• No results found

Di­aquadiperchlorato[μ 11,23 di­methyl 3,7,15,19 tetra­azatri­cyclo[19 3 1 19,13]hexacosa 1(25),2,7,9,11,13(26),14,19,21,23 deca­ene 25,26 diolato 1κ2N,N′;2κ2N′′,N′′′;1:2κ2O:O′]dicadmium(II) di­aqua[μ 11,23 di­methyl 3,7,15,19 tetra­azatri­cyclo[19 3 1 19

N/A
N/A
Protected

Academic year: 2020

Share "Di­aquadiperchlorato[μ 11,23 di­methyl 3,7,15,19 tetra­azatri­cyclo[19 3 1 19,13]hexacosa 1(25),2,7,9,11,13(26),14,19,21,23 deca­ene 25,26 diolato 1κ2N,N′;2κ2N′′,N′′′;1:2κ2O:O′]dicadmium(II) di­aqua[μ 11,23 di­methyl 3,7,15,19 tetra­azatri­cyclo[19 3 1 19"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

metal-organic papers

Acta Cryst.(2005). E61, m1295–m1297 doi:10.1107/S1600536805017599 Liuet al. [Cd

2L(ClO4)2(H2O)2][Cd2L2](ClO4)2

m1295

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Diaquadiperchlorato[l-11,23-dimethyl-3,7,15,19-tetraazatricyclo[19.3.1.1

9,13

]hexacosa-1(25),2,7,9,-

11,13(26),14,19,21,23-decaene-25,26-diolato-1j

2

N

,

N

000

;2j

2

N

000000

,

N

000000000

;1:2j

2

O

:

O

000

]dicadmium(II)

diaqua[l-11,23-dimethyl-3,7,15,19-tetraazatri-cyclo[19.3.1.1

9,13

]hexacosa-1(25),2,7,9,11,13(26),-14,19,21,23-decaene-25,26-diolato-1j

2

N

,

N

000

;-2j

2

N

000000

,

N

000000000

;1:2j

2

O

:

O

000

]dicadmium(II) diperchlorate

Bo Liu,aHong Zhou,a,bZhi-Quan

Pan,a* Xue-Lei Huaand

Lei Chena

aSchool of Chemical Engineering and Pharmacy,

Wuhan Institute of Chemical Technology, Wuhan 430073, People’s Republic of China, andbCollege of Chemistry and Molecular Science of Wuhan University, Wuhan 430072, People’s Republic of China

Correspondence e-mail: zhiqpan@163.com

Key indicators

Single-crystal X-ray study

T= 293 K

Mean(C–C) = 0.009 A˚

Rfactor = 0.050

wRfactor = 0.119

Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title complex, [Cd2(C24H26N4O2)(ClO4)2(H2O)2]-[Cd2(C24H26N4O2)(H2O)2](ClO4)2, the two distinct macro-cycles adopt essentially flat structures. They each encapsulate two Cd atoms. One Cd coordination polyhedron, completed by a water O atom and a perchlorate O atom, is distorted octahedral, while the other is best described as a CdN2O3 square-based pyramid, with water in the apical site. Both dinuclear complexes are centrosymmetric.

Comment

Since the first dinuclear macrocyclic complexes were synthe-sizedviatemplate condensation at the beginning of the 1970 s, these species, especially those containing Schiff base diphenol macrocyclic ligands, have attracted much attention (Pilkington & Robson, 1970; Mohanta et al., 1998; Wang et al., 1997; Brianeseet al., 1999; Gaoet al., 2001). Macrocyclic complexes synthesized by the cyclocondensation reaction between 2,6-diformyl-4-R-phenol and alkylenediamine have been obtained by a stepwise template reaction (R is CH3, n-butyl or Cl; Shangguanet al., 2000; Zhouet al., 2005; Wanget al., 1997).

In order to understand better the different metal–cavity and metal–metal interactions in such species, the title complex, (I), (Fig. 1), with the macrocycle derived from the cyclo-condensation reaction between 2,6-diformyl-4-R-phenol and polyamine, was synthesized and its structure is presented here. Selected bond distances and angles relevant to the CdII coordination spheres are listed in Table 1.

(2)

There are two distinct dinuclear complexes in (I), both generated from the atoms of the asymmetric unit by inversion symmetry. Each contains a pair of CdIIatoms bridged by the two endogenous phenolic O atoms of the macrocycle ligand, with Cd1 Cd1iand Cd2 Cd2iiseparations of 3.0882 (8) and 3.0880 (8) A˚ , respectively [symmetry codes: (i) 1x, 2 y, 1z; (ii) x, 1 y, z]. The phenolic bridging angles are 103.41 (17) and 103.79 (18)for the Cd1 and Cd2 complexes, respectively.

The CdIIcoordination is subtly different in the two mol-ecules. Atom Cd1 has a bound water molecule at 2.390 (4) A˚ and a close perchlorate O atom at 2.610 (4) A˚ . This results in a distorted CdN2O4 octahedron. Atom Cd2 also possesses a bound water molecule [Cd—O = 2.436 (5) A˚ ], but the perchlorate groups associated with the Cd2 complex cation are much further away, at 2.947 A˚ . Thus, the Cd2 coordination can be described as a CdN2O3square-based pyramid. All the atoms in each of the macrocycles, except the propylene groups, are approximately coplanar.

Experimental

2,6-Diformyl-4-methylphenol was prepared by a modification of the literature method of Taniguchi (1984).N,N0

-Bis(3-formyl-5-methyl-salicylidene)propylenediimine was prepared by the literature method of Okawa & Kida (1972). A mixture of Cd(OAc)2(H2O)2(0.133 g, 0.5 mmol) and N,N0

-bis(3-formyl-5-methylsalicylidene)propylene-diimine (0.183 g, 0.5 mmol) in absolute methanol (30 ml) was added dropwise to a methanol solution (10 ml) containing 1,3-diamino-propane (0.037 g, 0.5 mmol). After stirring the mixture for 10 h at room temperature, a green–brown solution formed. A methanol solution (10 ml) containing cadmium perchlorate hexahydrate (0.210 g, 0.5 mmol) was added dropwise. A red–brown solid was obtained after stirring at room temperature for about 3 h. The product was filtered off, recrystallized from MeCN–Et2O (4:1), washed with diethyl ether and dried under a vacuum (yield 0.149 g, 35%). Red–brown block-like crystals of (I) suitable for X-ray diffraction were obtained by diffusion of ethyl acetate into an MeCN

solution over one month. Analysis calculated for

C24H30N4O12Cl2Cd2: C 33.43, H 3.50, N 6.49%; found: C 33.56, H 3.57, N 6.40. IR (KBr,, cm1): 3482 (O—H), 1638 (C N), 1096 and 621 (ClO4).

Crystal data

[Cd2(C24H26N4O2)(ClO4)2(H2O)2

]-[Cd2(C24H26N4O2

)(-H2O)2](ClO4)2 Mr= 1724.44

Monoclinic,P21=c a= 16.5483 (15) A˚

b= 12.3987 (11) A˚

c= 14.7440 (13) A˚

= 105.512 (1)

V= 2914.9 (5) A˚3

Z= 2

Dx= 1.965 Mg m 3

MoKradiation Cell parameters from 5603

reflections

= 2.2–22.9

= 1.71 mm1 T= 293 (2) K Block, red-brown 0.340.240.22 mm

Data collection

Bruker SMART Apex CCD area-detector diffractometer

’and!scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin= 0.62,Tmax= 0.69

16225 measured reflections

5731 independent reflections 4747 reflections withI> 2(I)

Rint= 0.032 max= 26.0 h=20!10

k=15!15

l=18!18

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.050 wR(F2) = 0.119

S= 1.08 5731 reflections 399 parameters

H-atom parameters constrained

w= 1/[2

(Fo 2

) + (0.054P)2 + 1.6448P]

whereP= (Fo2+ 2Fc2)/3

(/)max< 0.001 max= 0.74 e A˚

3 min=0.99 e A˚

3

Table 1

Selected bond length (A˚ ).

Cd1—N1 1.962 (5)

Cd1—O1 1.964 (4)

Cd1—O1i

1.971 (4)

Cd1—N2 1.974 (5)

Cd1—O2 2.390 (4)

Cd1—O11 2.610 (4)

Cd2—O3 1.949 (4)

Cd2—N4 1.961 (5)

Cd2—O3ii

1.976 (4)

Cd2—N3 1.981 (5)

Cd2—O4 2.436 (5)

Symmetry codes: (i)xþ1;yþ2;zþ1; (ii)x;yþ1;z.

All H atoms were placed in calculated positions, with C—H distances in the range 0.93–0.97 A˚ and O—H equal to 0.85 A˚, and included in the refinement in the riding-model approximation, with

Uiso(H) = 1.2–1.5Ueq(C,O).

Data collection:SMART(Bruker, 2000); cell refinement:SAINT

(Bruker, 2000); data reduction:SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure:SHELXTL; molecular graphics:SHELXTL; software used to prepare material for publication:SHELXTL.

The authors thank the National Science Foundation of China (grant No.20271039).

References

Brianese, N., Casellato, U., Tamburini, S., Tomasin, P. & Vigota, P. A. (1999).

Inorg. Chim. Acta,293, 178–194.

Bruker (2000).SMART(Version 6.22),SAINT(Version 6.22) andSHELXTL

(Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.

Gao, J., Martell, A. E. & Motekaitis, R. J. (2001).Inorg. Chim. Acta,325, 164– 170.

Mohanta, S., Baitalik, S., Dutta, S. K. & Adhikary, B. (1998).Polyhedron,17, 2669–2677.

Okawa, H. & Kida, S. (1972).Bull. Chem. Soc. Jpn,45, 1759–1770. Pilkington, N. H. & Robson, R. (1970).Aust. J. Chem.23, 2226–2236. Shangguan, G. Q., Matrell, A. E., Zhang, Z. R. & Reibenspies, J. H. (2000).

Inorg. Chim. Acta,299, 47–58.

metal-organic papers

m1296

Liuet al. [Cd [image:2.610.44.297.70.186.2]

2L(ClO4)2(H2O)2][Cd2L2](ClO4)2 Acta Cryst.(2005). E61, m1295–m1297 Figure 1

(3)

Taniguchi, S. (1984).Bull. Chem. Soc. Jpn,57, 2683–2689.

Wang, Z., Reibenspies, J. & Martell, A. E. (1997).Inorg. Chem.36, 629–636.

Zhou, H., Peng, Z. H., Pan, Z. Q., Liu, B. & Liu, Y. Q. (2005).J. Coord. Chem. 58, 443–451.

metal-organic papers

Acta Cryst.(2005). E61, m1295–m1297 Liuet al. [Cd

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, m1295–m1297

supporting information

Acta Cryst. (2005). E61, m1295–m1297 [https://doi.org/10.1107/S1600536805017599]

Diaquadiperchlorato[

µ

-11,23-dimethyl-3,7,15,19-tetraazatricyclo-[19.3.1.1

9,13

]hexacosa-1(25),2,7,9,11,13(26),14,19,21,23-decaene-25,26-diolato-1

κ

2

N

,

N

;2

κ

2

N

′′

,

N

′′′

;1:2

κ

2

O

:

O

]dicadmium(II) diaqua[

µ

-11,23-di-

methyl-3,7,15,19-tetraazatricyclo-[19.3.1.1

9,13

]hexacosa-1(25),2,7,9,11,13(26),14,19,21,23-decaene-25,26-diolato-1

κ

2

N

,

N

;2

κ

2

N

′′

,

N

′′′

;1:2

κ

2

O

:

O

]dicadmium(II) diperchlorate

Bo Liu, Hong Zhou, Zhi-Quan Pan, Xue-Lei Hu and Lei Chen

Bis(aqua)bis(diperchlorato)(3,7,15,19-tetraaza-25,26-dihydroxy-11,23-

dimethyltricyclo[19,3,1,19,13]hexacosa-1(25),2,7,9,11,13 (26),14,19,21,23-

decaene-1κ2N,N;2κ2N′′,N′′′;1:2κ2O:O)dicadmium(II) bis(aqua)(3,7,15,19-tetraaza-25,26-dihydroxy-11,23-

dimethyltricyclo[19,3,1,19,13]hexacosa-1(25),2,7,9,11,13 (26),14,19,21,23-

decaene-1κ2N,N;2κ2N′′,N′′′;1:2κ2O:O)dicadmium(II) diperchlorate

Crystal data

[Cd2(ClO4)2(C24H26N4O2)(H2O)2]

[Cd2(C24H26N4O2)(H2O)2]·2ClO4

Mr = 1724.44

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 16.5483 (15) Å

b = 12.3987 (11) Å

c = 14.7440 (13) Å

β = 105.512 (1)°

V = 2914.9 (5) Å3

Z = 2

F(000) = 1712

Dx = 1.965 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 5603 reflections

θ = 2.2–22.9°

µ = 1.71 mm−1

T = 293 K Block, red-brown 0.34 × 0.24 × 0.22 mm

Data collection

Bruker SMART Apex CCD area-detector diffractometer

Radiation source: sealed tube Graphite monochromator

φ and ω scans

Absorption correction: multi-scan (SADABS; Bruker, 2000)

Tmin = 0.62, Tmax = 0.69

16225 measured reflections 5731 independent reflections 4747 reflections with I > 2σ(I)

Rint = 0.032

θmax = 26.0°, θmin = 2.1°

h = −20→10

k = −15→15

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, m1295–m1297

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.050

wR(F2) = 0.119

S = 1.08 5731 reflections 399 parameters 15 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.054P)2 + 1.6448P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max < 0.001

Δρmax = 0.74 e Å−3

Δρmin = −0.99 e Å−3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cd1 0.46250 (3) 0.88597 (3) 0.47745 (3) 0.03797 (13)

Cd2 0.06482 (3) 0.59085 (3) 0.03415 (3) 0.03932 (14)

C1 0.2854 (4) 0.9012 (5) 0.3867 (5) 0.0493 (16)

H1 0.2343 0.8683 0.3590 0.059*

C2 0.3265 (4) 0.7232 (5) 0.4194 (4) 0.0409 (13)

H2A 0.2689 0.7120 0.3831 0.049*

H2B 0.3322 0.6982 0.4832 0.049*

C3 0.3856 (4) 0.6606 (5) 0.3757 (4) 0.0399 (13)

H3A 0.3606 0.5913 0.3542 0.048*

H3B 0.3921 0.6997 0.3211 0.048*

C4 0.4715 (4) 0.6423 (5) 0.4428 (5) 0.0509 (16)

H4A 0.4653 0.5951 0.4930 0.061*

H4B 0.5062 0.6051 0.4091 0.061*

C5 0.5919 (4) 0.7284 (5) 0.5343 (4) 0.0401 (13)

H5 0.6088 0.6566 0.5413 0.048*

C6 0.6551 (3) 0.8043 (4) 0.5796 (4) 0.0339 (12)

C7 0.7323 (4) 0.7603 (6) 0.6258 (4) 0.0470 (15)

H7 0.7378 0.6857 0.6298 0.056*

C8 0.8020 (4) 0.8246 (6) 0.6665 (5) 0.0482 (15)

C9 0.7900 (3) 0.9337 (5) 0.6573 (4) 0.0416 (14)

H9 0.8358 0.9781 0.6825 0.050*

C10 0.7153 (3) 0.9823 (5) 0.6137 (4) 0.0326 (11)

C11 0.6415 (3) 0.9187 (4) 0.5732 (4) 0.0303 (11)

C12 0.8852 (4) 0.7735 (5) 0.7149 (4) 0.0354 (12)

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, m1295–m1297

H12B 0.8768 0.6987 0.7266 0.053*

H12C 0.9090 0.8096 0.7736 0.053*

C13 −0.0208 (4) 0.7940 (5) 0.0248 (5) 0.0465 (14)

H13 −0.0203 0.8681 0.0346 0.056*

C14 0.1179 (4) 0.8159 (5) 0.1140 (5) 0.0474 (15)

H14A 0.1245 0.8054 0.1808 0.057*

H14B 0.1039 0.8910 0.0992 0.057*

C15 0.1991 (4) 0.7885 (6) 0.0904 (5) 0.0536 (18)

H15A 0.1891 0.7932 0.0226 0.064*

H15B 0.2398 0.8436 0.1179 0.064*

C16 0.2384 (4) 0.6801 (5) 0.1213 (4) 0.0447 (15)

H16A 0.2893 0.6744 0.1010 0.054*

H16B 0.2544 0.6781 0.1895 0.054*

C17 0.2277 (4) 0.4990 (6) 0.1044 (5) 0.0506 (16)

H17 0.2849 0.5068 0.1325 0.061*

C18 0.1987 (4) 0.3884 (5) 0.0870 (4) 0.0413 (13)

C19 0.2622 (4) 0.3096 (6) 0.1213 (5) 0.0514 (16)

H19 0.3158 0.3310 0.1544 0.062*

C20 0.2441 (4) 0.2008 (5) 0.1056 (5) 0.0470 (15)

C21 0.1633 (4) 0.1724 (5) 0.0576 (5) 0.0443 (14)

H21 0.1504 0.0999 0.0457 0.053*

C22 0.0995 (4) 0.2504 (5) 0.0258 (5) 0.0465 (15)

C23 0.1160 (3) 0.3601 (5) 0.0407 (4) 0.0323 (11)

C24 0.3108 (5) 0.1164 (6) 0.1419 (4) 0.0524 (18)

H24A 0.3643 0.1508 0.1647 0.079*

H24B 0.3126 0.0677 0.0918 0.079*

H24C 0.2978 0.0769 0.1922 0.079*

Cl1 0.48841 (10) 0.88061 (12) 0.22993 (9) 0.0411 (3)

Cl2 0.09854 (11) 0.55513 (12) 0.31998 (11) 0.0474 (4)

N1 0.3475 (3) 0.8366 (4) 0.4203 (4) 0.0457 (13)

N2 0.5165 (3) 0.7430 (4) 0.4861 (4) 0.0407 (11)

N3 0.0497 (3) 0.7456 (4) 0.0589 (4) 0.0453 (11)

N4 0.1868 (3) 0.5864 (4) 0.0871 (4) 0.0427 (12)

O1 0.5695 (2) 0.9605 (3) 0.5301 (3) 0.0362 (7)

O2 0.4371 (3) 0.8821 (3) 0.6296 (3) 0.0442 (9)

H2D 0.4631 0.9436 0.6652 0.066*

H2E 0.4604 0.8172 0.6617 0.066*

O3 0.0570 (2) 0.4358 (3) 0.0120 (3) 0.0357 (8)

O4 0.0635 (3) 0.6278 (4) −0.1285 (3) 0.0539 (11)

H4D 0.0188 0.6768 −0.1561 0.081*

H4E 0.0554 0.5614 −0.1634 0.081*

O11 0.4766 (3) 0.9297 (3) 0.3092 (3) 0.0464 (9)

O12 0.5442 (3) 0.9389 (3) 0.1944 (3) 0.0450 (10)

O13 0.4149 (3) 0.8689 (4) 0.1584 (3) 0.0463 (11)

O14 0.5220 (3) 0.7793 (3) 0.2560 (3) 0.0410 (10)

O21 0.0647 (3) 0.5228 (4) 0.2257 (3) 0.0515 (11)

O22 0.1088 (3) 0.6675 (3) 0.3173 (3) 0.0490 (11)

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, m1295–m1297

O24 0.0431 (3) 0.5297 (4) 0.3722 (3) 0.0518 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cd1 0.0367 (2) 0.0281 (2) 0.0446 (2) 0.00035 (16) 0.00310 (18) −0.00108 (17)

Cd2 0.0358 (2) 0.0321 (2) 0.0473 (3) −0.00281 (17) 0.00626 (19) −0.00108 (17)

C1 0.045 (4) 0.038 (3) 0.059 (4) 0.013 (3) 0.003 (3) 0.005 (3)

C2 0.029 (3) 0.052 (4) 0.039 (3) −0.003 (3) 0.004 (2) −0.002 (3)

C3 0.039 (3) 0.033 (3) 0.046 (3) 0.002 (2) 0.009 (3) 0.002 (2)

C4 0.053 (4) 0.047 (4) 0.043 (3) −0.008 (3) −0.003 (3) −0.016 (3)

C5 0.036 (3) 0.038 (3) 0.047 (3) 0.002 (2) 0.012 (3) 0.004 (3)

C6 0.029 (3) 0.035 (3) 0.038 (3) 0.006 (2) 0.010 (2) 0.000 (2)

C7 0.051 (4) 0.048 (4) 0.044 (3) 0.007 (3) 0.015 (3) −0.001 (3)

C8 0.039 (3) 0.064 (4) 0.047 (4) 0.012 (3) 0.022 (3) 0.010 (3)

C9 0.038 (3) 0.050 (3) 0.037 (3) 0.008 (3) 0.011 (3) 0.012 (3)

C10 0.030 (3) 0.044 (3) 0.025 (2) 0.002 (2) 0.009 (2) 0.003 (2)

C11 0.026 (3) 0.031 (3) 0.030 (3) 0.001 (2) 0.003 (2) −0.002 (2)

C12 0.042 (3) 0.039 (3) 0.027 (3) 0.002 (2) 0.012 (2) 0.005 (2)

C13 0.053 (3) 0.041 (2) 0.053 (4) 0.008 (2) 0.026 (3) 0.006 (3)

C14 0.047 (4) 0.050 (4) 0.047 (3) −0.009 (3) 0.015 (3) −0.024 (3)

C15 0.045 (4) 0.064 (4) 0.051 (4) −0.031 (3) 0.010 (3) −0.012 (3)

C16 0.049 (4) 0.051 (4) 0.033 (3) −0.014 (3) 0.008 (3) −0.021 (3)

C17 0.029 (3) 0.056 (4) 0.063 (4) 0.006 (3) 0.006 (3) −0.007 (3)

C18 0.035 (3) 0.045 (3) 0.045 (3) 0.008 (3) 0.014 (3) 0.001 (3)

C19 0.041 (4) 0.062 (4) 0.056 (4) 0.009 (3) 0.021 (3) 0.004 (3)

C20 0.051 (4) 0.039 (3) 0.052 (4) 0.011 (3) 0.017 (3) 0.012 (3)

C21 0.042 (3) 0.038 (3) 0.059 (4) 0.008 (3) 0.025 (3) 0.009 (3)

C22 0.053 (4) 0.041 (3) 0.053 (4) 0.008 (3) 0.026 (3) 0.006 (3)

C23 0.030 (3) 0.0401 (15) 0.031 (3) 0.0105 (19) 0.016 (2) 0.004 (2)

C24 0.054 (4) 0.066 (4) 0.043 (3) 0.036 (3) 0.024 (3) 0.023 (3)

Cl1 0.0546 (9) 0.0452 (8) 0.0307 (7) 0.0092 (6) 0.0239 (7) 0.0102 (6)

Cl2 0.0573 (10) 0.0413 (8) 0.0419 (8) −0.0004 (7) 0.0102 (7) −0.0016 (6)

N1 0.030 (3) 0.041 (3) 0.060 (3) −0.009 (2) 0.000 (2) −0.008 (2)

N2 0.040 (3) 0.030 (2) 0.051 (3) 0.000 (2) 0.011 (2) 0.000 (2)

N3 0.039 (2) 0.0334 (12) 0.060 (3) −0.0080 (18) 0.009 (2) −0.006 (2)

N4 0.043 (3) 0.040 (3) 0.043 (3) −0.009 (2) 0.008 (2) −0.005 (2)

O1 0.0284 (16) 0.0297 (19) 0.0495 (17) 0.0013 (13) 0.0087 (13) 0.0026 (16)

O2 0.042 (2) 0.044 (2) 0.0488 (15) −0.0059 (18) 0.0157 (18) 0.0010 (18)

O3 0.036 (2) 0.0321 (9) 0.037 (2) −0.0028 (13) 0.0063 (17) −0.0011 (15)

O4 0.050 (3) 0.050 (3) 0.060 (3) 0.000 (2) 0.012 (2) 0.003 (2)

O11 0.050 (2) 0.047 (2) 0.0451 (12) 0.011 (2) 0.0190 (16) −0.0054 (13)

O12 0.061 (3) 0.048 (2) 0.033 (2) 0.010 (2) 0.023 (2) 0.0057 (18)

O13 0.060 (3) 0.052 (3) 0.034 (2) 0.009 (2) 0.026 (2) 0.0132 (19)

O14 0.056 (3) 0.043 (2) 0.031 (2) 0.0102 (19) 0.0239 (19) 0.0080 (16)

O21 0.065 (3) 0.047 (2) 0.043 (2) 0.003 (2) 0.015 (2) −0.0018 (19)

O22 0.062 (3) 0.040 (2) 0.046 (2) −0.002 (2) 0.016 (2) −0.0037 (19)

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, m1295–m1297

O24 0.062 (3) 0.050 (3) 0.043 (2) −0.002 (2) 0.012 (2) 0.002 (2)

Geometric parameters (Å, º)

Cd1—N1 1.962 (5) C13—C22ii 1.427 (10)

Cd1—O1 1.964 (4) C13—H13 0.9300

Cd1—O1i 1.971 (4) C14—N3 1.486 (7)

Cd1—N2 1.974 (5) C14—C15 1.513 (9)

Cd1—O2 2.390 (4) C14—H14A 0.9700

Cd1—O11 2.610 (4) C14—H14B 0.9700

Cd1—Cd1i 3.0882 (8) C15—C16 1.509 (10)

Cd2—O3 1.949 (4) C15—H15A 0.9700

Cd2—N4 1.961 (5) C15—H15B 0.9700

Cd2—O3ii 1.976 (4) C16—N4 1.450 (7)

Cd2—N3 1.981 (5) C16—H16A 0.9700

Cd2—O4 2.436 (5) C16—H16B 0.9700

Cd2—Cd2ii 3.0880 (8) C17—N4 1.267 (8)

C1—N1 1.293 (8) C17—C18 1.453 (9)

C1—C10i 1.444 (8) C17—H17 0.9300

C1—H1 0.9300 C18—C23 1.402 (8)

C2—N1 1.447 (8) C18—C19 1.425 (9)

C2—C3 1.520 (8) C19—C20 1.387 (10)

C2—H2A 0.9700 C19—H19 0.9300

C2—H2B 0.9700 C20—C21 1.381 (9)

C3—C4 1.515 (9) C20—C24 1.511 (8)

C3—H3A 0.9700 C21—C22 1.415 (9)

C3—H3B 0.9700 C21—H21 0.9300

C4—N2 1.507 (7) C22—C23 1.393 (8)

C4—H4A 0.9700 C22—C13ii 1.427 (10)

C4—H4B 0.9700 C23—O3 1.338 (6)

C5—N2 1.273 (8) C24—H24A 0.9600

C5—C6 1.431 (8) C24—H24B 0.9600

C5—H5 0.9300 C24—H24C 0.9600

C6—C7 1.389 (8) Cl1—O11 1.378 (4)

C6—C11 1.436 (7) Cl1—O12 1.381 (5)

C7—C8 1.399 (10) Cl1—O14 1.386 (4)

C7—H7 0.9300 Cl1—O13 1.388 (5)

C8—C9 1.369 (9) Cl2—O23 1.381 (5)

C8—C12 1.510 (8) Cl2—O24 1.384 (5)

C9—C10 1.371 (7) Cl2—O22 1.405 (5)

C9—H9 0.9300 Cl2—O21 1.411 (5)

C10—C11 1.443 (7) O1—Cd1i 1.971 (4)

C10—C1i 1.444 (8) O2—H2D 0.9600

C11—O1 1.298 (6) O2—H2E 0.9600

C12—H12A 0.9600 O3—Cd2ii 1.976 (4)

C12—H12B 0.9600 O4—H4D 0.9600

C12—H12C 0.9600 O4—H4E 0.9600

(9)

supporting information

sup-6

Acta Cryst. (2005). E61, m1295–m1297

N1—Cd1—O1 170.12 (19) N3—C13—H13 115.5

N1—Cd1—O1i 93.57 (19) C22ii—C13—H13 115.5

O1—Cd1—O1i 76.59 (17) N3—C14—C15 109.5 (5)

N1—Cd1—N2 96.8 (2) N3—C14—H14A 109.8

O1—Cd1—N2 92.98 (18) C15—C14—H14A 109.8

O1i—Cd1—N2 168.83 (18) N3—C14—H14B 109.8

N1—Cd1—O2 90.2 (2) C15—C14—H14B 109.8

O1—Cd1—O2 90.28 (15) H14A—C14—H14B 108.2

O1i—Cd1—O2 87.74 (16) C16—C15—C14 117.9 (6)

N2—Cd1—O2 96.39 (18) C16—C15—H15A 107.8

N1—Cd1—O11 88.8 (2) C14—C15—H15A 107.8

O1—Cd1—O11 88.70 (16) C16—C15—H15B 107.8

O1i—Cd1—O11 80.59 (15) C14—C15—H15B 107.8

N2—Cd1—O11 95.41 (18) H15A—C15—H15B 107.2

O2—Cd1—O11 168.20 (14) N4—C16—C15 116.3 (5)

N1—Cd1—Cd1i 131.77 (15) N4—C16—H16A 108.2

O1—Cd1—Cd1i 38.38 (11) C15—C16—H16A 108.2

O1i—Cd1—Cd1i 38.20 (11) N4—C16—H16B 108.2

N2—Cd1—Cd1i 131.24 (15) C15—C16—H16B 108.2

O2—Cd1—Cd1i 88.73 (10) H16A—C16—H16B 107.4

O11—Cd1—Cd1i 83.18 (10) N4—C17—C18 129.6 (6)

O3—Cd2—N4 93.08 (19) N4—C17—H17 115.2

O3—Cd2—O3ii 76.21 (18) C18—C17—H17 115.2

N4—Cd2—O3ii 168.40 (19) C23—C18—C19 122.1 (6)

O3—Cd2—N3 168.60 (19) C23—C18—C17 123.8 (5)

N4—Cd2—N3 97.0 (2) C19—C18—C17 114.1 (6)

O3ii—Cd2—N3 93.30 (19) C20—C19—C18 120.2 (7)

O3—Cd2—O4 92.16 (15) C20—C19—H19 119.9

N4—Cd2—O4 97.70 (18) C18—C19—H19 119.9

O3ii—Cd2—O4 87.30 (15) C21—C20—C19 118.0 (6)

N3—Cd2—O4 91.78 (19) C21—C20—C24 121.3 (6)

O3—Cd2—Cd2ii 38.41 (11) C19—C20—C24 120.7 (7)

N4—Cd2—Cd2ii 131.35 (15) C20—C21—C22 121.9 (6)

O3ii—Cd2—Cd2ii 37.79 (11) C20—C21—H21 119.0

N3—Cd2—Cd2ii 130.95 (15) C22—C21—H21 119.0

O4—Cd2—Cd2ii 89.64 (11) C23—C22—C21 121.2 (6)

N1—C1—C10i 128.8 (6) C23—C22—C13ii 124.8 (6)

N1—C1—H1 115.6 C21—C22—C13ii 113.9 (6)

C10i—C1—H1 115.6 O3—C23—C22 122.7 (5)

N1—C2—C3 108.6 (5) O3—C23—C18 120.9 (5)

N1—C2—H2A 110.0 C22—C23—C18 116.4 (5)

C3—C2—H2A 110.0 C20—C24—H24A 109.5

N1—C2—H2B 110.0 C20—C24—H24B 109.5

C3—C2—H2B 110.0 H24A—C24—H24B 109.5

H2A—C2—H2B 108.4 C20—C24—H24C 109.5

C4—C3—C2 113.4 (5) H24A—C24—H24C 109.5

(10)

supporting information

sup-7

Acta Cryst. (2005). E61, m1295–m1297

C2—C3—H3A 108.9 O11—Cl1—O12 110.6 (3)

C4—C3—H3B 108.9 O11—Cl1—O14 107.6 (3)

C2—C3—H3B 108.9 O12—Cl1—O14 108.7 (3)

H3A—C3—H3B 107.7 O11—Cl1—O13 113.4 (3)

N2—C4—C3 115.1 (5) O12—Cl1—O13 107.8 (3)

N2—C4—H4A 108.5 O14—Cl1—O13 108.7 (3)

C3—C4—H4A 108.5 O23—Cl2—O24 112.1 (3)

N2—C4—H4B 108.5 O23—Cl2—O22 108.8 (3)

C3—C4—H4B 108.5 O24—Cl2—O22 110.2 (3)

H4A—C4—H4B 107.5 O23—Cl2—O21 110.0 (3)

N2—C5—C6 130.6 (6) O24—Cl2—O21 109.7 (3)

N2—C5—H5 114.7 O22—Cl2—O21 105.9 (3)

C6—C5—H5 114.7 C1—N1—C2 115.7 (5)

C7—C6—C5 115.6 (5) C1—N1—Cd1 123.5 (4)

C7—C6—C11 121.9 (5) C2—N1—Cd1 120.7 (4)

C5—C6—C11 122.5 (5) C5—N2—C4 114.7 (5)

C6—C7—C8 122.1 (6) C5—N2—Cd1 121.6 (4)

C6—C7—H7 118.9 C4—N2—Cd1 123.6 (4)

C8—C7—H7 118.9 C13—N3—C14 114.6 (5)

C9—C8—C7 116.1 (6) C13—N3—Cd2 121.7 (4)

C9—C8—C12 123.5 (6) C14—N3—Cd2 123.7 (4)

C7—C8—C12 120.4 (6) C17—N4—C16 112.5 (6)

C8—C9—C10 124.7 (5) C17—N4—Cd2 122.8 (4)

C8—C9—H9 117.6 C16—N4—Cd2 124.3 (4)

C10—C9—H9 117.6 C11—O1—Cd1 128.1 (3)

C9—C10—C11 120.7 (5) C11—O1—Cd1i 127.6 (3)

C9—C10—C1i 116.5 (5) Cd1—O1—Cd1i 103.41 (17)

C11—C10—C1i 122.7 (5) Cd1—O2—H2D 109.4

O1—C11—C6 122.3 (5) Cd1—O2—H2E 109.4

O1—C11—C10 123.3 (5) H2D—O2—H2E 109.5

C6—C11—C10 114.4 (5) C23—O3—Cd2 129.0 (4)

C8—C12—H12A 109.5 C23—O3—Cd2ii 125.6 (4)

C8—C12—H12B 109.5 Cd2—O3—Cd2ii 103.79 (18)

H12A—C12—H12B 109.5 Cd2—O4—H4D 109.8

C8—C12—H12C 109.5 Cd2—O4—H4E 109.2

H12A—C12—H12C 109.5 H4D—O4—H4E 109.5

H12B—C12—H12C 109.5 Cl1—O11—Cd1 141.6 (3)

N3—C13—C22ii 129.0 (6)

Figure

Figure 1

References

Related documents

The crisis of 2005 drew the Irish charity GOAL to Niger, just as the Ethiopian famine of 1984 had drawn it to Ethiopia and the crisis of 2002 had drawn it to Malawi.. It remained

‘Adarcias’ induced to better fruit organoleptic quality (higher SS concentration and/or sugars than ‘Adafuel’ and ‘GF 677’), especially when grafted with ‘Catherina’. In

Fingers of right hand curl along the angular direction (See Fig.) Then, the direction of thumb is. h di i f

Abstract — This paper investigates the role of Insurance in the development of Micro, Small and Medium Enterprises (MSMEs) in India.. MSMEs have been accepted as a crucial component

PEI-Genesis is one of the world’s fastest assemblers of precision connectors, power supplies and cable assemblies. From one of the largest component inventories, we develop

Thereby it has to be taken into account that the sensitivity analysis of fuel prices presented above shows that the actual slope of the German merit-order curve is influ-

A study conducted in Ghana by Badu-Nyarko (2015) examines the factors of nurses’ continuous professional development. The study revealed that to improve the skills of

For example, the Australian Caption Centre has a very clear charitable dominant purpose, but a number of the activities that it undertakes to achieve these purpose have