• No results found

(2SR,3RS,1′SR,2′SR,3′RS) 2 (2′,3′ Di­hydro 1′ hy­droxy 3′ phenyl 1H inden 2′ yl) 2,3 di­hydro 3 phenyl­inden 1 one: isomer (II)

N/A
N/A
Protected

Academic year: 2020

Share "(2SR,3RS,1′SR,2′SR,3′RS) 2 (2′,3′ Di­hydro 1′ hy­droxy 3′ phenyl 1H inden 2′ yl) 2,3 di­hydro 3 phenyl­inden 1 one: isomer (II)"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2004). E60, o1795±o1796 DOI: 10.1107/S1600536804022445 Ohbaet al. C30H24O2

o1795

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(2

SR

,3

RS

,1

000

SR

,2

000

SR

,3

000

RS

)-2-(2

000

,3

000

-Dihydro-1

000

-hydroxy-3

000

-phenyl-1

H

-inden-2

000

-yl)-2,3-dihydro-3-phenylinden-1-one: isomer (II)

Shigeru Ohba,a* Yohei

Yamamotoband Koichi Tanakab³

aDepartment of Chemistry, Keio University,

Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, andbDepartment of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan

³ Present address: Department of Applied Chemistry, Faculty of Engineering, Kansai University, Suita, Osaka 564-8680, Japan.

Correspondence e-mail: ohba@flet.keio.ac.jp

Key indicators Single-crystal X-ray study

T= 300 K

Mean(C±C) = 0.006 AÊ

Rfactor = 0.057

wRfactor = 0.170

Data-to-parameter ratio = 17.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2004 International Union of Crystallography Printed in Great Britain ± all rights reserved

Isomer (II) of the title compound, C30H24O2, has been obtained as pale-orange needle-shaped crystals. The dihydro-biindene skeleton is approximately planar, and there are two phenyl substituents on different sides of the skeleton plane. There is an intramolecular OÐH O hydrogen bond.

Comment

In a series of studies of the crystal photochromism of biindenylidene compounds (Tanaka et al., 2003; Ohbaet al., 2003), two geometrical isomers, (I) and (II), were obtained as a mixture by the reaction shown in the scheme. They were separated as yellow plate-like crystals of (I) and pale-orange needles of (II). X-ray structure analyses have been carried out to determine the geometrical structures of these compounds. The structure of (II) is reported in this paper, and that of (I) is reported in the preceding paper (Ohbaet al., 2004).

The major difference between isomers (I) and (II) is the relative con®guration at atom C13. The arrangement of the Ph group bonded to atom C14 and the H atom bonded to atom C13 istransfor (II) (Fig. 1). The dihydrobiindene skeleton is approximately planar, the dihedral angle between the C6±C11 and C15±C20 rings being 14.0 (1). The ®ve-membered rings are each in an envelope form, with atom C4 displaced from the C3/C7/C6/C5 plane by 0.352 (6) AÊ in the C4ÐH4 direction and atom C13 shifted from the C12/C16/C15/C14 plane by 0.326 (6) AÊ in the C13ÐH13 direction, where atoms H4 and

Received 6 September 2004 Accepted 9 September 2004 Online 18 September 2004

Figure 1

(2)

H13 are intranspositions. As a result, hydroxy atom O1 and keto atom O2 are on the same side of the central C4ÐC13 bond in (II), forming an intramolecular OÐH O hydrogen bond (Table 2).

The space group isP21/n, with Z= 4 for both (I) and (II). The cell volume of (II), 2216.7 (13) AÊ3, is slightly smaller than that of (I), 2222.6 (10) AÊ3, indicating that the packing ef®-ciency is higher for molecules similar to (II), having the two phenyl substituents on different sides of the biindenyl skeleton plane. A similar difference in the cell volume was observed between the meso and racemic isomers of the bis(3,5-di-methylphenyl)biindenylidene derivative (Ohbaet al., 2003).

Experimental

Reduction of rac-(E)-2,3-dihydro-2-[20,30-dihydro-10-oxo-30

-phenyl-1H-inden-20-ylidene]-3-phenylinden-1-one (1.5 g, 3.6 mmol) with

LiAlH4 (0.13 g, 3.6 mmol) in dry tetrahydrofuran (60 ml) at room

temperature for 10 min gave a mixture of (I) (0.24 g) and (II) (0.67 g) in 16 and 44% yields, respectively. Pale-orange crystals of (II) were grown from a methanol solution (m.p. 484±486 K).

Crystal data C30H24O2

Mr= 416.52

Monoclinic,P21=n

a= 14.883 (4) AÊ

b= 11.290 (5) AÊ

c= 13.418 (4) AÊ

= 100.52 (2)

V= 2216.7 (13) AÊ3

Z= 4

Dx= 1.248 Mg mÿ3

MoKradiation Cell parameters from 25

re¯ections

= 10.3±13.6

= 0.08 mmÿ1

T= 300 K

Block cut from a needle, pale orange

0.450.250.10 mm

Data collection

Rigaku AFC-7Rdiffractometer

!±2scans

Absorption correction: by integra-tion (Coppenset al., 1965)

Tmin= 0.982,Tmax= 0.993

5794 measured re¯ections 5088 independent re¯ections 1507 re¯ections withI> 2(I)

Rint= 0.027

max= 27.5

h=ÿ7!19

k= 0!14

l=ÿ17!17 3 standard re¯ections

every 150 re¯ections intensity decay: 0.3% Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.057

wR(F2) = 0.170

S= 0.92 5088 re¯ections 290 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0548P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.23 e AÊÿ3 min=ÿ0.22 e AÊÿ3

Table 1

Selected geometric parameters (AÊ,).

O1ÐC3 1.361 (5) O2ÐC12 1.219 (6)

C3ÐC4ÐC5ÐC21 103.0 (3) C3ÐC4ÐC13ÐC12 40.5 (4) C3ÐC4ÐC13ÐC14 167.3 (3)

C5ÐC4ÐC13ÐC12 165.9 (3) C5ÐC4ÐC13ÐC14 ÿ67.3 (4) C12ÐC13ÐC14ÐC27 102.2 (3)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

O1ÐH1 O2 0.82 2.19 2.841 (4) 136

The hydroxy H atom was located in a difference synthesis and allowed to ride on the O atom, with OÐH = 0.82 AÊ andUiso(H) =

Ueq(O). The other H atoms were positioned geometrically, with CÐH

set equal to 0.95 AÊ, and ®xed withUiso(H) = 1.2Ueq(parent atom).

The positions of the H atoms were recalculated after each set of cycles of re®nement, except for the last.

Data collection: WinAFC Diffractometer Control Software

(Rigaku, 1999); cell re®nement: WinAFC Diffractometer Control Software; data reduction:TEXSAN(Molecular Structure Corpora-tion, 2001); program(s) used to solve structure:SIR92 (Altomareet al., 1994); program(s) used to re®ne structure:SHELXL97 (Shel-drick, 1997); molecular graphics:ORTEPII (Johnson, 1976); software used to prepare material for publication:TEXSAN.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994).J. Appl. Cryst.27, 435.

Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965).Acta Cryst.18, 1035± 1038.

Johnson, C. K. (1976).ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Molecular Structure Corporation (2001).TEXSAN.Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Ohba, S., Yamamoto, Y. & Tanaka, K. (2003).Acta Cryst.C59, o370±o372. Ohba, S., Yamamoto, Y. & Tanaka, K. (2004).Acta Cryst.E60, o1793±o1794. Rigaku (1999).WinAFC Diffractometer Control Software. Rigaku

Corpora-tion, Tokyo, Japan.

Sheldrick, G. M. (1997).SHELXL97. University of GoÈttingen, Germany. Tanaka, K., Yamamoto, Y. & Ohba, S. (2003).Chem. Commun.pp. 1866±

1867.

Figure 2

The crystal structure of (II) projected along thebaxis. H atoms have been

(3)

supporting information

sup-1 Acta Cryst. (2004). E60, o1795–o1796

supporting information

Acta Cryst. (2004). E60, o1795–o1796 [https://doi.org/10.1107/S1600536804022445]

(2

SR

,3

RS

,1

SR

,2

SR

,3

RS

)-2-(2

,3

-Dihydro-1

-hydroxy-3

-phenyl-1

H

-inden-2

-yl)-2,3-dihydro-3-phenylinden-1-one: isomer (II)

Shigeru Ohba, Yohei Yamamoto and Koichi Tanaka

(II)

Crystal data

C30H24O2

Mr = 416.52 Monoclinic, P21/n

a = 14.883 (4) Å

b = 11.290 (5) Å

c = 13.418 (4) Å

β = 100.52 (2)°

V = 2216.7 (13) Å3

Z = 4

F(000) = 880

Dx = 1.248 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 25 reflections

θ = 10.3–13.6°

µ = 0.08 mm−1

T = 300 K

Needle, pale orange 0.45 × 0.25 × 0.10 mm

Data collection

Rigaku AFC7R diffractometer

ω–2θ scans

Absorption correction: integration (Coppens et al., 1965)

Tmin = 0.982, Tmax = 0.993 5794 measured reflections 5088 independent reflections

1507 reflections with I > 2σ(I)

Rint = 0.027

θmax = 27.5°

h = −7→19

k = 0→14

l = −17→17

3 standard reflections every 150 reflections intensity decay: 0.3%

Refinement

Refinement on F2

R[F2 > 2σ(F2)] = 0.057

wR(F2) = 0.170

S = 0.92 5088 reflections 290 parameters

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0548P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001

Δρmax = 0.23 e Å−3 Δρmin = −0.22 e Å−3

Special details

Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The weighted R-factor (wR), goodness of fit (S) and R -factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

(4)

O2 −0.0419 (2) 0.1248 (3) 0.9664 (2) 0.100 (1)

C3 −0.0662 (2) 0.0415 (3) 0.7545 (3) 0.054 (1)

C4 −0.0090 (2) 0.1537 (3) 0.7451 (2) 0.0461 (9)

C5 −0.0396 (2) 0.1965 (3) 0.6335 (2) 0.0448 (9)

C6 −0.0816 (2) 0.0872 (3) 0.5801 (3) 0.0464 (9)

C7 −0.0948 (2) −0.0007 (3) 0.6472 (3) 0.0487 (9)

C8 −0.1306 (3) −0.1095 (4) 0.6150 (3) 0.063 (1)

C9 −0.1549 (3) −0.1295 (4) 0.5116 (3) 0.070 (1)

C10 −0.1440 (3) −0.0419 (4) 0.4439 (3) 0.066 (1)

C11 −0.1066 (3) 0.0663 (4) 0.4767 (3) 0.057 (1)

C12 0.0009 (3) 0.2058 (4) 0.9370 (3) 0.059 (1)

C13 −0.0066 (2) 0.2466 (3) 0.8275 (2) 0.0446 (9)

C14 0.0666 (2) 0.3463 (3) 0.8318 (2) 0.0487 (9)

C15 0.0832 (2) 0.3821 (3) 0.9424 (3) 0.0486 (9)

C16 0.0482 (2) 0.3013 (3) 1.0009 (3) 0.0472 (9)

C17 0.0578 (3) 0.3146 (4) 1.1055 (3) 0.060 (1)

C18 0.1044 (3) 0.4121 (4) 1.1494 (3) 0.070 (1)

C19 0.1408 (3) 0.4929 (4) 1.0903 (4) 0.070 (1)

C20 0.1306 (3) 0.4792 (3) 0.9865 (3) 0.060 (1)

C21 −0.1040 (2) 0.3021 (3) 0.6181 (2) 0.0443 (9)

C22 −0.0767 (3) 0.4085 (4) 0.5837 (3) 0.055 (1)

C23 −0.1347 (3) 0.5053 (4) 0.5675 (3) 0.069 (1)

C24 −0.2224 (3) 0.4965 (4) 0.5859 (3) 0.066 (1)

C25 −0.2509 (3) 0.3919 (4) 0.6208 (3) 0.063 (1)

C26 −0.1931 (3) 0.2954 (3) 0.6362 (3) 0.0538 (10)

C27 0.1553 (2) 0.3116 (3) 0.7979 (3) 0.0451 (9)

C28 0.2099 (3) 0.2226 (3) 0.8467 (3) 0.055 (1)

C29 0.2913 (3) 0.1951 (4) 0.8176 (4) 0.072 (1)

C30 0.3209 (3) 0.2566 (6) 0.7416 (4) 0.088 (2)

C31 0.2679 (4) 0.3441 (5) 0.6932 (3) 0.088 (2)

C32 0.1852 (3) 0.3719 (4) 0.7209 (3) 0.066 (1)

H1 −0.0296 −0.0325 0.8745 0.0922*

H3 −0.1196 0.0647 0.7789 0.0645*

H4 0.0522 0.1271 0.7500 0.0553*

H5 0.0135 0.2160 0.6070 0.0538*

H8 −0.1383 −0.1694 0.6624 0.0758*

H9 −0.1793 −0.2041 0.4875 0.0837*

H10 −0.1625 −0.0559 0.3733 0.0787*

H11 −0.0980 0.1257 0.4291 0.0687*

H13 −0.0638 0.2861 0.8117 0.0536*

H14 0.0402 0.4113 0.7920 0.0584*

H17 0.0329 0.2581 1.1453 0.0714*

H18 0.1116 0.4240 1.2205 0.0834*

H19 0.1735 0.5593 1.1217 0.0844*

H20 0.1557 0.5353 0.9465 0.0720*

H22 −0.0163 0.4159 0.5707 0.0662*

H23 −0.1139 0.5777 0.5437 0.0833*

(5)

supporting information

sup-3 Acta Cryst. (2004). E60, o1795–o1796

H25 −0.3110 0.3856 0.6347 0.0755*

H26 −0.2145 0.2231 0.6594 0.0645*

H28 0.1912 0.1802 0.9006 0.0663*

H29 0.3276 0.1325 0.8506 0.0860*

H30 0.3779 0.2380 0.7231 0.1061*

H31 0.2876 0.3867 0.6400 0.1057*

H32 0.1486 0.4334 0.6862 0.0795*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

O1 0.144 (3) 0.069 (2) 0.054 (2) −0.023 (2) −0.006 (2) 0.010 (2)

O2 0.154 (3) 0.096 (2) 0.045 (2) −0.054 (2) 0.009 (2) 0.005 (2)

C3 0.059 (3) 0.049 (2) 0.049 (2) 0.002 (2) −0.003 (2) 0.001 (2)

C4 0.047 (2) 0.050 (2) 0.040 (2) −0.003 (2) 0.001 (2) −0.002 (2)

C5 0.046 (2) 0.050 (2) 0.039 (2) 0.005 (2) 0.008 (2) 0.002 (2)

C6 0.043 (2) 0.055 (3) 0.039 (2) 0.010 (2) 0.003 (2) −0.009 (2)

C7 0.045 (2) 0.049 (2) 0.049 (2) 0.003 (2) 0.003 (2) −0.009 (2)

C8 0.064 (3) 0.052 (3) 0.070 (3) −0.001 (2) 0.003 (2) −0.011 (2)

C9 0.063 (3) 0.066 (3) 0.073 (3) 0.012 (2) −0.008 (2) −0.028 (3)

C10 0.057 (3) 0.078 (3) 0.053 (3) 0.023 (3) −0.012 (2) −0.026 (3)

C11 0.056 (3) 0.067 (3) 0.047 (2) 0.022 (2) 0.003 (2) −0.007 (2)

C12 0.066 (3) 0.065 (3) 0.047 (2) −0.014 (2) 0.015 (2) −0.002 (2)

C13 0.044 (2) 0.050 (2) 0.038 (2) 0.000 (2) 0.004 (2) −0.002 (2)

C14 0.053 (2) 0.045 (2) 0.045 (2) 0.002 (2) 0.002 (2) 0.002 (2)

C15 0.047 (2) 0.044 (2) 0.052 (2) 0.006 (2) 0.003 (2) −0.007 (2)

C16 0.049 (2) 0.048 (2) 0.042 (2) 0.004 (2) 0.001 (2) −0.007 (2)

C17 0.064 (3) 0.066 (3) 0.046 (2) 0.014 (2) 0.003 (2) −0.008 (2)

C18 0.067 (3) 0.084 (3) 0.051 (2) 0.019 (3) −0.006 (2) −0.025 (3)

C19 0.051 (3) 0.072 (3) 0.084 (3) 0.008 (2) 0.004 (2) −0.039 (3)

C20 0.054 (3) 0.053 (3) 0.073 (3) 0.003 (2) 0.011 (2) −0.016 (2)

C21 0.046 (2) 0.052 (2) 0.034 (2) 0.001 (2) 0.004 (2) 0.003 (2)

C22 0.060 (3) 0.058 (3) 0.049 (2) 0.006 (2) 0.016 (2) 0.011 (2)

C23 0.097 (4) 0.054 (3) 0.060 (3) 0.004 (3) 0.021 (2) 0.013 (2)

C24 0.082 (3) 0.061 (3) 0.052 (3) 0.024 (3) 0.007 (2) −0.001 (2)

C25 0.050 (3) 0.069 (3) 0.068 (3) 0.009 (3) 0.007 (2) −0.012 (2)

C26 0.050 (2) 0.055 (3) 0.057 (2) −0.002 (2) 0.010 (2) −0.004 (2)

C27 0.046 (2) 0.041 (2) 0.046 (2) −0.008 (2) 0.004 (2) −0.003 (2)

C28 0.058 (3) 0.055 (3) 0.053 (2) 0.000 (2) 0.011 (2) −0.004 (2)

C29 0.057 (3) 0.068 (3) 0.088 (3) 0.006 (2) 0.008 (2) −0.022 (3)

C30 0.056 (3) 0.129 (5) 0.084 (4) −0.018 (3) 0.023 (3) −0.040 (4)

C31 0.074 (4) 0.132 (5) 0.064 (3) −0.039 (3) 0.029 (3) −0.005 (3)

C32 0.067 (3) 0.075 (3) 0.057 (2) −0.023 (2) 0.011 (2) 0.006 (2)

Geometric parameters (Å, º)

O1—C3 1.361 (5) C16—C17 1.393 (5)

(6)

O2—C12 1.219 (6) C17—H17 0.950

C3—C4 1.544 (5) C18—C19 1.382 (7)

C3—C7 1.501 (5) C18—H18 0.950

C3—H3 0.950 C19—C20 1.382 (6)

C4—C5 1.561 (4) C19—H19 0.950

C4—C13 1.519 (5) C20—H20 0.950

C4—H4 0.950 C21—C22 1.375 (5)

C5—C6 1.504 (5) C21—C26 1.392 (5)

C5—C21 1.520 (5) C22—C23 1.385 (6)

C5—H5 0.950 C22—H22 0.950

C6—C7 1.378 (5) C23—C24 1.376 (7)

C6—C11 1.390 (5) C23—H23 0.950

C7—C8 1.377 (5) C24—C25 1.367 (6)

C8—C9 1.388 (6) C24—H24 0.950

C8—H8 0.950 C25—C26 1.380 (6)

C9—C10 1.373 (6) C25—H25 0.950

C9—H9 0.950 C26—H26 0.950

C10—C11 1.380 (6) C27—C28 1.380 (5)

C10—H10 0.950 C27—C32 1.378 (6)

C11—H11 0.950 C28—C29 1.375 (6)

C12—C13 1.525 (5) C28—H28 0.950

C12—C16 1.475 (5) C29—C30 1.371 (8)

C13—C14 1.560 (5) C29—H29 0.950

C13—H13 0.950 C30—C31 1.354 (8)

C14—C15 1.515 (5) C30—H30 0.950

C14—C27 1.523 (5) C31—C32 1.385 (7)

C14—H14 0.950 C31—H31 0.950

C15—C16 1.366 (5) C32—H32 0.950

C15—C20 1.377 (5)

C3—O1—H1 109.5 C14—C15—C20 127.7 (3)

O1—C3—C4 116.6 (3) C16—C15—C20 120.3 (3)

O1—C3—C7 111.5 (3) C12—C16—C15 110.3 (3)

O1—C3—H3 108.1 C12—C16—C17 127.9 (3)

C4—C3—C7 104.3 (3) C15—C16—C17 121.8 (3)

C4—C3—H3 108.1 C16—C17—C18 118.0 (4)

C7—C3—H3 108.1 C16—C17—H17 121.0

C3—C4—C5 105.2 (3) C18—C17—H17 121.0

C3—C4—C13 116.6 (3) C17—C18—C19 120.1 (4)

C3—C4—H4 105.8 C17—C18—H18 119.9

C5—C4—C13 116.6 (3) C19—C18—H18 119.9

C5—C4—H4 105.8 C18—C19—C20 121.4 (4)

C13—C4—H4 105.8 C18—C19—H19 119.3

C4—C5—C6 103.1 (3) C20—C19—H19 119.3

C4—C5—C21 116.1 (3) C15—C20—C19 118.4 (4)

C4—C5—H5 108.3 C15—C20—H20 120.8

C6—C5—C21 112.4 (3) C19—C20—H20 120.8

(7)

supporting information

sup-5 Acta Cryst. (2004). E60, o1795–o1796

C21—C5—H5 108.3 C5—C21—C26 122.0 (3)

C5—C6—C7 112.0 (3) C22—C21—C26 117.1 (3)

C5—C6—C11 128.9 (3) C21—C22—C23 121.9 (4)

C7—C6—C11 119.1 (3) C21—C22—H22 119.1

C3—C7—C6 110.4 (3) C23—C22—H22 119.0

C3—C7—C8 127.5 (3) C22—C23—C24 120.0 (4)

C6—C7—C8 122.0 (3) C22—C23—H23 120.0

C7—C8—C9 118.3 (4) C24—C23—H23 120.0

C7—C8—H8 120.8 C23—C24—C25 119.2 (4)

C9—C8—H8 120.8 C23—C24—H24 120.4

C8—C9—C10 120.2 (4) C25—C24—H24 120.4

C8—C9—H9 119.9 C24—C25—C26 120.6 (4)

C10—C9—H9 119.9 C24—C25—H25 119.7

C9—C10—C11 121.1 (4) C26—C25—H25 119.7

C9—C10—H10 119.4 C21—C26—C25 121.2 (4)

C11—C10—H10 119.5 C21—C26—H26 119.4

C6—C11—C10 119.2 (4) C25—C26—H26 119.4

C6—C11—H11 120.4 C14—C27—C28 120.8 (3)

C10—C11—H11 120.4 C14—C27—C32 120.9 (3)

O2—C12—C13 126.0 (3) C28—C27—C32 118.2 (4)

O2—C12—C16 125.6 (3) C27—C28—C29 120.2 (4)

C13—C12—C16 106.4 (3) C27—C28—H28 119.9

C4—C13—C12 118.7 (3) C29—C28—H28 119.9

C4—C13—C14 116.7 (3) C28—C29—C30 121.1 (4)

C4—C13—H13 105.1 C28—C29—H29 119.5

C12—C13—C14 104.7 (3) C30—C29—H29 119.4

C12—C13—H13 105.2 C29—C30—C31 119.2 (5)

C14—C13—H13 105.1 C29—C30—H30 120.4

C13—C14—C15 102.5 (3) C31—C30—H30 120.4

C13—C14—C27 116.1 (3) C30—C31—C32 120.3 (5)

C13—C14—H14 108.8 C30—C31—H31 119.8

C15—C14—C27 111.5 (3) C32—C31—H31 119.8

C15—C14—H14 108.8 C27—C32—C31 121.0 (4)

C27—C14—H14 108.8 C27—C32—H32 119.5

C14—C15—C16 111.9 (3) C31—C32—H32 119.5

O1—C3—C4—C5 145.2 (3) C11—C6—C5—C21 66.4 (5)

O1—C3—C4—C13 −83.9 (4) C12—C13—C14—C15 −19.6 (3)

O1—C3—C7—C6 −141.9 (3) C12—C13—C14—C27 102.2 (3)

O1—C3—C7—C8 38.8 (5) C12—C16—C15—C14 −2.6 (4)

O2—C12—C13—C4 −44.2 (6) C12—C16—C15—C20 −179.9 (3)

O2—C12—C13—C14 −176.5 (4) C12—C16—C17—C18 −179.4 (4)

O2—C12—C16—C15 −175.4 (4) C13—C4—C5—C21 −27.9 (4)

O2—C12—C16—C17 3.8 (7) C13—C12—C16—C15 −10.7 (4)

C3—C4—C5—C6 −20.3 (3) C13—C12—C16—C17 168.5 (4)

C3—C4—C5—C21 103.0 (3) C13—C14—C15—C16 14.3 (4)

C3—C4—C13—C12 40.5 (4) C13—C14—C15—C20 −168.7 (4)

(8)

C3—C7—C6—C5 2.2 (4) C13—C14—C27—C32 123.2 (3)

C3—C7—C6—C11 −178.2 (3) C14—C13—C12—C16 18.9 (4)

C3—C7—C8—C9 178.3 (4) C14—C15—C16—C17 178.2 (3)

C4—C3—C7—C6 −15.3 (4) C14—C15—C20—C19 −177.4 (4)

C4—C3—C7—C8 165.4 (4) C14—C27—C28—C29 −177.7 (3)

C4—C5—C6—C7 11.7 (4) C14—C27—C32—C31 176.9 (4)

C4—C5—C6—C11 −167.9 (4) C15—C14—C27—C28 57.0 (4)

C4—C5—C21—C22 114.1 (4) C15—C14—C27—C32 −119.9 (4)

C4—C5—C21—C26 −67.1 (4) C15—C16—C17—C18 −0.3 (6)

C4—C13—C12—C16 151.2 (3) C15—C20—C19—C18 −0.2 (6)

C4—C13—C14—C15 −153.1 (3) C16—C15—C14—C27 −110.7 (3)

C4—C13—C14—C27 −31.2 (4) C16—C15—C20—C19 −0.7 (5)

C5—C4—C3—C7 21.8 (3) C16—C17—C18—C19 −0.6 (6)

C5—C4—C13—C12 165.9 (3) C17—C16—C15—C20 0.9 (6)

C5—C4—C13—C14 −67.3 (4) C17—C18—C19—C20 0.8 (6)

C5—C6—C7—C8 −178.5 (3) C20—C15—C14—C27 66.3 (5)

C5—C6—C11—C10 179.6 (4) C21—C22—C23—C24 0.0 (6)

C5—C21—C22—C23 178.9 (3) C21—C26—C25—C24 1.0 (6)

C5—C21—C26—C25 −179.4 (3) C22—C21—C26—C25 −0.5 (5)

C6—C5—C4—C13 −151.3 (3) C22—C23—C24—C25 0.5 (6)

C6—C5—C21—C22 −127.6 (3) C23—C22—C21—C26 0.0 (5)

C6—C5—C21—C26 51.3 (4) C23—C24—C25—C26 −1.0 (6)

C6—C7—C8—C9 −0.9 (6) C27—C28—C29—C30 1.5 (6)

C6—C11—C10—C9 −1.5 (6) C27—C32—C31—C30 0.1 (7)

C7—C3—C4—C13 152.8 (3) C28—C27—C32—C31 −0.1 (6)

C7—C6—C5—C21 −114.1 (3) C28—C29—C30—C31 −1.5 (7)

C7—C6—C11—C10 0.1 (5) C29—C28—C27—C32 −0.7 (5)

C7—C8—C9—C10 −0.5 (6) C29—C30—C31—C32 0.7 (8)

C8—C7—C6—C11 1.1 (6) C29—C30—C31—C32 0.7 (8)

C8—C9—C10—C11 1.7 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

References

Related documents

the chromatin, whereas in the former arrangement the entire force transmitted by the kinetochore would converge on a single Cse4 nucleosome (Santaguida and Musacchio 2009).

Several numerical analyses were carried out to obtain the relationship between fastener force and table width for various congurations and developed table size correction

The distributor may seek to limit the producer’s right to terminate until distributor has recouped its advance (assuming it has given the producer an advance.) Another

16 iSCSI PDU ● PDU (Protocol Data Unit):  The initiator and target divide  their communications into  messages. The term &#34;iSCSI 

• Storage node - node that runs Account, Container, and Object services • ring - a set of mappings of OpenStack Object Storage data to physical devices To increase reliability, you

The Department of Health, Physical Education, Recreation and Dance offers a Master of Science in Education in Health and Physical Education and a Master of Science in

We are now using the second part of our test database (see Figure 4 ) ; the boxpoints table which contains 3000 customer points, and the box table with 51 dierent sized bounding

Most companies recruit for full-time and internship positions, but some indicate Co-Op as a recruiting priority, while not attending Professional Practice