062*

H7 0.3309 −0.0603 0.4020 0.059*

H9 0.5390 −0.0589 0.3536 0.038*

H10 0.5374 −0.2618 0.3572 0.036*

H13 0.6505 0.4559 0.3189 0.044*

H14 0.7777 0.4145 0.3106 0.054*

H16 0.8736 0.4236 0.5613 0.059*

H17 0.7460 0.4562 0.5688 0.046*

H21 0.1633 0.5454 0.2025 0.052*

H22 0.0591 0.5759 0.0766 0.062*

H24 0.2236 0.6304 −0.0362 0.059*

H25 0.3281 0.6001 0.0902 0.051*

H27 0.1976 1.1139 0.3784 0.175*

H28a −0.0241 1.0923 0.2467 0.342*

H28b 0.0326 0.9980 0.2242 0.342*

H28c 0.0217 1.1267 0.1840 0.342*

H29a 0.0359 1.2384 0.3451 0.323*

H29b 0.0750 1.2911 0.2812 0.323*

H29c 0.1317 1.2529 0.3721 0.323*

H30 0.3319 0.2079 0.6418 0.167*

H31a 0.1159 0.3072 0.5990 0.273*

H31b 0.1185 0.1812 0.5585 0.273*

H31c 0.1425 0.2969 0.5191 0.273*

H32a 0.2172 0.3275 0.7194 0.242*

H32b 0.2948 0.2447 0.7378 0.242*

H32c 0.2078 0.1877 0.7227 0.242*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4 Acta Cryst. (2005). E61, m311–m313

N2 0.034 (2) 0.016 (2) 0.043 (2) 0.001 (1) 0.019 (2) 0.001 (2) N3 0.041 (3) 0.136 (6) 0.112 (5) 0.013 (3) 0.040 (3) −0.010 (4) N4 0.059 (3) 0.119 (5) 0.045 (3) 0.011 (3) 0.007 (3) 0.009 (3) C1 0.044 (2) 0.021 (2) 0.035 (2) −0.001 (2) 0.025 (2) 0.001 (2) C2 0.043 (2) 0.020 (2) 0.038 (2) 0.000 (2) 0.026 (2) 0.000 (2) C3 0.032 (2) 0.018 (2) 0.031 (2) 0.000 (2) 0.014 (2) −0.001 (2) C4 0.042 (2) 0.021 (2) 0.036 (2) −0.005 (2) 0.023 (2) 0.001 (2) C5 0.040 (2) 0.022 (2) 0.037 (2) 0.000 (2) 0.025 (2) −0.003 (2) C6 0.046 (3) 0.018 (2) 0.109 (5) −0.001 (2) 0.051 (3) 0.003 (3) C7 0.046 (3) 0.019 (2) 0.100 (4) 0.007 (2) 0.047 (3) 0.006 (2) C8 0.033 (2) 0.018 (2) 0.032 (2) 0.001 (2) 0.014 (2) 0.000 (2) C9 0.038 (2) 0.019 (2) 0.045 (2) −0.002 (2) 0.024 (2) 0.001 (2) C10 0.036 (2) 0.021 (2) 0.042 (2) 0.001 (2) 0.023 (2) −0.001 (2) C11 0.035 (2) 0.011 (2) 0.036 (2) −0.001 (2) 0.019 (2) −0.006 (2) C12 0.031 (2) 0.019 (2) 0.036 (2) 0.001 (2) 0.016 (2) 0.001 (2) C13 0.032 (2) 0.040 (3) 0.040 (2) 0.006 (2) 0.016 (2) 0.000 (2) C14 0.043 (3) 0.053 (3) 0.048 (3) 0.006 (2) 0.028 (2) −0.003 (2) C15 0.035 (2) 0.047 (3) 0.063 (3) 0.005 (2) 0.026 (2) 0.001 (3) C16 0.033 (2) 0.061 (3) 0.049 (3) 0.003 (2) 0.010 (2) −0.002 (3) C17 0.041 (3) 0.040 (3) 0.036 (2) 0.000 (2) 0.015 (2) −0.001 (2) C18 0.048 (3) 0.074 (4) 0.076 (4) 0.009 (3) 0.031 (3) 0.002 (3) C19 0.036 (2) 0.021 (2) 0.036 (2) −0.002 (2) 0.018 (2) 0.000 (2) C20 0.039 (2) 0.029 (2) 0.035 (2) −0.002 (2) 0.016 (2) −0.002 (2) C21 0.042 (3) 0.052 (3) 0.041 (3) −0.001 (2) 0.020 (2) 0.006 (2) C22 0.035 (3) 0.071 (4) 0.050 (3) −0.002 (3) 0.016 (2) 0.003 (3) C23 0.045 (3) 0.046 (3) 0.039 (3) 0.002 (2) 0.009 (2) 0.000 (2) C24 0.052 (3) 0.063 (3) 0.036 (3) 0.004 (3) 0.018 (2) 0.006 (2) C25 0.040 (3) 0.052 (3) 0.038 (3) −0.001 (2) 0.016 (2) 0.001 (2) C26 0.052 (3) 0.071 (4) 0.045 (3) 0.004 (3) 0.012 (3) 0.002 (3) C27 0.16 (1) 0.200 (13) 0.115 (8) 0.094 (10) 0.098 (8) 0.081 (9) C28 0.19 (1) 0.29 (2) 0.14 (1) −0.11 (1) −0.03 (1) 0.12 (1) C29 0.35 (2) 0.21 (2) 0.081 (7) 0.13 (2) 0.07 (1) 0.013 (9) C30 0.18 (1) 0.072 (5) 0.25 (1) −0.023 (6) 0.17 (1) −0.022 (7) C31 0.061 (5) 0.128 (9) 0.29 (2) −0.008 (6) −0.028 (8) 0.07 (1) C32 0.31 (2) 0.082 (7) 0.064 (5) 0.022 (8) 0.029 (8) −0.005 (5)

Geometric parameters (Å, º)

Co1—O1 2.046 (3) C16—C17 1.375 (7)

Co1—O2i 2.025 (3) C19—C20 1.504 (6)

Co1—O3 2.181 (3) C20—C25 1.385 (6)

Co1—O4 2.211 (3) C20—C21 1.387 (7)

Co1—N1 2.127 (3) C21—C22 1.382 (7)

Co1—N2ii 2.135 (3) C22—C23 1.385 (7)

O1—C11 1.253 (5) C23—C24 1.383 (7)

O2—C11 1.245 (5) C23—C26 1.455 (7)

O2—Co1i 2.025 (3) C24—C25 1.390 (7)

(8)

supporting information

sup-5 Acta Cryst. (2005). E61, m311–m313

O4—C19 1.259 (5) O1w—H1w2 0.89

O5—C27 1.15 (1) C1—H1 0.95

O6—C30 1.15 (1) C2—H2 0.95

N5—C28 1.32 (1) C4—H4 0.95

N5—C27 1.35 (1) C5—H5 0.95

N5—C29 1.42 (2) C6—H6 0.95

N6—C30 1.282 (9) C7—H7 0.95

N6—C31 1.373 (9) C9—H9 0.95

N6—C32 1.413 (9) C10—H10 0.95

N1—C1 1.342 (5) C13—H13 0.95

N1—C5 1.347 (5) C14—H14 0.95

N2—C10 1.326 (5) C16—H16 0.95

N2—C6 1.332 (6) C17—H17 0.95

N2—Co1iii 2.135 (3) C21—H21 0.95

N3—C18 1.129 (7) C22—H22 0.95

N4—C26 1.127 (7) C24—H24 0.95

C1—C2 1.382 (6) C25—H25 0.95

C2—C3 1.410 (6) C27—H27 0.95

C3—C4 1.385 (6) C28—H28a 0.98

C3—C8 1.483 (5) C28—H28b 0.98

C4—C5 1.380 (6) C28—H28c 0.98

C6—C7 1.375 (6) C29—H29a 0.98

C7—C8 1.384 (6) C29—H29b 0.98

C8—C9 1.380 (6) C29—H29c 0.98

C9—C10 1.383 (6) C30—H30 0.95

C11—C12 1.505 (6) C31—H31a 0.98

C12—C13 1.378 (6) C31—H31b 0.98

C12—C17 1.397 (6) C31—H31c 0.98

C13—C14 1.388 (6) C32—H32a 0.98

C14—C15 1.395 (7) C32—H32b 0.98

C15—C16 1.377 (7) C32—H32c 0.98

C15—C18 1.456 (7)

O1—Co1—O2i 119.1 (1) C24—C23—C26 120.5 (5)

O1—Co1—O3 150.2 (1) C22—C23—C26 118.7 (5)

O1—Co1—O4 90.2 (1) C23—C24—C25 119.3 (5)

O1—Co1—N1 88.5 (1) C20—C25—C24 120.0 (5)

O1—Co1—N2ii 90.5 (1) N4—C26—C23 178.2 (7)

O2i—Co1—O3 90.7 (1) O5—C27—N5 129 (2)

O2i—Co1—O4 150.5 (1) O6—C30—N6 134 (1)

O2i—Co1—N1 92.3 (1) H1w1—O1w—H1w2 102.7

O2i—Co1—N2ii 87.5 (1) N1—C1—H1 117.9

O3—Co1—O4 60.0 (1) C2—C1—H1 117.9

O3—Co1—N1 92.2 (1) C1—C2—H2 120.5

O3—Co1—N2ii 89.0 (1) C3—C2—H2 120.5

O4—Co1—N1 92.0 (1) C5—C4—H4 119.7

O4—Co1—N2ii 88.7 (1) C3—C4—H4 119.7

(9)

supporting information

sup-6 Acta Cryst. (2005). E61, m311–m313

C11—O1—Co1 121.0 (3) C4—C5—H5 118.4

C11—O2—Co1i 166.4 (3) N2—C6—H6 118.1

C19—O3—Co1 89.9 (3) C7—C6—H6 118.1

C19—O4—Co1 88.6 (2) C6—C7—H7 120.1

C28—N5—C27 130 (1) C8—C7—H7 120.1

C28—N5—C29 117 (1) C8—C9—H9 120.2

C27—N5—C29 113 (1) C10—C9—H9 120.2

C30—N6—C31 126 (1) N2—C10—H10 118.0

C30—N6—C32 119 (1) C9—C10—H10 118.0

C31—N6—C32 114.9 (9) C12—C13—H13 119.5

C1—N1—C5 116.5 (3) C14—C13—H13 119.5

C1—N1—Co1 120.7 (3) C13—C14—H14 120.9

C5—N1—Co1 122.7 (3) C15—C14—H14 120.9

C10—N2—C6 116.1 (4) C17—C16—H16 120.0

C10—N2—Co1iii 123.6 (3) C15—C16—H16 120.0

C6—N2—Co1iii 120.1 (3) C16—C17—H17 120.0

N1—C1—C2 124.1 (4) C12—C17—H17 120.0

C1—C2—C3 119.0 (4) C22—C21—H21 120.1

C4—C3—C2 116.6 (4) C20—C21—H21 120.1

C4—C3—C8 121.7 (4) C21—C22—H22 120.2

C2—C3—C8 121.6 (4) C23—C22—H22 120.2

C5—C4—C3 120.5 (4) C23—C24—H24 120.3

N1—C5—C4 123.2 (4) C25—C24—H24 120.3

N2—C6—C7 123.9 (4) C20—C25—H25 120.0

C6—C7—C8 119.8 (4) C24—C25—H25 120.0

C9—C8—C7 116.7 (4) O5—C27—H27 115.7

C9—C8—C3 122.6 (4) N5—C27—H27 115.7

C7—C8—C3 120.8 (4) N5—C28—H28a 109.5

C8—C9—C10 119.5 (4) N5—C28—H28b 109.5

N2—C10—C9 124.0 (4) H28a—C28—H28b 109.5

O2—C11—O1 125.0 (4) N5—C28—H28c 109.5

O2—C11—C12 117.6 (4) H28a—C28—H28c 109.5

O1—C11—C12 117.4 (4) H28b—C28—H28c 109.5

C13—C12—C17 119.6 (4) N5—C29—H29a 109.5

C13—C12—C11 120.8 (4) N5—C29—H29b 109.5

C17—C12—C11 119.6 (4) H29a—C29—H29b 109.5

C12—C13—C14 121.1 (4) N5—C29—H29c 109.5

C13—C14—C15 118.3 (5) H29a—C29—H29c 109.5

C16—C15—C14 121.0 (4) H29b—C29—H29c 109.5

C16—C15—C18 119.7 (5) O6—C30—H30 112.8

C14—C15—C18 119.2 (5) N6—C30—H30 112.8

C17—C16—C15 120.1 (5) N6—C31—H31a 109.5

C16—C17—C12 119.9 (4) N6—C31—H31b 109.5

N3—C18—C15 178.6 (8) H31a—C31—H31b 109.5

O4—C19—O3 121.3 (4) N6—C31—H31c 109.5

O4—C19—C20 119.6 (4) H31a—C31—H31c 109.5

O3—C19—C20 119.1 (4) H31b—C31—H31c 109.5

(10)

supporting information

sup-7 Acta Cryst. (2005). E61, m311–m313

C25—C20—C19 120.6 (4) N6—C32—H32b 109.5

C21—C20—C19 119.2 (4) H32a—C32—H32b 109.5

C22—C21—C20 119.9 (5) N6—C32—H32c 109.5

C21—C22—C23 119.7 (5) H32a—C32—H32c 109.5

C24—C23—C22 120.9 (5) H32b—C32—H32c 109.5

O2i—Co1—O1—C11 22.7 (3) C6—N2—C10—C9 0.8 (7)

N1—Co1—O1—C11 −69.1 (3) Co1iii—N2—C10—C9 175.7 (3)

N2ii—Co1—O1—C11 110.2 (3) C8—C9—C10—N2 −0.4 (7)

O3—Co1—O1—C11 −160.9 (3) Co1i—O2—C11—O1 −52.7 (15)

O4—Co1—O1—C11 −161.1 (3) Co1i—O2—C11—C12 128.1 (12)

O2i—Co1—O3—C19 174.4 (2) Co1—O1—C11—O2 −10.0 (5)

O1—Co1—O3—C19 −2.5 (4) Co1—O1—C11—C12 169.1 (2)

N1—Co1—O3—C19 −93.3 (2) O2—C11—C12—C13 161.1 (4)

N2ii—Co1—O3—C19 86.8 (2) O1—C11—C12—C13 −18.1 (6)

O4—Co1—O3—C19 −2.3 (2) O2—C11—C12—C17 −18.1 (6)

O2i—Co1—O4—C19 −4.6 (4) O1—C11—C12—C17 162.7 (4)

O1—Co1—O4—C19 −177.8 (2) C17—C12—C13—C14 0.1 (7)

N1—Co1—O4—C19 93.7 (2) C11—C12—C13—C14 −179.1 (4)

N2ii—Co1—O4—C19 −87.4 (2) C12—C13—C14—C15 −1.3 (8)

O3—Co1—O4—C19 2.3 (2) C13—C14—C15—C16 1.0 (8)

O2i—Co1—N1—C1 −155.3 (3) C13—C14—C15—C18 −179.8 (5)

O1—Co1—N1—C1 −36.3 (3) C14—C15—C16—C17 0.5 (8)

O3—Co1—N1—C1 113.9 (3) C18—C15—C16—C17 −178.7 (5)

O4—Co1—N1—C1 53.9 (3) C15—C16—C17—C12 −1.7 (8)

O2i—Co1—N1—C5 21.3 (3) C13—C12—C17—C16 1.4 (7)

O1—Co1—N1—C5 140.4 (3) C11—C12—C17—C16 −179.4 (4)

O3—Co1—N1—C5 −69.4 (3) Co1—O4—C19—O3 −4.0 (4)

O4—Co1—N1—C5 −129.5 (3) Co1—O4—C19—C20 175.8 (3)

C5—N1—C1—C2 0.5 (7) Co1—O3—C19—O4 4.0 (4)

Co1—N1—C1—C2 177.3 (3) Co1—O3—C19—C20 −175.7 (3)

N1—C1—C2—C3 −0.7 (7) O4—C19—C20—C25 −9.2 (6)

C1—C2—C3—C4 0.2 (6) O3—C19—C20—C25 170.6 (4)

C1—C2—C3—C8 −179.3 (4) O4—C19—C20—C21 170.6 (4)

C2—C3—C4—C5 0.4 (6) O3—C19—C20—C21 −9.6 (6)

C8—C3—C4—C5 179.8 (4) C25—C20—C21—C22 0.0 (8)

C1—N1—C5—C4 0.2 (6) C19—C20—C21—C22 −179.8 (5)

Co1—N1—C5—C4 −176.6 (3) C20—C21—C22—C23 0.2 (8)

C3—C4—C5—N1 −0.6 (7) C21—C22—C23—C24 −0.4 (9)

C10—N2—C6—C7 −0.3 (8) C21—C22—C23—C26 179.6 (5)

Co1iii—N2—C6—C7 −175.4 (5) C22—C23—C24—C25 0.3 (8)

N2—C6—C7—C8 −1 (1) C26—C23—C24—C25 −179.6 (5)

C6—C7—C8—C9 1.0 (8) C21—C20—C25—C24 −0.1 (7)

C6—C7—C8—C3 −179.3 (5) C19—C20—C25—C24 179.7 (5)

C4—C3—C8—C9 −156.3 (4) C23—C24—C25—C20 −0.1 (8)

C2—C3—C8—C9 23.2 (6) C28—N5—C27—O5 0.3 (18)

C4—C3—C8—C7 24.0 (7) C29—N5—C27—O5 −172 (1)

(11)

supporting information

sup-8 Acta Cryst. (2005). E61, m311–m313

C7—C8—C9—C10 −0.5 (7) C32—N6—C30—O6 −178 (1)

C3—C8—C9—C10 179.7 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y+1, z; (iii) x, y−1, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1w—H1w1···O3 0.88 2.29 3.14 (2) 165

References

Related documents

The coordination of the metal atoms is distorted square-pyramidal, with the bonding O atoms comprising a square basal plane and the coordinating N atom of the N -heterocycle

The four O atoms in the equatorial plane around the Zn atom form a distorted square-planar arrangement, while the distorted octahedral coordination is completed by the N atom of the

One Ni II ion is in a slightly-distorted octahedral coordination environment formed by three O atoms from two adjacent pydc ligands, two N atoms from bpt and pydc ligands, and one

One Fe II atom is in a distorted octahedral N 2 O 4 environment, with two chelating rings from the pyridine- dicarboxylate ligands and two O atoms from the water.. molecules, while

The four O atoms (O1 and O3, and the symmetry-related atoms O1 0 and O3 0 ) in the equatorial plane around the Mn atom form a slightly distorted square-planar arrangement, while

The covalently bonded O atoms occupy trans sites in the basal plane of the square- pyramidal coordination of the Cu atom.. The uncoordinated water molecules connect the chains into

The deprotonated Schiff base spans the meridional sites of the octahedron surrounding the Cd atom through itsO, N and O atoms; the hydroxy O atom of the symmetry-related anion forms

The four water ligands constitute a square plane surrounding the Co atom; the other two coordination sites are occupied by the N atoms of two different pyrazine molecules.. The Co