• No results found

2 [4 (Benzyl­­oxy)­phenyl] 5 (3,4 di­meth­oxy­phenyl) 3,4 di­methyl­thio­phene

N/A
N/A
Protected

Academic year: 2020

Share "2 [4 (Benzyl­­oxy)­phenyl] 5 (3,4 di­meth­oxy­phenyl) 3,4 di­methyl­thio­phene"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2004). E60, o1977±o1978 doi: 10.1107/S1600536804024936 Ji-Xian Shiet al. C27H26O3S

o1977

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

2-[4-(Benzyloxy)phenyl]-5-(3,4-dimethoxy-phenyl)-3,4-dimethylthiophene

Ji-Xian Shi,a* Xiu-Fang Zheng,a Ke Zhu,bYing-Jie Leiaand Ji-Guang Shic

aCollege of Pharmaceuticals and Biotechnology,

Tianjin University, Tianjin 300072, People's Repulic of China,bSchool of Chemical

Engineering and Technology, Tianjin University, Tianjin 300072, People's Repulic of China, and

cYanxing North China Corporation, Taiyuan

030002, People's Repulic of China

Correspondence e-mail: jxshi@eyou.com

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C±C) = 0.005 AÊ Disorder in main residue

Rfactor = 0.057

wRfactor = 0.178

Data-to-parameter ratio = 13.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The title compound, C27H26O3S, was synthesized by the

cyclization of 1-[4-(benzyloxy)phenyl]-4-(3,4-dimethoxyphen-yl)-2,3-dimethylbutane-1,4-dione with 2,4-bis(4-methoxy-phenyl)-2,4-disulfanylene-1,3,2,4-dithiadiphosphetane. The bond lengths are unexceptional and the C atoms of the benzyloxy group are disordered.

Comment

Diaryl-substituted heterocycles have shown promising biolo-gical activities as selective COX-2 inhibitors (Portevin et al., 2000) and antitumor agents (Szczepankiewiczet al., 2001). In particular, celecoxib (SC-58635), rofecoxib and A-105972 have been marketed for the treatment of in¯ammatory disorders and cancer cells. In view of this potential, we have recently focused our attention on the preparation of diaryl-substituted thiophenes. A new compound, namely 2-[4- (benzyloxy)phenyl]-5-(3,4-dimethoxyphenyl)-3,4-dimethyl-thiophene, (I), has been synthesized by the cyclization of 1-[4- (benzyloxy)phenyl]-4-(3,4-dimethoxyphenyl)-2,3-dimethyl-butane-1,4-dione in the presence of

2,4-bis(4-methoxy-phenyl)-2,4-disulfanylene-1,3,2,4-dithiadiphosphetane. An

X-ray crystal structure determination of (I) was carried out to elucidate the structure, and the results are presented here.

The molecular structure of (I) is illustrated in Fig. 1. The bond lengths are within the normal published ranges (Allenet al., 1987). The C atoms of the benzyloxy group are disordered over two positions. We denote the four rings as follows:A, C1±

C6; B, S1/C7±C10; C, C11±C16; D, C18±C23. The dihedral

angles between these rings are 29.6 (2) (A/B), 21.4 (4) (A/D), 45.0 (2) (B/C) and 87.2 (4) (C/D).

Experimental

The title compound was synthesized as follows: 2,4-bis(4-meth-oxyphenyl)-2,4-disulfanylene-1,3,2,4-dithiadiphosphetane (23 mg, 0.27 mmol) was added to a solution of 1-[4-(benzyloxy)phenyl]-4-(3,4-dimethoxyphenyl)-2,3-dimethylbutane-1,4-dione (200 mg, 0.22 mmol) in anhydrous dioxane (6 ml). The reaction mixture was stirred at 358 K for about 5 h. The solvent was then removed under reduced pressure and the residue was puri®ed by ¯ash

(2)

graphy (ethyl acetate±petroleum ether). A white powder was obtained (yield 85.2%) and single crystals suitable for crystal-lographic analysis were obtained by slow evaporation of an ethyl acetate solution (m.p. 445±447 K).1H NMR (DMSO, p.p.m.):7.47±

6.94 (m, 12H), 5.14 (s, 2H), 3.78 (s, 6H), 2.17 (s, 3H), 2.15 (s, 3H).

Crystal data

C27H26O3S

Mr= 430.55

Monoclinic,P21=c

a= 20.779 (8) AÊ

b= 15.097 (6) AÊ

c= 7.317 (3) AÊ

= 96.624 (7)

V= 2280.0 (16) AÊ3

Z= 4

Dx= 1.254 Mg mÿ3

MoKradiation Cell parameters from 874

re¯ections

= 3.2±24.6 = 0.17 mmÿ1

T= 293 (2) K Block, colorless 0.180.160.12 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer

'and!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin= 0.960,Tmax= 0.980 11 551 measured re¯ections

4011 independent re¯ections 2389 re¯ections withI> 2(I)

Rint= 0.060

max= 25.0

h=ÿ24!20

k=ÿ17!14

l=ÿ8!8

Refinement

Re®nement onF2

R[F2> 2(F2)] = 0.057

wR(F2) = 0.178

S= 1.07 4011 re¯ections 306 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0845P)2

+ 0.7221P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001 max= 0.32 e AÊÿ3 min=ÿ0.35 e AÊÿ3

All H atoms were positioned geometrically and re®ned as riding (CÐH = 0.93±0.97 AÊ). For CH and CH2groups,Uiso(H) values were

set equal to 1.2Ueq(carrier atom), and for the methyl groups they

were set equal to 1.5Ueq(carrier atom). Atoms C17ÐC23 are

disor-dered over two sites with occupancies of 0.61 (2) and 0.39 (2). Data collection:SMART(Bruker, 1997); cell re®nement:SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure:SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXTL.

The authors acknowledge support from the Basic Research Project (#2002CCA01500) of the MOST, and from the National Young Scholar Award of the NSFC (#30125043).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987).J. Chem. Soc. Perkin Trans.2, pp. S1±19.

Bruker (1997).SMART,SAINTandSHELXTL(Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Portevin, B., Tordjman, C., Pastoureau, P., Bonnet, J. & De Nanteuil, G. (2000).

J. Med. Chem.43, 4582±4593.

Sheldrick, G. M. (1996).SADABS.University of GoÈttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of

GoÈttingen, Germany.

Szczepankiewicz, B. G., Liu, G., Jae, H.-S., Tasker, A. S., Gunawardana, I. W., von Geldern, T. W., Gwaltney, S. L. II, Wu-Wong, J. R., Gehrke, L., Chiou, W. J., Credo, R. B., Alder, J. D., Nukkala, M. A., Zielinski, N. A., Jarvis, K.et al.(2001).J. Med. Chem.44, 4416±4430.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2004). E60, o1977–o1978

supporting information

Acta Cryst. (2004). E60, o1977–o1978 [https://doi.org/10.1107/S1600536804024936]

2-[4-(Benzyloxy)phenyl]-5-(3,4-dimethoxyphenyl)-3,4-dimethylthiophene

Ji-Xian Shi, Xiu-Fang Zheng, Ke Zhu, Ying-Jie Lei and Ji-Guang Shi

2-[4-(benzyloxy)phenyl]-5-(3,4-dimethoxyphenyl)-3,4-dimethylthiophene

Crystal data

C27H26O3S Mr = 430.55

Monoclinic, P21/c

Hall symbol: -P 2yn

a = 20.779 (8) Å

b = 15.097 (6) Å

c = 7.317 (3) Å

β = 96.624 (7)°

V = 2280.0 (16) Å3 Z = 4

F(000) = 912

Dx = 1.254 Mg m−3

Melting point: 446 K

Mo radiation, λ = 0.71073 Å Cell parameters from 874 reflections

θ = 3.2–24.6°

µ = 0.17 mm−1 T = 293 K Block, colorless 0.18 × 0.16 × 0.12 mm

Data collection

Bruker SMART 1000 CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

Tmin = 0.960, Tmax = 0.980

11551 measured reflections 4011 independent reflections 2389 reflections with I > 2σ(I)

Rint = 0.060

θmax = 25.0°, θmin = 1.0° h = −24→20

k = −17→14

l = −8→8

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.057 wR(F2) = 0.178 S = 1.07 4011 reflections 306 parameters 95 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0845P)2 + 0.7221P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.32 e Å−3

Δρmin = −0.35 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

S1 0.48897 (4) 0.37031 (7) 0.85450 (11) 0.0355 (3) O1 0.16439 (13) 0.35358 (19) 0.7551 (4) 0.0516 (8) O2 0.19902 (12) 0.4357 (2) 0.4738 (4) 0.0507 (8) O3 0.80926 (13) 0.35336 (19) 1.0689 (4) 0.0493 (8) C1 0.34198 (17) 0.3264 (3) 0.8455 (5) 0.0350 (9)

H1 0.3729 0.3006 0.9312 0.042*

C2 0.27729 (18) 0.3208 (3) 0.8715 (5) 0.0390 (9)

H2 0.2654 0.2925 0.9754 0.047*

C3 0.23014 (18) 0.3567 (3) 0.7451 (5) 0.0375 (9) C4 0.24875 (17) 0.4016 (2) 0.5915 (5) 0.0346 (9) C5 0.31369 (17) 0.4092 (3) 0.5690 (5) 0.0348 (9)

H5 0.3257 0.4411 0.4696 0.042*

C6 0.36192 (16) 0.3699 (2) 0.6932 (4) 0.0301 (8) C7 0.43097 (17) 0.3732 (2) 0.6638 (4) 0.0306 (8) C8 0.46009 (17) 0.3753 (2) 0.5043 (4) 0.0299 (8) C9 0.52933 (17) 0.3750 (2) 0.5361 (4) 0.0293 (8) C10 0.55218 (17) 0.3714 (2) 0.7205 (4) 0.0319 (8) C11 0.61910 (18) 0.3692 (2) 0.8103 (4) 0.0334 (9) C12 0.66617 (18) 0.3124 (3) 0.7501 (5) 0.0378 (9)

H12 0.6549 0.2761 0.6487 0.045*

C13 0.72840 (18) 0.3092 (3) 0.8378 (5) 0.0395 (9)

H13 0.7586 0.2715 0.7942 0.047*

C14 0.74651 (18) 0.3620 (3) 0.9908 (5) 0.0359 (9) C15 0.70089 (17) 0.4184 (3) 1.0542 (5) 0.0357 (9)

H15 0.7122 0.4542 1.1564 0.043*

C16 0.63871 (17) 0.4210 (2) 0.9644 (4) 0.0326 (9)

H16 0.6087 0.4589 1.0085 0.039*

C17 0.8252 (5) 0.4031 (11) 1.2382 (19) 0.044 (6) 0.390 (19)

H17A 0.7970 0.3844 1.3277 0.052* 0.390 (19)

H17B 0.8175 0.4656 1.2138 0.052* 0.390 (19)

C18 0.8942 (4) 0.3899 (7) 1.3167 (16) 0.042 (4) 0.390 (19) C19 0.9435 (4) 0.4423 (6) 1.2620 (19) 0.057 (4) 0.390 (19)

H19A 0.9338 0.4875 1.1770 0.068* 0.390 (19)

C20 1.0074 (4) 0.4270 (6) 1.334 (2) 0.058 (4) 0.390 (19)

H20A 1.0404 0.4621 1.2977 0.070* 0.390 (19)

C21 1.0219 (4) 0.3594 (8) 1.4613 (17) 0.051 (4) 0.390 (19)

H21A 1.0646 0.3492 1.5097 0.061* 0.390 (19)

C22 0.9725 (5) 0.3070 (8) 1.5160 (14) 0.056 0.390 (19)

H22A 0.9822 0.2618 1.6010 0.067* 0.390 (19)

(5)

supporting information

sup-3 Acta Cryst. (2004). E60, o1977–o1978

H23A 0.8756 0.2873 1.4803 0.071* 0.390 (19)

C17′ 0.8317 (4) 0.4127 (8) 1.2157 (15) 0.061 (5) 0.610 (19)

H17C 0.8074 0.4036 1.3196 0.073* 0.610 (19)

H17D 0.8259 0.4737 1.1751 0.073* 0.610 (19)

C18′ 0.9020 (3) 0.3941 (5) 1.2705 (13) 0.050 (3) 0.610 (19) C19′ 0.9475 (3) 0.4441 (5) 1.1911 (16) 0.069 0.610 (19)

H19B 0.9343 0.4827 1.0950 0.083* 0.610 (19)

C20′ 1.0129 (3) 0.4365 (6) 1.2553 (19) 0.096 (4) 0.610 (19)

H20B 1.0434 0.4700 1.2021 0.116* 0.610 (19)

C21′ 1.0327 (3) 0.3788 (7) 1.3989 (18) 0.082 (3) 0.610 (19)

H21B 1.0765 0.3737 1.4418 0.099* 0.610 (19)

C22′ 0.9871 (5) 0.3288 (7) 1.4783 (13) 0.095 (3) 0.610 (19)

H22B 1.0004 0.2902 1.5744 0.113* 0.610 (19)

C23′ 0.9218 (4) 0.3364 (6) 1.4141 (12) 0.084 (3) 0.610 (19)

H23B 0.8913 0.3029 1.4673 0.101* 0.610 (19)

C24 0.1429 (2) 0.3088 (4) 0.9080 (7) 0.0779 (17)

H24A 0.1591 0.3388 1.0196 0.117*

H24B 0.1587 0.2490 0.9119 0.117*

H24C 0.0964 0.3083 0.8957 0.117*

C25 0.2156 (2) 0.4862 (4) 0.3230 (6) 0.0761 (17)

H25A 0.2375 0.4490 0.2433 0.114*

H25B 0.2436 0.5340 0.3674 0.114*

H25C 0.1769 0.5098 0.2560 0.114*

C26 0.42632 (19) 0.3759 (3) 0.3106 (4) 0.0409 (10)

H26A 0.4264 0.4350 0.2620 0.061*

H26B 0.3824 0.3562 0.3112 0.061*

H26C 0.4486 0.3370 0.2353 0.061*

C27 0.57090 (19) 0.3817 (3) 0.3824 (5) 0.0406 (10)

H27A 0.6154 0.3889 0.4326 0.061*

H27B 0.5576 0.4319 0.3067 0.061*

H27C 0.5664 0.3287 0.3095 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

C10 0.032 (2) 0.033 (2) 0.0309 (17) 0.0008 (17) 0.0034 (15) 0.0004 (16) C11 0.038 (2) 0.034 (2) 0.0283 (17) −0.0033 (18) 0.0049 (16) 0.0025 (17) C12 0.039 (2) 0.039 (2) 0.0356 (19) −0.0007 (18) 0.0045 (17) −0.0056 (17) C13 0.037 (2) 0.039 (2) 0.043 (2) 0.0061 (18) 0.0061 (18) −0.0041 (18) C14 0.032 (2) 0.036 (2) 0.0388 (19) 0.0013 (17) 0.0011 (17) 0.0037 (18) C15 0.039 (2) 0.036 (2) 0.0313 (18) −0.0027 (18) 0.0001 (17) −0.0046 (17) C16 0.036 (2) 0.033 (2) 0.0291 (17) 0.0034 (17) 0.0034 (16) −0.0012 (16) C17 0.036 (7) 0.043 (7) 0.049 (7) −0.001 (4) −0.006 (4) −0.008 (4) C18 0.043 (5) 0.047 (6) 0.037 (5) 0.000 (4) 0.005 (4) −0.005 (4) C19 0.056 (5) 0.068 (5) 0.048 (5) −0.004 (4) 0.008 (4) 0.014 (4) C20 0.049 (5) 0.065 (6) 0.060 (6) −0.012 (4) 0.008 (4) 0.008 (4) C21 0.038 (5) 0.062 (6) 0.052 (5) 0.000 (4) 0.003 (4) −0.001 (4)

C22 0.043 0.064 0.060 0.006 0.000 0.030

C23 0.046 0.059 0.071 0.000 0.000 0.033

C17′ 0.050 (6) 0.061 (6) 0.069 (6) 0.001 (4) −0.001 (4) −0.005 (4) C18′ 0.043 (4) 0.056 (4) 0.050 (4) −0.001 (3) −0.003 (3) −0.005 (3)

C19′ 0.063 0.075 0.072 0.000 0.015 0.000

C20′ 0.084 (5) 0.108 (5) 0.099 (5) −0.011 (4) 0.016 (4) 0.004 (4) C21′ 0.067 (5) 0.086 (5) 0.093 (5) 0.003 (4) 0.001 (4) 0.002 (4) C22′ 0.088 (5) 0.099 (5) 0.096 (5) −0.008 (4) 0.006 (4) 0.025 (4) C23′ 0.069 (4) 0.089 (5) 0.093 (5) −0.008 (4) 0.004 (4) 0.017 (4) C24 0.052 (3) 0.104 (5) 0.081 (3) −0.008 (3) 0.023 (3) 0.030 (3) C25 0.061 (3) 0.101 (5) 0.062 (3) 0.004 (3) −0.009 (3) 0.040 (3) C26 0.045 (2) 0.048 (3) 0.0286 (18) −0.001 (2) −0.0006 (17) 0.0009 (18) C27 0.043 (2) 0.050 (3) 0.0307 (18) −0.0008 (19) 0.0096 (17) 0.0014 (18)

Geometric parameters (Å, º)

S1—C10 1.728 (4) C18—C19 1.3900

S1—C7 1.736 (3) C18—C23 1.3900

O1—C3 1.377 (4) C19—C20 1.3900

O1—C24 1.423 (5) C19—H19A 0.9300

O2—C4 1.367 (4) C20—C21 1.3900

O2—C25 1.416 (5) C20—H20A 0.9300

O3—C14 1.368 (4) C21—C22 1.3900

O3—C17′ 1.435 (8) C21—H21A 0.9300

O3—C17 1.453 (9) C22—C23 1.3900

C1—C2 1.382 (5) C22—H22A 0.9300

C1—C6 1.396 (5) C23—H23A 0.9300

C1—H1 0.9300 C17′—C18′ 1.495 (7)

C2—C3 1.378 (5) C17′—H17C 0.9700

C2—H2 0.9300 C17′—H17D 0.9700

C3—C4 1.405 (5) C18′—C19′ 1.3900

C4—C5 1.383 (5) C18′—C23′ 1.3900

C5—C6 1.405 (5) C19′—C20′ 1.3900

C5—H5 0.9300 C19′—H19B 0.9300

C6—C7 1.476 (5) C20′—C21′ 1.3900

(7)

supporting information

sup-5 Acta Cryst. (2004). E60, o1977–o1978

C8—C9 1.431 (5) C21′—C22′ 1.3900

C8—C26 1.507 (4) C21′—H21B 0.9300

C9—C10 1.378 (4) C22′—C23′ 1.3900

C9—C27 1.498 (5) C22′—H22B 0.9300

C10—C11 1.468 (5) C23′—H23B 0.9300

C11—C16 1.394 (5) C24—H24A 0.9600

C11—C12 1.409 (5) C24—H24B 0.9600

C12—C13 1.376 (5) C24—H24C 0.9600

C12—H12 0.9300 C25—H25A 0.9600

C13—C14 1.390 (5) C25—H25B 0.9600

C13—H13 0.9300 C25—H25C 0.9600

C14—C15 1.394 (5) C26—H26A 0.9600

C15—C16 1.381 (5) C26—H26B 0.9600

C15—H15 0.9300 C26—H26C 0.9600

C16—H16 0.9300 C27—H27A 0.9600

C17—C18 1.494 (7) C27—H27B 0.9600

C17—H17A 0.9700 C27—H27C 0.9600

C17—H17B 0.9700

C10—S1—C7 92.66 (16) C18—C19—C20 120.0

C3—O1—C24 117.4 (3) C18—C19—H19A 120.0

C4—O2—C25 117.4 (3) C20—C19—H19A 120.0

C14—O3—C17′ 117.7 (4) C19—C20—C21 120.0

C14—O3—C17 114.8 (5) C19—C20—H20A 120.0

C17′—O3—C17 10.6 (12) C21—C20—H20A 120.0

C2—C1—C6 121.4 (3) C22—C21—C20 120.0

C2—C1—H1 119.3 C22—C21—H21A 120.0

C6—C1—H1 119.3 C20—C21—H21A 120.0

C3—C2—C1 120.8 (3) C23—C22—C21 120.0

C3—C2—H2 119.6 C23—C22—H22A 120.0

C1—C2—H2 119.6 C21—C22—H22A 120.0

O1—C3—C2 125.7 (3) C22—C23—C18 120.0

O1—C3—C4 115.1 (3) C22—C23—H23A 120.0

C2—C3—C4 119.1 (3) C18—C23—H23A 120.0

O2—C4—C5 124.8 (3) O3—C17′—C18′ 107.8 (6)

O2—C4—C3 115.3 (3) O3—C17′—H17C 110.1

C5—C4—C3 119.9 (3) C18′—C17′—H17C 110.1

C4—C5—C6 121.4 (3) O3—C17′—H17D 110.1

C4—C5—H5 119.3 C18′—C17′—H17D 110.1

C6—C5—H5 119.3 H17C—C17′—H17D 108.5

C1—C6—C5 117.4 (3) C19′—C18′—C23′ 120.0

C1—C6—C7 121.0 (3) C19′—C18′—C17′ 118.5 (6) C5—C6—C7 121.6 (3) C23′—C18′—C17′ 121.0 (6)

C8—C7—C6 130.9 (3) C20′—C19′—C18′ 120.0

C8—C7—S1 110.5 (3) C20′—C19′—H19B 120.0

C6—C7—S1 118.6 (2) C18′—C19′—H19B 120.0

C7—C8—C9 113.2 (3) C19′—C20′—C21′ 120.0

(8)

C9—C8—C26 120.2 (3) C21′—C20′—H20B 120.0

C10—C9—C8 112.7 (3) C22′—C21′—C20′ 120.0

C10—C9—C27 125.0 (3) C22′—C21′—H21B 120.0

C8—C9—C27 122.2 (3) C20′—C21′—H21B 120.0

C9—C10—C11 129.8 (3) C21′—C22′—C23′ 120.0

C9—C10—S1 110.9 (3) C21′—C22′—H22B 120.0

C11—C10—S1 119.2 (2) C23′—C22′—H22B 120.0 C16—C11—C12 116.5 (3) C22′—C23′—C18′ 120.0 C16—C11—C10 121.5 (3) C22′—C23′—H23B 120.0 C12—C11—C10 122.0 (3) C18′—C23′—H23B 120.0

C13—C12—C11 121.6 (3) O1—C24—H24A 109.5

C13—C12—H12 119.2 O1—C24—H24B 109.5

C11—C12—H12 119.2 H24A—C24—H24B 109.5

C12—C13—C14 120.5 (4) O1—C24—H24C 109.5

C12—C13—H13 119.7 H24A—C24—H24C 109.5

C14—C13—H13 119.7 H24B—C24—H24C 109.5

O3—C14—C13 116.0 (3) O2—C25—H25A 109.5

O3—C14—C15 124.9 (3) O2—C25—H25B 109.5

C13—C14—C15 119.2 (3) H25A—C25—H25B 109.5

C16—C15—C14 119.6 (3) O2—C25—H25C 109.5

C16—C15—H15 120.2 H25A—C25—H25C 109.5

C14—C15—H15 120.2 H25B—C25—H25C 109.5

C15—C16—C11 122.6 (3) C8—C26—H26A 109.5

C15—C16—H16 118.7 C8—C26—H26B 109.5

C11—C16—H16 118.7 H26A—C26—H26B 109.5

O3—C17—C18 111.9 (8) C8—C26—H26C 109.5

O3—C17—H17A 109.2 H26A—C26—H26C 109.5

C18—C17—H17A 109.2 H26B—C26—H26C 109.5

O3—C17—H17B 109.2 C9—C27—H27A 109.5

C18—C17—H17B 109.2 C9—C27—H27B 109.5

H17A—C17—H17B 107.9 H27A—C27—H27B 109.5

C19—C18—C23 120.0 C9—C27—H27C 109.5

C19—C18—C17 121.4 (7) H27A—C27—H27C 109.5 C23—C18—C17 118.6 (7) H27B—C27—H27C 109.5

(9)

supporting information

sup-7 Acta Cryst. (2004). E60, o1977–o1978

C2—C1—C6—C5 1.2 (5) C12—C11—C16—C15 0.6 (5) C2—C1—C6—C7 −178.2 (3) C10—C11—C16—C15 178.3 (3) C4—C5—C6—C1 −3.1 (5) C14—O3—C17—C18 179.4 (7) C4—C5—C6—C7 176.3 (3) C17′—O3—C17—C18 −72 (4) C1—C6—C7—C8 148.2 (4) O3—C17—C18—C19 86.9 (13) C5—C6—C7—C8 −31.1 (6) O3—C17—C18—C23 −91.6 (13) C1—C6—C7—S1 −29.2 (5) C23—C18—C19—C20 0.0

C5—C6—C7—S1 151.5 (3) C17—C18—C19—C20 −178.4 (10) C10—S1—C7—C8 −0.3 (3) C18—C19—C20—C21 0.0

References

Related documents

In this study, we identified 9 protein markers for predicting time to recurrence using the protein expression data on 222 TCGA pri- marily high-grade serous ovarian cancers

For the purpose of analyzing the impurities in the water samples coming from different roofs, four building within the KCAET campus viz location 1(library -

To overcome the problems and weakness, this project need to do some research and studying to develop better technology. There are list of the objectives to be conduct

The above block diagram shows the SPV fed to Dc/Dc Converter for different dc applications, To analysis the performance of dc-dc converters(Buck, Boost,

22 subjects showing low or undetectable activities of BAT were randomly divided into 2 groups: one was exposed to cold at 17°C for 2 hours every day for 6 weeks (cold group; n

Foxo deletion on osteoblast differentiation in both bone marrow and calvaria cells suggests that the increases in ALP activity and mineralization observed in the bone

Histologically, the lesion is composed of fibrous connective tissue trabeculae (top quarter of image) and adipose connective tissue (bottom three quarters of image); within

• Data shows credit using and rationing of risk averts, risk neutrals and risk lovers respectively. As to risk averts, the credit is mainly used to pay children’s tuition, medical