• No results found

A hexacoordinated aluminium complex with a new type of seven membered chelate ring involving a cyclic phosphate ester

N/A
N/A
Protected

Academic year: 2020

Share "A hexacoordinated aluminium complex with a new type of seven membered chelate ring involving a cyclic phosphate ester"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2004). E60, m1321±m1323 DOI: 10.1107/S1600536804019592 Satish Kumaret al. [Al(C29H30Cl4O5P)3]0.25C6H6

m1321

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

A hexacoordinated aluminium complex with

a new type of seven-membered chelate ring

involving a cyclic phosphate ester

N. Satish Kumar,aJagadese J. Vittalband K. C. Kumara Swamya*

aSchool of Chemistry, University of Hyderabad,

Hyderabad 500 046, India, andbDepartment of

Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543

Correspondence e-mail: kckssc@uohyd.ernet.in

Key indicators

Single-crystal X-ray study

T= 298 K

Mean(C±C) = 0.005 AÊ Disorder in solvent or counterion

Rfactor = 0.046

wRfactor = 0.142

Data-to-parameter ratio = 15.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

The molecular structure of the title compound, tris[2,3,4,5-tetrachloro-6-(4,8-di-tert-butyl-2,10-dimethyl-6-oxo-12H -5,7-dioxa-65-phosphadibenzo[a,d

]cycloocten-6-yloxy)phen-oxido]aluminium benzene 0.25-solvate, [Al(C29H30Cl4O5P)3

]-0.25C6H6, has been determined. The Al atom, with site

symmetry 3, is hexacoordinate and is part of a new type of seven-membered chelate ring, with a catecholate O atom forming a covalent bond and a phosphoryl O atom forming a coordinate covalent bond. As expected, the AlÐO coordinate bond is longer than the AlÐO covalent bond. The phospho-cine ring has a tub conformation, with an intramolecular CÐ H O interaction between one of the ArCH2H atoms and

the phosphoryl O atom.

Comment

Although hexacoordination via chelate rings for Al is not uncommon (Araiet al., 1998; Bottet al., 2001; Di Marcoet al., 1999; Le et al., 1997; Finneganet al., 1986), compounds with seven-membered rings are relatively rare, and so far the only example that has been structurally characterized is LiAl(2,20

-bi-1-naphthoxy)3.(THF)6(THF is tetrahydrofuran; Araiet al.,

1998). Here, we report a new type of Al complex, (II), with seven-membered chelate rings. The chelation occurs through a phosphoryl O atom and a catecholate O atom.

Compound (II) was isolated in the reaction of CH2(6-t

Bu-4-Me-C6H4O)2}P(Cl)(1,2-O2C6Cl4), (I) (Kumaraswamy &

Kumara Swamy, 2002) with lithium aluminium hydride, in an attempt to substitute the PÐCl bond with a PÐH bond. It is most likely formed via the hydrolysis product CH2(6-t

Bu-4-Me-C6H4O)2}P(O)(OC6Cl4-OH) (Kumaraswamy & Kumara

Swamy, 2002).

In the structure of (II) (Fig. 1), the Al atom is bonded to three O atoms of three different tetrachlorocatecholate resi-dues. Three phosphoryl O atoms from three phosphonate residues complete the octahedral geometry at the Al atom.

(2)

The AlÐO bond to the catecholate O atom is shorter than that to the phosphoryl O atom; this is expected, because the latter are pure coordinate bonds. All these AlÐO distances fall within the range 1.862±1.967 AÊ observed in other chelate complexes of Al (Araiet al., 1998; Bottet al., 2001; Di Marcoet al., 1999; Finnegan et al., 1986; Le et al., 1997). The PÐO distances also fall in the normal range (Kumaraswamy & Kumara Swamy, 2002).

The seven-membered ring comprising atoms Al1, O4, C25, O1, C24, P1 and O5 has a `rowing boat' type of conformation, with atoms P1, O4 and C25 on the same side of the plane comprising the rest of the atoms. To our knowledge, this complex represents a new type of chelate system, with the ligand readily generatedviathe hydrolysis of pentacoordinate chloro-phosphorus compounds (Kumara Swamy et al., 1998; Kumaraswamy & Kumara Swamy, 2002).

The eight-membered phosphocine ring has a tub confor-mation. As noted before (Kumara Swamy et al., 2001), this feature may be a result of an intramolecular CÐH O interaction between the phosphoryl atom O5 and one of the ArCH2H atoms. The relevant C7 O5 distance is 3.141 (3) AÊ

and the C7ÐH7B O5 angle is 138.

Experimental

The synthesis of (II) was carried out as follows. To a stirred solution of (I) (1.27 g, 1.965 mmol) in dry THF (20 ml), lithium aluminium hydride (0.074 g, 1.96 mmol) was added slowly in small portions over about 10 min at 273 K, and the reaction mixture was stirred continuously for 24 h. The solvent was removedin vacuo and dry toluene (10 ml; containing traces of benzene) was added. Filtration followed by concentration of the ®ltrate to 4 ml afforded crystals of

(II) [m.p. 543 K (charring)]. Spectroscopic analysis:1H NMR (CDCl 3,

200 MHz,, p.p.m.): 1.00 (s, 18H,tBu-H), 2.28, 2.33 (2s, 6H, Ar-CH

3),

2.60 (d,2J

HH= 15.7 Hz, 1H, CHAHX), 4.35 (d,2JHH= 15.7 Hz, 1H,

CHAHX), 6.30±7.20 (m, 4H, Ar-H); 31P NMR (CDCl3, , p.p.m.):

ÿ14.0 (ca 93%), ÿ14.4 (ca 7%). Analysis, calculated for C88.5H91.5AlCl12O15P3: C 54.78, H 4.72%; found: C 53.95, H 4.56%.

Crystal data

[Al(C29H30Cl4O5P)3]0.25C6H6 Mr= 1940.41

Trigonal,R3 a= 22.4062 (7) AÊ c= 33.854 (2) AÊ V= 14718.8 (12) AÊ3 Z= 6

Dx= 1.313 Mg mÿ3

MoKradiation Cell parameters from 8257

re¯ections = 2.7±20.4 = 0.46 mmÿ1 T= 298 (2) K Block, colourless 0.550.500.50 mm

Data collection

Siemens SMART CCD area-detector diffractometer !scans

Absorption correction: empirical (SADABS; Sheldrick, 1996) Tmin= 0.633,Tmax= 0.831 28 911 measured re¯ections

5770 independent re¯ections 4591 re¯ections withI> 2(I) Rint= 0.031

max= 25.0 h=ÿ26!26 k=ÿ26!26 l=ÿ26!40

Re®nement

Re®nement onF2 R(F) = 0.046 wR(F2) = 0.142 S= 1.07 5770 re¯ections 365 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.09P)2

+ 7.037P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001

max= 0.61 e AÊÿ3

min=ÿ0.30 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

Al1ÐO4 1.8461 (15) Al1ÐO5 1.9448 (15) P1ÐO5 1.4736 (16)

P1ÐO2 1.5494 (16) P1ÐO3 1.5588 (16) P1ÐO1 1.5594 (17)

O4iÐAl1ÐO4 97.09 (7) O4ÐAl1ÐO5i 90.58 (6) O4iÐAl1ÐO5 169.98 (8) O4ÐAl1ÐO5 88.31 (6) O5iÐAl1ÐO5 83.18 (7) O5ÐP1ÐO2 112.42 (9) O5ÐP1ÐO3 113.13 (9)

O2ÐP1ÐO3 100.98 (9) O5ÐP1ÐO1 116.99 (9) O2ÐP1ÐO1 106.01 (9) O3ÐP1ÐO1 105.83 (9) C9ÐO2ÐP1 127.37 (15) C25ÐO4ÐAl1 138.90 (14) P1ÐO5ÐAl1 124.90 (9)

Symmetry code: (i) 1ÿy;xÿy;z.

Table 2

CÐH O interaction geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

C7ÐH7B O5 0.97 2.35 3.141 (3) 138

H atoms were placed geometrically and re®ned using a riding model, with CH2 distances constrained to 0.97 AÊ with Uiso(H) =

1.2Ueq(C), and CH3distances constrained to 0.96 AÊ with Uiso(H) =

1.5Ueq(C). The residual electron density after re®ning the main

molecule was modelled as benzene (since it did not ®t to toluene); the solvent used did show traces of benzene.

Data collection:SMART(Bruker, 2000); cell re®nement:SAINT (Bruker, 2000); data reduction:SAINT; program(s) used to solve structure:SHELXS97 (Sheldrick, 1997); program(s) used to re®ne

metal-organic papers

m1322

Satish Kumaret al. [Al(C29H30Cl4O5P)3]0.25C6H6 Acta Cryst.(2004). E60, m1321±m1323

Figure 1

(3)

structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX-6a (McArdle, 1995); software used to prepare material for publication:SHELXL97.

Funding for this work was provided by the Council of Scienti®c and Industrial Research, New Delhi.

References

Arai, T., Sasai, H., Yamaguchi, K. & Shibasaki, M. (1998).J. Am. Chem. Soc. 120, 441±442.

Bott, S. G., Fahlman, B. D., Pierson, M. L. & Barron, A. R. (2001).J. Chem. Soc. Dalton Trans.pp. 2148±2152.

Bruker (2000). SMART and SAINT. Versions 6.22. Bruker AXS Inc., Madison, Wisconsin, USA.

Di Marco, V. B., Bombi, C. G., Tapparo, A., Powell, A. K. & Anson, C. E. (1999).J. Chem. Soc. Dalton Trans.pp. 2427±2432.

Finnegan, M. M., Rettig, S. J. & Orvig, C. (1986).J. Am. Chem. Soc.108, 5033± 5055.

Kumara Swamy, K. C., Kumaraswamy, S. & Kommana, P. (2001).J. Am. Chem. Soc.123, 12642±12648.

Kumara Swamy, K. C., Said, M. A., Kumaraswamy, S., Herbst-Irmer, R. & PuÈlm, M. (1998).Polyhedron,17, 3643±3648.

Kumaraswamy, S. & Kumara Swamy, K. C. (2002).Polyhedron,21, 1155± 1161.

Le, Q. T. H., Umetani, S. & Matsui, M. (1997).J. Chem. Soc. Dalton Trans.pp. 3835±3840.

McArdle P. (1995).J. Appl. Cryst.28, 65.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Sheldrick, G. M. (1996).SADABS.University of GoÈttingen, Germany.

metal-organic papers

(4)

supporting information

sup-1

Acta Cryst. (2004). E60, m1321–m1323

supporting information

Acta Cryst. (2004). E60, m1321–m1323 [https://doi.org/10.1107/S1600536804019592]

A hexacoordinated aluminium complex with a new type of seven-membered

chelate ring involving a cyclic phosphate ester

N. Satish Kumar, Jagadese J. Vittal and K. C. Kumara Swamy

[tris(2,3,4,5-tetrachloro-6-(4,8-di-tert-butyl-2,10- dimethyl-6-oxo-12H-5,7-dioxa-6λ5

-phosphadibenzo[a,d]cycloocten-6- yloxy)phenoxido]aluminium benzene 0.25-solvate

Crystal data

[Al(C29H30Cl4O5P)3]·0.25C6H6 Mr = 1940.41

Trigonal, R3 Hall symbol: -R 3

a = 22.4062 (7) Å

c = 33.854 (2) Å

V = 14718.8 (12) Å3 Z = 6

F(000) = 6027

Dx = 1.313 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 8257 reflections

θ = 2.7–20.4°

µ = 0.46 mm−1 T = 298 K Cube, colourless 0.55 × 0.50 × 0.50 mm

Data collection

Siemens SMART CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scans

Absorption correction: empirical (using intensity measurements)

(SADABS; Sheldrick, 1996)

Tmin = 0.633, Tmax = 0.831

28911 measured reflections 5770 independent reflections 4591 reflections with I > 2σ(I)

Rint = 0.031

θmax = 25.0°, θmin = 1.6° h = −26→26

k = −26→26

l = −26→40

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.046 wR(F2) = 0.142 S = 1.07 5770 reflections 365 parameters 2 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.09P)2 + 7.037P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.61 e Å−3

(5)

supporting information

sup-2

Acta Cryst. (2004). E60, m1321–m1323

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Al1 0.6667 0.3333 0.02082 (3) 0.0274 (2)

Cl1 0.58283 (4) 0.19848 (5) −0.08099 (2) 0.0735 (3) Cl2 0.47533 (6) 0.19316 (7) −0.14047 (3) 0.1003 (4) Cl3 0.38766 (5) 0.26220 (5) −0.11918 (3) 0.0815 (3) Cl4 0.40678 (4) 0.33054 (4) −0.03574 (2) 0.0599 (2) P1 0.52966 (3) 0.30862 (3) 0.053209 (17) 0.03336 (17) O1 0.48796 (8) 0.22857 (8) 0.05706 (5) 0.0447 (4) O2 0.49675 (8) 0.33638 (9) 0.08292 (5) 0.0407 (4) O3 0.50720 (8) 0.32560 (8) 0.01313 (5) 0.0387 (4) O4 0.58999 (7) 0.26903 (8) −0.00650 (4) 0.0346 (4) O5 0.60504 (7) 0.34225 (8) 0.05772 (4) 0.0333 (4) C1 0.44366 (14) 0.18954 (13) 0.08864 (9) 0.0518 (7) C2 0.37717 (15) 0.13459 (14) 0.07889 (11) 0.0666 (9) C3 0.34052 (18) 0.09436 (18) 0.11106 (14) 0.0844 (12)

H3 0.2968 0.0570 0.1063 0.101*

C4 0.3639 (2) 0.1055 (2) 0.14921 (15) 0.0879 (13) C5 0.42776 (19) 0.16154 (19) 0.15693 (11) 0.0761 (10)

H5 0.4436 0.1711 0.1828 0.091*

C6 0.46924 (15) 0.20426 (15) 0.12658 (10) 0.0574 (8) C7 0.53892 (15) 0.26440 (16) 0.13705 (9) 0.0587 (8)

H7A 0.5571 0.2514 0.1594 0.070*

H7B 0.5699 0.2734 0.1150 0.070*

C8 0.53922 (14) 0.32994 (16) 0.14715 (8) 0.0528 (7) C9 0.52281 (12) 0.36663 (14) 0.12027 (7) 0.0431 (6) C10 0.52512 (14) 0.42884 (14) 0.12798 (8) 0.0493 (6) C11 0.54368 (17) 0.45292 (18) 0.16662 (9) 0.0684 (9)

H11 0.5463 0.4944 0.1735 0.082*

C12 0.55829 (19) 0.4181 (2) 0.19509 (9) 0.0755 (10) C13 0.55689 (17) 0.3578 (2) 0.18522 (9) 0.0703 (9)

H13 0.5680 0.3351 0.2043 0.084*

C14 0.3209 (3) 0.0579 (3) 0.18231 (16) 0.130 (2)

H14A 0.3104 0.0832 0.2012 0.195*

H14B 0.3462 0.0391 0.1950 0.195*

H14C 0.2788 0.0210 0.1717 0.195*

(6)

supporting information

sup-3

Acta Cryst. (2004). E60, m1321–m1323

H15A 0.5477 0.4647 0.2452 0.188*

H15B 0.6245 0.4849 0.2373 0.188*

H15C 0.5728 0.4123 0.2549 0.188*

C16 0.34609 (16) 0.12223 (16) 0.03721 (13) 0.0734 (10) C17 0.33743 (18) 0.18299 (18) 0.02580 (13) 0.0888 (12)

H17A 0.3813 0.2247 0.0272 0.133*

H17B 0.3058 0.1860 0.0437 0.133*

H17C 0.3198 0.1767 −0.0006 0.133*

C18 0.38978 (19) 0.11096 (17) 0.00687 (12) 0.0813 (11)

H18A 0.3701 0.1063 −0.0189 0.122*

H18B 0.3909 0.0698 0.0133 0.122*

H18C 0.4358 0.1497 0.0071 0.122*

C19 0.27360 (18) 0.05800 (19) 0.03606 (16) 0.1098 (16)

H19A 0.2557 0.0512 0.0097 0.165*

H19B 0.2437 0.0644 0.0537 0.165*

H19C 0.2763 0.0183 0.0441 0.165*

C20 0.50849 (15) 0.46843 (14) 0.09732 (8) 0.0520 (7) C21 0.43355 (17) 0.42648 (18) 0.08421 (12) 0.0766 (10)

H21A 0.4243 0.3821 0.0751 0.115*

H21B 0.4253 0.4501 0.0632 0.115*

H21C 0.4039 0.4208 0.1061 0.115*

C22 0.5188 (2) 0.53596 (19) 0.11392 (11) 0.0874 (12)

H22A 0.4874 0.5266 0.1354 0.131*

H22B 0.5103 0.5606 0.0936 0.131*

H22C 0.5653 0.5633 0.1232 0.131*

C23 0.55677 (18) 0.48616 (16) 0.06171 (9) 0.0653 (8)

H23A 0.6038 0.5118 0.0705 0.098*

H23B 0.5480 0.5134 0.0433 0.098*

H23C 0.5488 0.4444 0.0491 0.098*

C24 0.50208 (11) 0.29390 (11) −0.02323 (7) 0.0360 (5) C25 0.54506 (11) 0.26732 (11) −0.03194 (7) 0.0338 (5) C26 0.53388 (13) 0.23530 (13) −0.06877 (8) 0.0448 (6) C27 0.48599 (15) 0.23320 (15) −0.09556 (8) 0.0547 (7) C28 0.44644 (14) 0.26289 (15) −0.08604 (8) 0.0518 (7) C29 0.45466 (12) 0.29305 (13) −0.04938 (8) 0.0430 (6)

C1S 0.6218 (15) 0.3535 (19) 0.3346 (7) 0.215 (8)* 0.50

H1S 0.5898 0.3678 0.3384 0.258* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(7)

supporting information

sup-4

Acta Cryst. (2004). E60, m1321–m1323

O2 0.0390 (9) 0.0464 (10) 0.0425 (9) 0.0258 (8) 0.0085 (7) 0.0047 (7) O3 0.0426 (9) 0.0408 (9) 0.0408 (9) 0.0269 (8) −0.0014 (7) −0.0009 (7) O4 0.0314 (8) 0.0326 (8) 0.0396 (9) 0.0157 (7) −0.0078 (7) −0.0046 (6) O5 0.0325 (8) 0.0358 (8) 0.0329 (8) 0.0180 (7) 0.0045 (6) 0.0004 (6) C1 0.0442 (15) 0.0407 (14) 0.077 (2) 0.0258 (12) 0.0236 (14) 0.0244 (13) C2 0.0419 (15) 0.0378 (15) 0.121 (3) 0.0209 (13) 0.0270 (17) 0.0277 (16) C3 0.0529 (19) 0.057 (2) 0.143 (4) 0.0277 (16) 0.038 (2) 0.045 (2) C4 0.072 (2) 0.073 (2) 0.129 (4) 0.044 (2) 0.056 (2) 0.058 (2) C5 0.081 (2) 0.081 (2) 0.084 (2) 0.054 (2) 0.0389 (19) 0.0428 (19) C6 0.0550 (17) 0.0533 (17) 0.074 (2) 0.0344 (15) 0.0248 (15) 0.0276 (15) C7 0.0621 (18) 0.079 (2) 0.0517 (16) 0.0474 (17) 0.0153 (13) 0.0283 (15) C8 0.0480 (15) 0.0696 (19) 0.0441 (15) 0.0319 (14) 0.0157 (12) 0.0145 (13) C9 0.0393 (13) 0.0555 (16) 0.0359 (13) 0.0247 (12) 0.0120 (10) 0.0058 (11) C10 0.0444 (15) 0.0559 (16) 0.0473 (15) 0.0249 (13) 0.0164 (12) 0.0019 (12) C11 0.068 (2) 0.072 (2) 0.0573 (19) 0.0289 (17) 0.0156 (15) −0.0115 (16) C12 0.073 (2) 0.106 (3) 0.0447 (18) 0.043 (2) 0.0043 (15) −0.0080 (18) C13 0.066 (2) 0.102 (3) 0.0433 (16) 0.042 (2) 0.0081 (14) 0.0127 (17) C14 0.114 (4) 0.117 (4) 0.164 (5) 0.062 (3) 0.089 (3) 0.095 (4) C15 0.150 (5) 0.160 (5) 0.054 (2) 0.069 (4) −0.011 (2) −0.025 (3) C16 0.0413 (16) 0.0452 (17) 0.124 (3) 0.0147 (14) −0.0069 (18) 0.0115 (18) C17 0.0540 (19) 0.057 (2) 0.148 (4) 0.0222 (17) −0.009 (2) 0.021 (2) C18 0.067 (2) 0.0508 (19) 0.108 (3) 0.0157 (17) −0.014 (2) 0.0024 (19) C19 0.052 (2) 0.058 (2) 0.194 (5) 0.0083 (18) 0.000 (3) 0.020 (3) C20 0.0567 (16) 0.0462 (15) 0.0581 (17) 0.0295 (13) 0.0192 (13) 0.0040 (12) C21 0.062 (2) 0.073 (2) 0.106 (3) 0.0417 (18) 0.0079 (19) 0.022 (2) C22 0.131 (3) 0.065 (2) 0.082 (2) 0.061 (2) 0.028 (2) 0.0007 (18) C23 0.080 (2) 0.0604 (18) 0.0627 (18) 0.0409 (17) 0.0254 (16) 0.0145 (15) C24 0.0339 (12) 0.0300 (11) 0.0410 (13) 0.0137 (10) −0.0024 (10) −0.0008 (10) C25 0.0281 (11) 0.0294 (11) 0.0394 (13) 0.0109 (9) −0.0043 (9) −0.0017 (9) C26 0.0409 (13) 0.0455 (14) 0.0508 (15) 0.0238 (12) −0.0096 (11) −0.0103 (11) C27 0.0538 (16) 0.0631 (18) 0.0494 (16) 0.0309 (14) −0.0206 (13) −0.0187 (13) C28 0.0458 (15) 0.0557 (16) 0.0555 (16) 0.0266 (13) −0.0204 (12) −0.0085 (13) C29 0.0344 (13) 0.0391 (13) 0.0565 (15) 0.0191 (11) −0.0055 (11) 0.0012 (11)

Geometric parameters (Å, º)

Al1—O4i 1.8461 (15) C13—H13 0.9300

Al1—O4 1.8461 (15) C14—H14A 0.9600

Al1—O4ii 1.8461 (15) C14—H14B 0.9600

Al1—O5i 1.9448 (15) C14—H14C 0.9600

Al1—O5ii 1.9448 (16) C15—H15A 0.9600

Al1—O5 1.9448 (15) C15—H15B 0.9600

Cl1—C26 1.720 (3) C15—H15C 0.9600

Cl2—C27 1.720 (3) C16—C17 1.518 (5)

Cl3—C28 1.724 (3) C16—C18 1.524 (5)

Cl4—C29 1.724 (2) C16—C19 1.540 (4)

P1—O5 1.4736 (16) C17—H17A 0.9600

(8)

supporting information

sup-5

Acta Cryst. (2004). E60, m1321–m1323

P1—O3 1.5588 (16) C17—H17C 0.9600

P1—O1 1.5594 (17) C18—H18A 0.9600

O1—C1 1.423 (3) C18—H18B 0.9600

O2—C9 1.415 (3) C18—H18C 0.9600

O3—C24 1.397 (3) C19—H19A 0.9600

O4—C25 1.311 (3) C19—H19B 0.9600

C1—C6 1.377 (4) C19—H19C 0.9600

C1—C2 1.418 (4) C20—C22 1.519 (4)

C2—C3 1.390 (5) C20—C21 1.524 (4)

C2—C16 1.536 (5) C20—C23 1.533 (4)

C3—C4 1.369 (6) C21—H21A 0.9600

C3—H3 0.9300 C21—H21B 0.9600

C4—C5 1.377 (6) C21—H21C 0.9600

C4—C14 1.515 (5) C22—H22A 0.9600

C5—C6 1.395 (4) C22—H22B 0.9600

C5—H5 0.9300 C22—H22C 0.9600

C6—C7 1.509 (4) C23—H23A 0.9600

C7—C8 1.504 (4) C23—H23B 0.9600

C7—H7A 0.9700 C23—H23C 0.9600

C7—H7B 0.9700 C24—C29 1.376 (3)

C8—C9 1.393 (4) C24—C25 1.394 (3)

C8—C13 1.400 (4) C25—C26 1.397 (3)

C9—C10 1.393 (4) C26—C27 1.388 (4)

C10—C11 1.397 (4) C27—C28 1.386 (4)

C10—C20 1.528 (4) C28—C29 1.381 (4)

C11—C12 1.378 (5) C1S—C1Siii 1.294 (4)

C11—H11 0.9300 C1S—C1Siv 1.294 (4)

C12—C13 1.376 (5) C1S—H1S 0.9300

C12—C15 1.537 (5)

O4i—Al1—O4 97.09 (7) C12—C15—H15B 109.5

O4i—Al1—O4ii 97.09 (7) H15A—C15—H15B 109.5

O4—Al1—O4ii 97.09 (7) C12—C15—H15C 109.5

O4i—Al1—O5i 88.31 (6) H15A—C15—H15C 109.5

O4—Al1—O5i 90.58 (6) H15B—C15—H15C 109.5

O4ii—Al1—O5i 169.98 (8) C17—C16—C18 111.0 (3)

O4i—Al1—O5ii 90.58 (6) C17—C16—C2 108.8 (3)

O4—Al1—O5ii 169.98 (8) C18—C16—C2 112.2 (3)

O4ii—Al1—O5ii 88.31 (6) C17—C16—C19 106.5 (3)

O5i—Al1—O5ii 83.18 (7) C18—C16—C19 107.0 (3)

O4i—Al1—O5 169.98 (8) C2—C16—C19 111.3 (3)

O4—Al1—O5 88.31 (6) C16—C17—H17A 109.5

O4ii—Al1—O5 90.58 (6) C16—C17—H17B 109.5

O5i—Al1—O5 83.18 (7) H17A—C17—H17B 109.5

O5ii—Al1—O5 83.18 (7) C16—C17—H17C 109.5

O5—P1—O2 112.42 (9) H17A—C17—H17C 109.5

O5—P1—O3 113.13 (9) H17B—C17—H17C 109.5

(9)

supporting information

sup-6

Acta Cryst. (2004). E60, m1321–m1323

O5—P1—O1 116.99 (9) C16—C18—H18B 109.5

O2—P1—O1 106.01 (9) H18A—C18—H18B 109.5

O3—P1—O1 105.83 (9) C16—C18—H18C 109.5

C1—O1—P1 127.04 (17) H18A—C18—H18C 109.5

C9—O2—P1 127.37 (15) H18B—C18—H18C 109.5

C24—O3—P1 126.68 (14) C16—C19—H19A 109.5

C25—O4—Al1 138.90 (14) C16—C19—H19B 109.5

P1—O5—Al1 124.90 (9) H19A—C19—H19B 109.5

C6—C1—C2 123.8 (3) C16—C19—H19C 109.5

C6—C1—O1 118.3 (2) H19A—C19—H19C 109.5

C2—C1—O1 117.8 (3) H19B—C19—H19C 109.5

C3—C2—C1 113.9 (4) C22—C20—C21 107.1 (3)

C3—C2—C16 122.3 (3) C22—C20—C10 111.5 (3)

C1—C2—C16 123.7 (3) C21—C20—C10 110.7 (2)

C4—C3—C2 124.9 (4) C22—C20—C23 107.2 (3)

C4—C3—H3 117.5 C21—C20—C23 110.4 (3)

C2—C3—H3 117.5 C10—C20—C23 109.8 (2)

C3—C4—C5 118.3 (3) C20—C21—H21A 109.5

C3—C4—C14 121.3 (4) C20—C21—H21B 109.5

C5—C4—C14 120.4 (5) H21A—C21—H21B 109.5

C4—C5—C6 121.2 (4) C20—C21—H21C 109.5

C4—C5—H5 119.4 H21A—C21—H21C 109.5

C6—C5—H5 119.4 H21B—C21—H21C 109.5

C1—C6—C5 117.9 (3) C20—C22—H22A 109.5

C1—C6—C7 123.6 (2) C20—C22—H22B 109.5

C5—C6—C7 118.5 (3) H22A—C22—H22B 109.5

C8—C7—C6 115.0 (2) C20—C22—H22C 109.5

C8—C7—H7A 108.5 H22A—C22—H22C 109.5

C6—C7—H7A 108.5 H22B—C22—H22C 109.5

C8—C7—H7B 108.5 C20—C23—H23A 109.5

C6—C7—H7B 108.5 C20—C23—H23B 109.5

H7A—C7—H7B 107.5 H23A—C23—H23B 109.5

C9—C8—C13 115.9 (3) C20—C23—H23C 109.5

C9—C8—C7 123.6 (3) H23A—C23—H23C 109.5

C13—C8—C7 120.5 (3) H23B—C23—H23C 109.5

C10—C9—C8 125.4 (3) C29—C24—C25 123.5 (2)

C10—C9—O2 116.5 (2) C29—C24—O3 116.1 (2)

C8—C9—O2 117.9 (2) C25—C24—O3 120.33 (19)

C9—C10—C11 114.6 (3) O4—C25—C24 122.2 (2)

C9—C10—C20 123.8 (2) O4—C25—C26 122.6 (2)

C11—C10—C20 121.6 (3) C24—C25—C26 115.0 (2)

C12—C11—C10 123.0 (3) C27—C26—C25 122.5 (2)

C12—C11—H11 118.5 C27—C26—Cl1 119.6 (2)

C10—C11—H11 118.5 C25—C26—Cl1 117.87 (18)

C13—C12—C11 119.4 (3) C28—C27—C26 120.1 (2)

C13—C12—C15 120.8 (4) C28—C27—Cl2 120.0 (2)

C11—C12—C15 119.8 (4) C26—C27—Cl2 119.9 (2)

(10)

supporting information

sup-7

Acta Cryst. (2004). E60, m1321–m1323

C12—C13—H13 119.2 C29—C28—Cl3 120.2 (2)

C8—C13—H13 119.2 C27—C28—Cl3 120.9 (2)

C4—C14—H14A 109.5 C24—C29—C28 119.9 (2)

C4—C14—H14B 109.5 C24—C29—Cl4 119.0 (2)

H14A—C14—H14B 109.5 C28—C29—Cl4 121.06 (19)

C4—C14—H14C 109.5 C1Siii—C1S—C1Siv 119.5 (5)

H14A—C14—H14C 109.5 C1Siii—C1S—H1S 120.2

H14B—C14—H14C 109.5 C1Siv—C1S—H1S 120.2

C12—C15—H15A 109.5

Symmetry codes: (i) −y+1, xy, z; (ii) −x+y+1, −x+1, z; (iii) y+1/3, −x+y+2/3, −z+2/3; (iv) xy+1/3, x−1/3, −z+2/3.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

References

Related documents

The case of r*/R=0 corresponds to the previous study on hemispherical shells. Below are the few important characteristics of the shell response. Since the shell parameter

To determine whether the gentamicin-induced type VII col- lagen could create new AFs at the DEJ, we carried out IEM using a monoclonal antibody to type VII collagen. As shown in

In this work, we present a study to show how learning distributed representations of the logical forms from data annotated in different languages can be used for improving

Research results revealed, that older worker facing working conditions with fewer opportunities for career and advancement, e.g., they are facing restricted skills

First note that going from the risk-aversion monopoly case (Vitale 1995) to the risk- aversion duopoly case (Holden and Subrahmanyam(1994)), Table 1 shows that the market

This alternate formulation of special relativity is called de Sitter Relativity (Wikipedia 2017). ii) The universe is isotropic, i.e., all the spatial directions

This paper describe the design and development of Stanford CoreNLP, a Java (or at least JVM-based) annotation pipeline framework, which provides most of the common core natural

The task structure and the user's meta-plans correspond to the intentional structure described by Grosz and Sidner (1985). Note that the segmentation of the task