• No results found

Tri­ethyl­ene­tetraminium(4+) bis­­(sulfate) monohydrate

N/A
N/A
Protected

Academic year: 2020

Share "Tri­ethyl­ene­tetraminium(4+) bis­­(sulfate) monohydrate"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o774

Fuet al. C

6H22N44+2SO42H2O doi:10.1107/S1600536805005477 Acta Cryst.(2005). E61, o774–o775

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Triethylenetetraminium(4+) bis(sulfate)

monohydrate

Yun-Long Fu,aZhi-Wei Xu,a Jia-Lin Renaand Seik Weng Ngb*

a

School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People’s Republic of China, andbDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study

T= 295 K

Mean(C–C) = 0.006 A˚ Disorder in main residue

Rfactor = 0.070

wRfactor = 0.185 Data-to-parameter ratio = 8.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The cation and anion in the title salt, C6H22N44+2SO42H2O, lie on special positions of site symmetry m and the water molecule on a special position of site symmetry 2/m. The cations, anions and water molecules are linked by hydrogen bonds into a three-dimensional network.

Comment

The triethylenetetraammonium cation has been crystal-lographically authenticated in salts of some mineral acids. It forms a dihydrate with sulfuric acid when the parent amine is reacted with sulfuric acid (Ilioudis et al., 2002). The title monohydrate, (I) (Fig. 1), which was obtained indirectly by way of a hydrothermal synthesis, exists as a three-dimensional hydrogen-bonded network structure, owing to extensive hydrogen bonds among the cations, anions and water mol-ecules (Table 1). The cation and anion lie on special positions of site symmetry m and the water molecule on a special position of site symmetry 2/m.

Experimental

Ferric sulfate nonahydrate (0.281 g, 0.5 mmol), triethylenetetraamine (0.29 ml, 2 mmol), water (15 ml) and ethanol (5 ml) were placed in a Teflon-lined stainless steel bomb. The bomb was heated in an auto-clave at 383 K for 4 d. The bomb was then cooled to room temperature to furnish crystals of (I). Iron was not incorporated in the compound isolated.

Crystal data

C6H22N44+2SO42

H2O

Mr= 360.41

Orthorhombic,Pnnm a= 6.3192 (8) A˚

b= 22.253 (3) A˚

c= 5.4903 (7) A˚

V= 772.1 (2) A˚3

Z= 2

Dx= 1.550 Mg m 3

MoKradiation Cell parameters from 861

reflections

= 3.4–23.5 = 0.39 mm1

T= 295 (2) K Block, yellow 0.140.140.13 mm

Data collection

Bruker APEX area-detector diffractometer

’and!scans

3543 measured reflections 946 independent reflections 840 reflections withI> 2(I)

Rint= 0.035 max= 27.5

h=8!3

k=25!28

l=6!6

(2)

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.070

wR(F2) = 0.185

S= 1.14 946 reflections 113 parameters

H-atom parameters constrained

w= 1/[2

(Fo2) + (0.0921P)2

+ 1.2465P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.57 e A˚3 min=0.51 e A˚

[image:2.610.315.565.73.232.2] [image:2.610.44.295.185.339.2]

3

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O1w—H1w1 O3ii

0.85 2.29 2.94 (1) 134

O1w—H1w1 O3iii

0.85 2.12 2.94 (1) 163

O1w—H1w2 O6 0.85 2.05 2.681 (7) 131

O1w—H1w2 O6iv

0.85 2.10 2.681 (7) 125

O1w—H1w1 O6ii

0.85 2.07 2.681 (7) 128

O1w—H1w1 O6iii

0.85 2.05 2.681 (7) 131

N1—H1n1 O2v 0.86 1.98 2.818 (8) 163

N1—H1n1 O5v

0.86 2.12 2.86 (2) 145

N1—H1n2 O1 0.86 2.01 2.83 (2) 159

N1—H1n2 O7iv

0.86 1.88 2.65 (2) 148

N2—H2n O3vi

0.86 1.97 2.75 (2) 150

N2—H2n O4vii

0.86 1.81 2.58 (2) 149

N2—H2n O7vii

0.86 2.38 3.10 (2) 141

N2—H2n O8vi 0.86 2.06 2.86 (3) 156

N2—H2n O8vii

0.86 2.18 2.98 (3) 155

Symmetry codes: (ii)xþ1;yþ1;zþ1; (iii)xþ1;yþ1;z; (iv)x;y;zþ1; (v)xþ1

2;yþ 1 2;zþ

1

2; (vi)xþ1;y;z; (vii)xþ1;y;z1.

The sulfate group lying on the mirror plane is disordered, and the O atoms were refined as eight O atoms of 0.5 site occupancy each. The four S—O distances were restrained to within 0.01 A˚ of each other, as were the O O distances. The ellipsoids were restrained to be nearly isotropic.

The carbon- and nitrogen-bound H atoms were placed in calcu-lated positions (C—H = 0.97 and N—H = 0.86 A˚ ) and were included in the refinement in the riding-model approximation, withUiso(H) = 1.2Ueq(C,N). The water O atom lies on a site of symmetry 2/m; the two disordered H atoms were placed in chemically sensible positions (O—H = 0.85 and H H = 1.39 A˚ ) with half-occupancy, so that one of them was able to form a hydrogen bond. They were not refined; theirUisovalues were constrained to 1.2Ueq(O).

Data collection:SMART(Bruker, 2002); cell refinement:SAINT

(Bruker, 2002); data reduction:SAINT; program(s) used to solve structure:SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEPII (Johnson, 1976); software used to prepare material for publication:SHELXL97.

The authors thank the Natural Scientific Foundation Committee of Shanxi Province (grant No. 20041031) and the University of Malaya for generously supporting this study.

References

Bruker (2002).SAINTandSMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Ilioudis, C. A., Georganopoulos, D. G. & Steed, J. W. (2002).CrystEngComm, 4, 26–36.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Figure 1

A plot of the three components of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The second disorder component (atoms O5, O6, O7 and O8) is shown as dotted ellipsoids and bonds. [Symmetry code (i):3

2x, 1 2+y,z

(3)

supporting information

sup-1

Acta Cryst. (2005). E61, o774–o775

supporting information

Acta Cryst. (2005). E61, o774–o775 [https://doi.org/10.1107/S1600536805005477]

Triethylenetetraminium(4+) bis(sulfate) monohydrate

Yun-Long Fu, Zhi-Wei Xu, Jia-Lin Ren and Seik Weng Ng

Trimethylenetetraaminium(4+) bis(sulfate) monohydrate

Crystal data

C6H22N44+·2SO42−·H2O Mr = 360.41

Orthorhombic, Pnnm

Hall symbol: -P 2 2n

a = 6.3192 (8) Å

b = 22.253 (3) Å

c = 5.4903 (7) Å

V = 772.1 (2) Å3 Z = 2

F(000) = 384

Dx = 1.550 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 861 reflections

θ = 3.4–23.5°

µ = 0.39 mm−1 T = 295 K Block, yellow

0.14 × 0.14 × 0.13 mm

Data collection

Bruker APEX area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

3543 measured reflections 946 independent reflections

840 reflections with I > 2σ(I)

Rint = 0.035

θmax = 27.5°, θmin = 1.8° h = −8→3

k = −25→28

l = −6→6

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.070 wR(F2) = 0.185 S = 1.14 946 reflections 113 parameters 148 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0921P)2 + 1.2465P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.57 e Å−3

Δρmin = −0.51 e Å−3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

S1 0.2004 (2) 0.35894 (4) 0.5000 0.0247 (4)

O1 0.360 (1) 0.3110 (3) 0.483 (4) 0.034 (2) 0.25

O2 −0.0124 (9) 0.3318 (3) 0.472 (4) 0.040 (3) 0.25

O3 0.234 (3) 0.4028 (5) 0.306 (2) 0.039 (4) 0.25

(4)

O5 0.156 (3) 0.3167 (7) 0.301 (2) 0.027 (3) 0.25

O6 0.4171 (9) 0.3820 (3) 0.474 (4) 0.045 (3) 0.25

O7 0.178 (3) 0.3280 (8) 0.735 (2) 0.032 (4) 0.25

O8 0.049 (1) 0.4091 (2) 0.488 (5) 0.036 (2) 0.25

O1W 0.5000 0.5000 0.5000 0.160 (5)

N1 0.5074 (6) 0.29452 (16) 0.0000 0.0324 (9)

N2 0.8959 (6) 0.42124 (15) 0.0000 0.0302 (9)

C1 0.7079 (8) 0.3255 (2) 0.0000 0.044 (1)

C2 0.6924 (7) 0.3914 (2) 0.0000 0.039 (1)

C3 0.8940 (7) 0.48638 (19) 0.0000 0.039 (1)

H1W1 0.5946 0.5260 0.4685 0.192* 0.25

H1W2 0.5269 0.4676 0.4242 0.192* 0.25

H1N1 0.5288 0.2564 0.0000 0.039*

H1N2 0.4369 0.3044 0.1279 0.039*

H2N 0.9650 0.4094 −0.1262 0.036*

H1 0.7874 0.3131 0.1425 0.053*

H2 0.6135 0.4040 0.1427 0.047*

H3 0.8177 0.5002 0.1426 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

S1 0.0245 (6) 0.0217 (6) 0.0278 (6) −0.0004 (4) 0.000 0.000

O1 0.041 (4) 0.033 (3) 0.027 (6) 0.013 (3) 0.004 (7) 0.000 (6)

O2 0.036 (4) 0.040 (4) 0.044 (8) −0.006 (3) −0.020 (6) 0.011 (5)

O3 0.049 (7) 0.033 (7) 0.036 (6) −0.005 (5) 0.002 (5) 0.008 (5)

O4 0.033 (5) 0.035 (6) 0.033 (6) 0.002 (5) −0.004 (5) −0.005 (5)

O5 0.030 (6) 0.020 (6) 0.030 (6) −0.010 (4) 0.005 (5) −0.007 (5)

O6 0.038 (4) 0.046 (4) 0.051 (8) −0.013 (3) 0.017 (6) −0.003 (6)

O7 0.032 (7) 0.034 (7) 0.030 (6) 0.001 (5) 0.007 (5) −0.002 (5)

O8 0.051 (4) 0.026 (3) 0.032 (5) 0.012 (3) −0.009 (8) −0.001 (8)

O1W 0.162 (8) 0.120 (7) 0.198 (9) −0.068 (6) 0.000 0.000

N1 0.029 (2) 0.021 (2) 0.047 (2) 0.002 (2) 0.000 0.000

N2 0.024 (2) 0.022 (2) 0.045 (2) 0.002 (2) 0.000 0.000

C1 0.025 (2) 0.025 (2) 0.081 (4) 0.002 (2) 0.000 0.000

C2 0.024 (2) 0.023 (2) 0.071 (4) 0.000 (2) 0.000 0.000

C3 0.028 (2) 0.020 (2) 0.069 (4) 0.003 (2) 0.000 0.000

Geometric parameters (Å, º)

S1—O1 1.470 (5) C1—C2 1.469 (7)

S1—O2 1.482 (6) C3—C3i 1.470 (9)

S1—O3 1.461 (6) O1W—H1W1 0.85

S1—O4 1.463 (6) O1W—H1W2 0.85

S1—O5 1.471 (6) N1—H1N1 0.86

S1—O6 1.469 (5) N1—H1N2 0.86

S1—O7 1.468 (7) N2—H2N 0.86

(5)

supporting information

sup-3

Acta Cryst. (2005). E61, o774–o775

N1—C1 1.443 (6) C2—H2 0.97

N2—C2 1.448 (6) C3—H3 0.97

N2—C3 1.450 (5)

O1—S1—O2 108.6 (5) N2—C2—C1 113.5 (4)

O1—S1—O3 109.9 (5) N2—C3—C3i 113.9 (5)

O1—S1—O4 109.7 (5) H1W1—O1W—H1W2 109.7

O2—S1—O3 109.2 (5) C1—N1—H1N1 109.5

O2—S1—O4 109.2 (5) C1—N1—H1N2 109.5

O3—S1—O4 110.3 (4) H1N1—N1—H1N2 109.5

O5—S1—O6 109.4 (5) C2—N2—H2N 108.1

O5—S1—O7 109.6 (4) C3—N2—H2N 108.1

O5—S1—O8 109.1 (5) N1—C1—H1 108.6

O6—S1—O7 109.8 (5) C2—C1—H1 108.6

O6—S1—O8 109.8 (5) N2—C2—H2 108.9

O7—S1—O8 109.7 (5) C1—C2—H2 108.9

C2—N2—C3 116.9 (4) N2—C3—H3 108.8

N1—C1—C2 114.7 (4) C3i—C3—H3 108.8

C3—N2—C2—C1 180.0 C2—N2—C3—C3i 180.0

N1—C1—C2—N2 180.0

Symmetry code: (i) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O1W—H1W1···O3ii 0.85 2.29 2.94 (1) 134

O1W—H1W1···O3iii 0.85 2.12 2.94 (1) 163

O1W—H1W2···O6 0.85 2.05 2.681 (7) 131

O1W—H1W2···O6iv 0.85 2.10 2.681 (7) 125

O1W—H1W1···O6ii 0.85 2.07 2.681 (7) 128

O1W—H1W1···O6iii 0.85 2.05 2.681 (7) 131

N1—H1N1···O2v 0.86 1.98 2.818 (8) 163

N1—H1N1···O5v 0.86 2.12 2.86 (2) 145

N1—H1N2···O1 0.86 2.01 2.83 (2) 159

N1—H1N2···O7iv 0.86 1.88 2.65 (2) 148

N2—H2N···O3vi 0.86 1.97 2.75 (2) 150

N2—H2N···O4vii 0.86 1.81 2.58 (2) 149

N2—H2N···O7vii 0.86 2.38 3.10 (2) 141

N2—H2N···O8vi 0.86 2.06 2.86 (3) 156

N2—H2N···O8vii 0.86 2.18 2.98 (3) 155

Figure

Table 1Hydrogen-bond geometry (A˚ , �).

References

Related documents

This section describes how to effectively opti- mize neural network detection models via dy- namic cost-sensitive learning. Specifically, we first propose a marginal utility

To test the performance of DFG, we use a similar recurrent architecture to Memory Fusion Network (MFN). MFN is a recurrent neural model with three main components 1) System of LSTMs:

Samples were analysed for 119 disorders including amino acid disorders, fatty acid disorders, organic acid disorders, carbohydrate disorders, peroxisomal disorders

We wish to express our gratitude to CJK Institute (Japan), Institute for Infocomm Research (Singapore), National University of Singapore (NUS), Artificial Intelligence Laboratory at

Each row reports the coefficients from separate regressions of the effect of the corresponding treatment on natives’ average test scores.Controls for grade-level

In this study, almost half of the sample showed statistically significant relations between electricity consumption and exports income resembling economic growth

In addition, the causality test shows that South Africa, India and China induce Brazil’s economic growth.. The results of this study carry implications for future world

In this paper, we have presented a neural model for POS tagging and language identification on CS data. The neural network is a state-of-the- art bidirectional LSTM with prefix,