• No results found

Benzyl­ammonium 3,5 di­nitro­benzoate

N/A
N/A
Protected

Academic year: 2020

Share "Benzyl­ammonium 3,5 di­nitro­benzoate"

Copied!
6
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2004). E60, o1833±o1834 doi: 10.1107/S1600536804022962 Ohba, Ito and Arimoto C7H10N+C7H3N2O6ÿ

o1833

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Benzylammonium 3,5-dinitrobenzoate

Shigeru Ohba,a* Yoshikatsu Itob

and Satoru Arimotob

aDepartment of Chemistry, Keio University,

Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, andbDepartment of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan

Correspondence e-mail: ohba@flet.keio.ac.jp

Key indicators Single-crystal X-ray study

T= 298 K

Mean(C±C) = 0.004 AÊ

Rfactor = 0.040

wRfactor = 0.106 Data-to-parameter ratio = 9.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title compound, C7H10N+C7H3N2O6ÿ, the ammonium

group of the cation and the carboxylate group of the anion are connected viahydrogen bonds, forming columns along theb axis.

Comment

Crystal structures of some charge-transfer complexes involv-ing dopamine and its analogs as donors have been reported by us (Ohba & Ito, 2002a,b,c). The structure of the title compound, (I), has been determined to study the packing mode of the molecules and the hydrogen-bonding pattern.

The title compound consists of a benzylammonium cation and a dinitrobenzoate anion (Fig. 1). All three ammonium H atoms are involved in hydrogen bonds (Table 2) with the carboxylate O atoms. The ammonium and carboxylate groups are arranged around the 21 screw axis parallel to b, and

connected via NÐH O hydrogen bonds, forming one-dimensional columns (Fig. 2).

Experimental

Benzylamine (934 mg, 8.63 mmol) and some MeOH were added to a hot solution of 3,5-dinitrobenzoic acid (1.867 g, 8.63 mmol) in EtOH (25 ml). The mixture was ®ltered and the ®ltrate was left for 4 d at

Received 9 September 2004 Accepted 15 September 2004 Online 25 September 2004

Figure 1

(2)

room temperature to obtain colourless crystals of (I) (yield 1.80 g, 65%; m.p. 459±464 K).

Crystal data

C7H10N+C7H3N2O6ÿ Mr= 319.27 Monoclinic,P21 a= 11.602 (3) AÊ

b= 6.2657 (12) AÊ

c= 10.898 (2) AÊ = 106.85 (2) V= 758.2 (3) AÊ3 Z= 2

Dx= 1.398 Mg mÿ3 Mo Kradiation Cell parameters from 25

re¯ections = 10.1±12.6

= 0.11 mmÿ1 T= 298 K Plate, colorless 0.60.50.2 mm

Data collection

Rigaku AFC-7Rdiffractometer !±2scans

Absorption correction: by integration (ABSCOR; Higashi, 1999)

Tmin= 0.948,Tmax= 0.978 2172 measured re¯ections 1900 independent re¯ections 1568 re¯ections withI> 2(I)

Rint= 0.014 max= 27.5 h=ÿ5!15

k=ÿ8!3

l=ÿ14!14 3 standard re¯ections

every 150 re¯ections intensity decay: 0.5%

Refinement

Re®nement onF2 R[F2>

(F2)] = 0.040

wR(F2) = 0.106 S= 1.08 1900 re¯ections 208 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0591P)2 + 0.0545P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.003

max= 0.23 e AÊÿ3

min=ÿ0.32 e AÊÿ3

Table 1

Selected torsion angles ().

O1ÐC17ÐC18ÐC19 17.1 (3)

O3ÐN8ÐC20ÐC19 ÿ0.4 (4) O5ÐN9ÐC22ÐC21N7ÐC10ÐC11ÐC12 ÿ10.2 (4)57.8 (4)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

N7ÐH7A O1 0.95 1.83 2.774 (3) 171

N7ÐH7B O2i 0.95 1.81 2.715 (3) 158

N7ÐH7C O1ii 0.95 1.82 2.748 (2) 167

Symmetry codes: (i)x;yÿ1;z; (ii)ÿx;yÿ1 2;ÿz.

Friedel-pair re¯ections were merged before the ®nal re®nement, since anomalous scattering effects were negligible. The ammonium H atoms were located in difference syntheses and their positional parameters were recalculated geometrically (NÐH = 0.95 AÊ). The

other H atoms were positioned geometrically (CÐH = 0.95 AÊ) and re®ned as riding, withUiso(H) = 1.2Ueq(parent).

Data collection: WinAFC Diffractometer Control Software

(Rigaku, 1999); cell re®nement: WinAFC Diffractometer Control Software; data reduction:TEXSAN(Molecular Structure Corpora-tion, 2001); program(s) used to solve structure:SIR92 (Altomareet al., 1994); program(s) used to re®ne structure:SHELXL97 (Shel-drick, 1997); molecular graphics:ORTEPII (Johnson, 1976); software used to prepare material for publication:TEXSAN.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Higashi, T. (1999).ABSCOR.Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Molecular Structure Corporation (2001).TEXSAN.Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381±5209, USA.

Ohba, S. & Ito, Y. (2002a).Acta Cryst.E58, o584±o585. Ohba, S. & Ito, Y. (2002b).Acta Cryst.E58, o586±o587. Ohba, S. & Ito, Y. (2002c).Acta Cryst.E58, o588±o589.

Rigaku (1999).WinAFC Diffractometer Control Software. Rigaku Corpora-tion, Tokyo, Japan.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany.

Figure 2

(3)

supporting information

sup-1 Acta Cryst. (2004). E60, o1833–o1834

supporting information

Acta Cryst. (2004). E60, o1833–o1834 [https://doi.org/10.1107/S1600536804022962]

Benzylammonium 3,5-dinitrobenzoate

Shigeru Ohba, Yoshikatsu Ito and Satoru Arimoto

(I)

Crystal data

C7H10N+·C7H3N2O6−

Mr = 319.27

Monoclinic, P21

a = 11.602 (3) Å

b = 6.2657 (12) Å

c = 10.898 (2) Å

β = 106.85 (2)°

V = 758.2 (3) Å3

Z = 2

F(000) = 332

Dx = 1.398 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 25 reflections

θ = 10.1–12.6°

µ = 0.11 mm−1

T = 298 K

Plate, colorless 0.6 × 0.5 × 0.2 mm

Data collection

Rigaku AFC-7R diffractometer

ω–2θ scans

Absorption correction: integration (ABSCOR; Higashi, 1999)

Tmin = 0.948, Tmax = 0.978

2172 measured reflections 1900 independent reflections

1568 reflections with I > 2σ(I)

Rint = 0.014

θmax = 27.5°

h = −5→15

k = −8→3

l = −14→14

3 standard reflections every 150 reflections intensity decay: 0.5%

Refinement

Refinement on F2

R[F2 > 2σ(F2)] = 0.040

wR(F2) = 0.106

S = 1.08

1900 reflections 208 parameters

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0591P)2 + 0.0545P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.003

Δρmax = 0.23 e Å−3

Δρmin = −0.32 e Å−3

Special details

Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The weighted R-factor (wR), goodness of fit (S) and R

-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for

calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

O1 0.1527 (1) 0.2556 (3) 0.0355 (2) 0.0550 (4)

O2 0.2343 (2) 0.5448 (3) 0.1444 (2) 0.0665 (5)

(4)

O4 0.5980 (2) −0.3573 (5) 0.1726 (3) 0.1063 (10)

O5 0.7031 (2) 0.1570 (7) 0.5143 (2) 0.120 (1)

O6 0.6083 (3) 0.4582 (7) 0.4897 (3) 0.126 (1)

N7 0.0744 (2) −0.1284 (3) 0.1096 (2) 0.0471 (4)

N8 0.5041 (2) −0.2654 (4) 0.1202 (2) 0.0605 (5)

N9 0.6221 (2) 0.2741 (6) 0.4580 (2) 0.0806 (9)

C10 0.0814 (3) −0.1016 (6) 0.2466 (3) 0.0720 (8)

C11 0.0139 (2) 0.0887 (5) 0.2728 (2) 0.0549 (6)

C12 −0.1092 (3) 0.1157 (6) 0.2137 (3) 0.0640 (7)

C13 −0.1694 (3) 0.2900 (7) 0.2430 (3) 0.0741 (9)

C14 −0.1082 (3) 0.4338 (6) 0.3344 (3) 0.0762 (8)

C15 0.0125 (3) 0.4086 (6) 0.3943 (3) 0.0738 (8)

C16 0.0734 (2) 0.2384 (6) 0.3623 (2) 0.0633 (7)

C17 0.2354 (2) 0.3563 (4) 0.1143 (2) 0.0431 (5)

C18 0.3494 (2) 0.2303 (4) 0.1763 (2) 0.0388 (4)

C19 0.3722 (2) 0.0401 (4) 0.1236 (2) 0.0400 (4)

C20 0.4777 (2) −0.0677 (4) 0.1815 (2) 0.0453 (5)

C21 0.5605 (2) 0.0039 (5) 0.2912 (2) 0.0531 (6)

C22 0.5344 (2) 0.1932 (5) 0.3408 (2) 0.0530 (6)

C23 0.4318 (2) 0.3101 (4) 0.2856 (2) 0.0478 (5)

H7A 0.1066 −0.0055 0.0804 0.0566*

H7B 0.1194 −0.2506 0.0998 0.0566*

H7C −0.0073 −0.1462 0.0607 0.0566*

H10A 0.0492 −0.2257 0.2743 0.0864*

H10B 0.1637 −0.0866 0.2943 0.0864*

H12 −0.1519 0.0135 0.1530 0.0768*

H13 −0.2526 0.3106 0.2003 0.0889*

H14 −0.1500 0.5516 0.3561 0.0916*

H15 0.0539 0.5079 0.4577 0.0885*

H16 0.1575 0.2237 0.4022 0.0761*

H19 0.3162 −0.0155 0.0487 0.0480*

H21 0.6321 −0.0735 0.3306 0.0637*

H23 0.4179 0.4423 0.3215 0.0573*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.0370 (7) 0.0494 (10) 0.0687 (10) 0.0036 (7) −0.0006 (6) 0.0131 (9)

O2 0.060 (1) 0.041 (1) 0.092 (1) 0.0161 (9) 0.0127 (9) 0.0005 (10)

O3 0.081 (1) 0.065 (1) 0.088 (1) 0.006 (1) 0.036 (1) −0.021 (1)

O4 0.092 (2) 0.096 (2) 0.126 (2) 0.063 (2) 0.024 (1) −0.003 (2)

O5 0.078 (1) 0.163 (3) 0.082 (1) 0.017 (2) −0.034 (1) −0.009 (2)

O6 0.084 (2) 0.159 (3) 0.110 (2) 0.005 (2) −0.010 (1) −0.075 (2)

N7 0.0338 (8) 0.0356 (9) 0.064 (1) 0.0037 (8) 0.0019 (7) −0.0011 (9)

N8 0.061 (1) 0.051 (1) 0.078 (1) 0.019 (1) 0.034 (1) 0.005 (1)

N9 0.052 (1) 0.121 (3) 0.058 (1) 0.003 (2) −0.0013 (10) −0.019 (2)

C10 0.084 (2) 0.065 (2) 0.061 (1) 0.027 (2) 0.012 (1) 0.017 (1)

(5)

supporting information

sup-3 Acta Cryst. (2004). E60, o1833–o1834

C12 0.059 (1) 0.070 (2) 0.059 (1) 0.005 (1) 0.010 (1) −0.010 (1)

C13 0.060 (1) 0.089 (2) 0.072 (2) 0.016 (2) 0.018 (1) −0.006 (2)

C14 0.090 (2) 0.069 (2) 0.077 (2) 0.013 (2) 0.037 (2) −0.002 (2)

C15 0.087 (2) 0.069 (2) 0.066 (2) −0.013 (2) 0.023 (1) −0.008 (2)

C16 0.058 (1) 0.072 (2) 0.055 (1) −0.006 (1) 0.009 (1) 0.010 (1)

C17 0.0360 (9) 0.037 (1) 0.055 (1) 0.0088 (9) 0.0123 (8) 0.0088 (10)

C18 0.0322 (8) 0.038 (1) 0.0453 (10) 0.0039 (9) 0.0100 (7) 0.0066 (9)

C19 0.0351 (9) 0.040 (1) 0.045 (1) 0.0022 (9) 0.0121 (8) 0.0029 (9)

C20 0.045 (1) 0.044 (1) 0.051 (1) 0.0110 (10) 0.0205 (9) 0.007 (1)

C21 0.039 (1) 0.067 (2) 0.051 (1) 0.017 (1) 0.0103 (9) 0.013 (1)

C22 0.038 (1) 0.073 (2) 0.043 (1) −0.002 (1) 0.0042 (8) −0.001 (1)

C23 0.043 (1) 0.049 (1) 0.051 (1) 0.0007 (10) 0.0128 (9) −0.006 (1)

Geometric parameters (Å, º)

O1—C17 1.256 (3) C12—H12 0.950

O2—C17 1.227 (3) C13—C14 1.377 (5)

O3—N8 1.208 (3) C13—H13 0.950

O4—N8 1.218 (3) C14—C15 1.372 (5)

O5—N9 1.209 (4) C14—H14 0.950

O6—N9 1.228 (6) C15—C16 1.379 (5)

N7—C10 1.481 (4) C15—H15 0.950

N7—H7A 0.950 C16—H16 0.950

N7—H7B 0.950 C17—C18 1.520 (3)

N7—H7C 0.950 C18—C19 1.381 (3)

N8—C20 1.481 (4) C18—C23 1.387 (3)

N9—C22 1.473 (3) C19—C20 1.380 (3)

C10—C11 1.499 (5) C19—H19 0.950

C10—H10A 0.950 C20—C21 1.374 (3)

C10—H10B 0.951 C21—C22 1.373 (4)

C11—C12 1.396 (4) C21—H21 0.950

C11—C16 1.385 (4) C22—C23 1.379 (3)

C12—C13 1.383 (5) C23—H23 0.950

C10—N7—H7A 109.5 C15—C14—H14 119.7

C10—N7—H7B 109.5 C14—C15—C16 119.7 (3)

C10—N7—H7C 109.5 C14—C15—H15 120.1

H7A—N7—H7B 109.5 C16—C15—H15 120.1

H7A—N7—H7C 109.5 C11—C16—C15 120.9 (2)

H7B—N7—H7C 109.5 C11—C16—H16 119.5

O3—N8—O4 124.1 (3) C15—C16—H16 119.5

O3—N8—C20 118.6 (2) O1—C17—O2 127.0 (2)

O4—N8—C20 117.2 (2) O1—C17—C18 115.9 (2)

O5—N9—O6 124.9 (3) O2—C17—C18 117.2 (2)

O5—N9—C22 118.1 (3) C17—C18—C19 120.7 (2)

O6—N9—C22 117.0 (3) C17—C18—C23 119.3 (2)

N7—C10—C11 113.8 (2) C19—C18—C23 120.0 (2)

(6)

N7—C10—H10B 108.4 C18—C19—H19 120.5

C11—C10—H10A 108.4 C20—C19—H19 120.5

C11—C10—H10B 108.4 N8—C20—C19 118.4 (2)

H10A—C10—H10B 109.4 N8—C20—C21 118.8 (2)

C10—C11—C12 122.0 (3) C19—C20—C21 122.8 (2)

C10—C11—C16 119.5 (2) C20—C21—C22 116.5 (2)

C12—C11—C16 118.5 (3) C20—C21—H21 121.7

C11—C12—C13 120.5 (3) C22—C21—H21 121.8

C11—C12—H12 119.8 N9—C22—C21 117.6 (2)

C13—C12—H12 119.8 N9—C22—C23 119.2 (3)

C12—C13—C14 119.6 (3) C21—C22—C23 123.2 (2)

C12—C13—H13 120.2 C18—C23—C22 118.5 (2)

C14—C13—H13 120.2 C18—C23—H23 120.7

C13—C14—C15 120.7 (4) C22—C23—H23 120.8

C13—C14—H14 119.7

O1—C17—C18—C19 17.1 (3) C10—C11—C12—C13 178.0 (3)

O1—C17—C18—C23 −164.1 (2) C10—C11—C16—C15 −176.1 (3)

O2—C17—C18—C19 −161.8 (2) C11—C12—C13—C14 −2.3 (5)

O2—C17—C18—C23 17.1 (4) C11—C16—C15—C14 −1.8 (5)

O3—N8—C20—C19 −0.4 (4) C12—C11—C16—C15 1.1 (5)

O3—N8—C20—C21 −178.5 (3) C12—C13—C14—C15 1.6 (6)

O4—N8—C20—C19 179.6 (3) C13—C12—C11—C16 1.0 (5)

O4—N8—C20—C21 1.5 (4) C13—C14—C15—C16 0.4 (6)

O5—N9—C22—C21 −10.2 (4) C17—C18—C19—C20 178.9 (2)

O5—N9—C22—C23 170.5 (3) C17—C18—C23—C22 179.7 (2)

O6—N9—C22—C21 168.4 (3) C18—C19—C20—C21 1.2 (4)

O6—N9—C22—C23 −10.9 (4) C18—C23—C22—C21 1.6 (4)

N7—C10—C11—C12 57.8 (4) C19—C18—C23—C22 −1.4 (4)

N7—C10—C11—C16 −125.2 (3) C19—C20—C21—C22 −1.0 (4)

N8—C20—C19—C18 −176.8 (2) C20—C19—C18—C23 0.1 (4)

N8—C20—C21—C22 177.0 (2) C20—C21—C22—C23 −0.4 (4)

N9—C22—C21—C20 −179.7 (3) C20—C21—C22—C23 −0.4 (4)

N9—C22—C23—C18 −179.1 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

N7—H7A···O1 0.95 1.83 2.774 (3) 171

N7—H7B···O2i 0.95 1.81 2.715 (3) 158

N7—H7C···O1ii 0.95 1.82 2.748 (2) 167

References

Related documents

In this work, we further extend this line of exploration and propose a novel but simple approach, which utilizes a ranking model based on word or- der precedence in the target

In general, Result 3 provides contradictory evidence to the conventional wisdom that market competition will divert decision rights to individuals who are better able to utilise

companies with low investment opportunities experience a stronger market reaction. FCF : Free cash flow per share. DIVINC : A binary variable taking the value of 1 if on the date

The reduction of the rank of a LCFRS , called binarization, is a process very similar to the reduction of a context-free grammar into Chomsky normal form.. While in the special case

PWYW for several products (cinema tickets, DVD, digital album, flight tickets, hotel, rental car, opera, wine), online survey which varied social distance, product value, external

For elsewhere he states (1978b: 356), “The socialist essential, it must always be remembered, is not the plan; it is the democratic power of the people over the plan and the

number of available beds among all Polish Euro 2012 host cities / regions (figure 6).

In Clark and Curran (2004a) we described a novel approach to integrating the supertagger and parser: start with a very restrictive supertagger set- ting, so that only a small number