• No results found

Blind Soft Detection Assisted Frequency Hopping Multicarrier DS CDMA Systems

N/A
N/A
Protected

Academic year: 2020

Share "Blind Soft Detection Assisted Frequency Hopping Multicarrier DS CDMA Systems"

Copied!
5
0
0

Loading.... (view fulltext now)

Full text

(1)

BLIND SOFT-DETECTION ASSISTED FREQUENCY-HOPPING

MULTICARRIER DS-CDMA SYSTEMS

Lie-Liang Yang and Lajos Hanzo

Dept. ofECS, University ofSouthampton,SO171BJ, UK.

Tel: +44-703-593125, Fax: +44-703-594508

Email: lh@ecs.soton.ac.uk, http://www-mobile.ecs.so ton. ac. uk

ABSTRACT

Aslow frequency hopping, multicarrier direct-seq-uence,code-division multiple-access(SFH/MC DS-CDMA)schemeisproposedandinvestigated,which hasthepotentialofprovidinga jointframeworkfor 2nd-generationnarrow-bandCDMA,3rd-generation wideband CDMA and high-rate broadband access networks. Blindsoft-detectionoftheSFH/MC DS-CDMAsignalsisinvestigated,assumingthatthe re-ceiverhasnoknowledgeoftheassociated frequency-hopping(FH)patternsinvoked. The system's per-formance is evaluated over therange of Nakagami multipath fading channels. The results show that the blind soft-detection not only achieves the re-quired bit error rate performance, but it is also capable of blindly acquiring the FH patterns em-ployed. Thisassiststhemobileinaccessingthe net-workwithouttheknowledgeoftheFHpatternsor duringsofthand-over.

1. INTRODUCTION

Withtheemergenceofbroadbandwirelessaccessnetworks (BRAN) requiring bandwidths substantially higher than that of the 3rd generation systems [1 ] it is of increasing signicance tocreate aBRAN framework, which is back-wardscompatiblewith2ndand3rdgenerationschemes. An attractivecandidate schemecapableofachievingthese re-quirementsisconstitutedbytheproposedfrequency-hopping (FH)basedmulticarrierDS-CDMA (FH/MC DS-CDMA) arrangement, where no rigid spectral segmentation is re-quiredfortheco-existenceofvariouswirelesssystems. Specif-ically,theentirebandwidth canbedividedintoanumber ofsub-bandsandeachsub-bandcanbeassigneda subcar-rier. Asubcarriercoulddeliveranarrow-bandIS-95type serviceor-similarlytotheemergingmulti-carrierassisted cdma2000 system - it could invoke a number of carriers, whileemployingavarietyofdierentspreadingfactors.

FHcan be invoked for each user, in order to occupy thewholesystem'sbandwidthandtoeÆcientlyutilize the system's frequency resources. Various slow and fast FH schemesoradaptiveFHtechniques canbesupported, de-pendingonthestate-of-the-art. InFH/MCDS-CDMA

sys-Thenancialsupportofthefollowingorganisationsis grate-fullyacknowledged:EPSRC,UK,theComissionoftheEuropean Communities,Brussels,BelgiumandMotorolaECID,Swindon, UKandtheVirtualCentreofExcellence(VCE)inMobile Com-munications.

temsthesub-bandsarenotrequired tobe ofequal band-width. Hence existing 2nd- and 3rd- generation CDMA systems can besupported using one or more subcarriers, consequently simplifying the frequency resource manage-ment andeÆciently utilizing the entire bandwidth avail-able. Furthermore,theproposedsystemconceptlendsitself tounlicensedoperation,erradicatingtheineÆcientspectral segmentationofdierentco-existingsystems.

InthistreatiseweproposeaFH/MCDS-CDMAsystem employing slow FHand binary modulation. The system operates in a multipathfading environment, and a max-imum ratio combining (MRC) assisted RAKE receiver is used. Thesystem's performance isinvestigated over var-ious Nakagami-mmultipathfading channels,describinga varietyofprobabilitydensityfunctions(pdf)rangingfrom aRayleighfading channeltoanon-fadingGaussian chan-nelbyvaryingasingleparameter, namelym,fromoneto innity [2]. We assumethatthemobilestation(MS) has noknowledgeofthefrequency-hopping(FH)patterns em-ployed,sinceitisabouttoattemptitsinitialaccesstothe system.HencetheMShastoinfertheFHpatternemployed bythebasestation(BS) blindly. Wewillshowthatblind soft-detectionusingmaximumlikelihooddetection(MLD) -whichisconsideredtobetheoptimumscheme-canbe uti-lized,inordertosimultaneously accomplishboth informa-tiondetection andFHpatternacquisition. Following this initialblindFHpatternacquisitiontheMSreceivestheFH patterncodefromtheBSandmayproceedtothe informa-tion reception phase by exploiting theexplicit knowledge oftheFHpattern. However,theproposedblind-detection solutionscanbeappliedbyboththeBSandMS.

2. SFH/MCDS-CDMASYSTEM

2.1. TransmitterModel

Thetransmitter schematic alongwith themultipleaccess channelisshown inFig.1. There areK usersinthe sys-temandeachsubcarrierofeachuserisassignedarandom spreading sequence. In the schematic C(Q;U

k

) denotes a constant-weight code assigned to user k, which has Uk numberofbinary`1's,indicatingtheactivatedFHcarriers. Hencetheweight ofC(Q;Uk)isUk. Thiscode isselected fromtheconstant-weightcodebookoftheschematic,which describestheFHpatterns. Thereare

Q U

k

=Q!=U k

!(Q Uk)!numberofpossiblesuchweight-Uksequencesandthe constant-weight code C(Q;Uk) describes theFH patterns employed. Specically, C(Q;Uk) determinesthepositions oftheU

k

(2)

Channel

data

S-P

Carrier selection

Constant

weight

code

book

Frequency

synthesizer

1

2

1

2

Q

d0 d1 dUk1 C (k ) 0 C (k ) 1 C (k ) Uk1 C(Q;Uk) cos (2f (k ) 0 t+' (k ) 0 ) cos (2f (k ) 1 t+' (k ) 1 ) cos (2f (k ) Uk1 t+' (k ) Uk1 ) Uk P P h (k ) h (j) h (K) sk(t) sj(t) sK(t) n(t) r(t)

Figure 1: Transmitter andchannel block diagram of the frequency-hoppingmulticarrierDS-CDMAsystems.

ofasetof U k

numberofactiveFHsubcarrierfrequencies fromtheQoutputsofthefrequencysynthesizer.

The originalbit stream having abit durationof T b

is rstserial-to-parallel(S-P)converted,asseeninthe schema-tic, yieldingUk parallel streams. The assignment of bits totheactivated subcarriers is controlled bythe constant-weightcodeC(Q;U

k

). Dependingonthespecicaimsofthe systemdesign, we canassign every U

k

-thbit tothesame subcarrier and in this parallel system thebit-duration is henceextended to T = UkTb. This assists in mitigating theinter-symbol-interference(ISI)inahigh-bitrate trans-mission scheme. Alternatively, the proposed parallel sys-temcan beused tomaintain T =T

b

in eachsubchannel, hence assisting in high-rate or variable-rate transmission upon employing a dierent number of subcarriers, as we willhighlight duringour furtherdiscourse. Theoretically, Qnumberof dierentinformation rates can be generated bychanging theweightof thecode C(Q;U

k

). As seenin Fig.1,thedirect-sequence(DS)spread,transmittedsignal ofthekthusercanbeformulatedas:

sk(t)= U k 1 X u k =0 p 2Pd (k ) u k (t)c (k ) u k

(t)cos 2f (k ) u

k t+'

(k ) u

k

; (1)

whereP denotesthetransmittedpowerper carrier,while U

k

is the weight of the constant-weight FH code of the kthuser. Furthermore,

n d (k ) u k (t) o , n c (k ) u k (t) o , n f (k ) u k o and n ' (k ) u k o

denotethecurrentdatastream'swaveforms,theDS spreadingwaveforms,thesubcarrierfrequencyset andthe phaseanglesintroducedinthecarriermodulationprocess, respectively. LetTcbethechipdurationoftheDS spread-ingwaveformsandN=T

b

=Tc.Thentheprocessinggainof N

P =T=T

c

equalstoU k

N orN,dependingon thechoice ofthebit duration,as discussedpreviously. Furthermore, weassumethattheFHintervalisTh,andthatthenumber ofdatabits,N

b =T

h

=T,transmittedperhopisapositive integer,whichisstrictlylargerthan1,implyingslowFH.

2.2. NakagamiChannelModel

Weconsideredafrequency-selectivemultipathchannel[3 ], whosecomplexlow-passimpulseresponseforsubcarrieru

k ofuserkisgivenby:

h (k ) u k (t)= Lp 1 X lp=0 (k ) u k ;lp e j (k ) u k ;lp

Æ(t lpTc); (2)

where lpTc is the relative delay of thelp-th path of user kwithrespecttothemainpath,thephases

n (k ) u k ;lp o are independent identically distributed(iid) randomvariables uniformlydistributedintheinterval(0;2),whilsttheL

p tapweights n (k ) u k ;l p o

areindependentNakagami-mrandom variableswithapdfof[4 ]:

p( (k ) u

k ;lp

)=M( (k ) u k ;lp ;m; (k ) u k ;lp );

M(R ;m;)= 2m m R 2m 1 (m) m e ( m=)R 2 ; (3)

where () represents thegamma function, and m is the Nakagami-m fading parameter, which is dened as m = E 2 [( (k ) u k ;l p ) 2 ]=Var[( (k ) u k ;l p ) 2

]. Theparameter (k ) u k ;l p isthe secondmomentof

(k ) u k ;lp ,i.e (k ) u k ;lp =E[( (k ) u k ;lp ) 2

]. We as-sumeanegativeexponentiallydecayingmultipathintensity prole(MIP)distributiongivenby:

(k ) u k ;lp = (k ) u k ;0 e lp

; 0: (4)

where (k ) u

k ;0

istheaveragesignalstrengthcorrespondingto therstresolvablepathandistherateofaveragepower decay.

2.3. ReceiverModel

BPF

BPF

BPF

MRC

MRC

MRC

0

0

0

...

Decision

unit

...

MF0 MF1 MFQ 1

(L l 1)Tc (L l 1)Tc (L l 1)Tc

(L 1)Tc (L 1)Tc (L 1)Tc L 1 L 1 L 1 l l l Z0 Z1 ZQ1

nT+(L 1)Tc;n=1;2;::: ^ d0 ^ d1 ^ du 1 r(t)

Figure2: Receiverblockdiagramofthefrequency-hopping multicarrierDS-CDMAsystems.

Weassumethattherstuseristheuser-of-interestand considerthe conventional matched lterbased RAKE re-ceiverwithMRCofdiversityorderofL,asshowninFig.2. Incontrasttothetransmitterside,whereonlyU

k

outofQ subcarriersaretransmittedbytheuserk,atthereceiverall Qsubcarriersarealwaystentativelydemodulated.The in-formationbitstransmittedoverthedierentsubcarriersare blindsoft-detectedjointlyusingtheMLDapproach. Con-sequently,fromthepointofviewofthereceiver,each sub-carriercanbe viewedas anon-o typesignallingscheme. Whenasubcarrierisactivelyusedforsignallingandhence itisin theon-state,theMRCoutputsamplesgive+1 or -1 information, otherwise, while passive andhence in the o-state,theMRCstageoutputsnoise.

3. BLINDSOFT-DETECTION OFSFH/MC

DS-CDMASIGNALS

3.1. Statistics of theMRC outputs

(3)

sub-bandsassociatedwiththeQnumberofsubcarriers,and areassumedtohaveachievedtimesynchronizationwiththe correspondinginitialpathofthesubcarriersofthereference signal. Ifweassumethatperfectestimatesofthechannel tapweightsareavailable,thenafterappropriatelydelaying theindividualmatchedlteroutputs,inorderto synchro-nizetheLnumberofpathsignalsusedbytheRAKE com-biner,theqthMRCoutputsampledatt=nT+(L 1)T

c inordertodetectthenthsymbolcanbeexpressedas:

Z q

[n]=D q

[n]+I q

[n]: (5)

Assuming thatZq[n] is an independentGaussian dis-tributedvariable,ieinvokingtheGaussianapproximation forthemultipathandmultiple-accessinterference,thenthe meanvalueofZ

q

[n]canbeexpressedas:

Dq[n]= r

P 2

Tdq(n) L 1 X

l=0

2 q;l

; (6)

where d q

(n)isthenthbit transmittedon subcarrier qby thereferenceuseranddq(n) 2f+1; 1;0gwith`0' repre-senting theo-state. Forsimplicity,weassumethatthere exists nospectraloverlapbetween thespectralmain-lobes oftwoadjacentsubcarriers[5 ],andinterferenceisinicted only,whenaninterferinguseractivatesthesamesubcarrier, asthereferenceuser,encounteringaso-calledhit[6 ]. Con-sequently,assumingthatthereexistsK

h ,(0K

h

K 1)

numberofinterferingsignals,allofwhichactivatetheq-th subcarrierduringthenthsymbol'stransmissionofthe ref-erencesignal,thevarianceofZq[n]canbeexpressedas:

2

= PT

2 2

" q(L

p

;) 1

2N p

+ K

h q(L

p ;) 3N

p

+

20E b N

0

1 #

0

L 1 X

l=0

2 q;l

; (7)

where E b

= PT istheaverage transmittedenergy-per-bit andq(L

p

;)=(1 e Lp

)=(1 e

),if6=0,otherwise, q(L

p ;)=L

p

,if=0.

3.2. Symbol-by-Symbol Maximum Likelihood De-tection

Assuming that thereceiver is aware ofthe weight of the transmittedconstant-weightcode,butnotofthepositions ofthebinary`1's,thereceiverhastodetectnotonlythe po-sitionsofthe`1's,whichindicatethesubcarriersused,but alsotheantipodalbinarymodulatedinformationconveyed bytheactivatedsubcarriers. Letusexpressthenthinput data inthe vectorial form ofDi = fdi;0;di;1;:::;di;Q 1g, where0iM 1representstheconstant-weightcode set ofweight U andM is the number of weight-U codes included in thisset. Thenaset of QMRCsamplesZ = fZ1;Z2;:::;ZQ 1ginFig.2-whichwerefer tohereas a receivedsymbolorvector-areinputtothe`decisionunit' invokingaMLD,whichisbasedonthecomputationofthe probabilitiesdenedas:

p(ZjD i

)= 1 (2

2 )

Q=2

exp 0

B @

P Q 1 q=0

Zq

p P

2 Tdi;q

P L 1 l=1

2 l

2

2 2

1

C A ;

i=0;1;:::;M 1; (8)

where we assume that the subcarriers received over the samemultipathrayundergothesame fadingattenuation. Thedecisioncriterionisbasedonselectingthesignal corre-spondingtothemaximumofthesetofprobabilitiesf p(ZjD

i )g. The complexityof theMLD for areceived symbol or vectorisdeterminedbyboththelength andtheweightof theconstant-weight code invoked. The average detection complexityorder(O)canbeexpressedasO 3

Q =Q

. Ap-parently,thiscomplexityisexcessive,renderingthe associ-ated detectioncomplexityimpractically high,when evalu-atingEq.(8)forallpossiblecodewords,ifthevalueofQis high. Hence weimposesomelimitations ontheminimum distanceofthecodesintheconstant-weightcode-book rep-resentingtheFHpatterns, inorderto simplifythe detec-tion. Thisreducesthesizeoftheset.

Let C(Q;2v;U) represent a constant-weight code set having acode length ofQ andweight ofU, asdiscussed previously.Furthermore,lettheminimumdistancebetween anypairofcodesfromC(Q;2v;U)be2v,wherevisan inte-gerlargerthanzero. Then,thiscodeconstitutesaspecic, reduced-size subset of the constant-weight code C(Q;U), where the number of codewords was M =

Q U

. By con-trast,letA(Q;2v;U)representthenumberofcodewordsof theconstant-weightcodeC(Q;2v;U). Then,iftheFH pat-ternsaredeterminednowbyalltheA(Q;2v;U)codewords, thedetectioncomplexitywillbereducedfromO(3

Q =Q)to O(A(Q;2v;U)2

U ).

4. PERFORMANCEOF THEBLIND

SOFT-DETECTION

AsshownforexampleinFig.3,fortheSFH/MCDS-CDMA system usingaconstant-weight code C(Q;2v;U) in order toactivatethesubcarriersandusingareceiverwithoutthe explicit knowledge of the FH pattern - except for know-ingthenumberoftheactivesubcarriers-wehaveto con-siderthosecodes, whichhaveidentical`1' positionsinthe FHcode, correspondingto identicalactivated subcarriers. However,potentiallydierentdatasymbolsareconveyedon theseactivesubcarriers. Werefertotheseasintra-setcodes or intra-codes, forshort. Explicitly,theaboveintra-codes arederivedfromagivenconstant-weightcodeandactivate thesamesubcarriers. Bycontrast,theso-calledinter-codes arederivedfromdierentconstant-weightcodeshavingthe samenumberof`1'FHcodepositions,butactivatedierent subcarriers.

(4)

Figure 3: Example of intra-codes and inter-codes of a constant-weight code C(10;4;5) for an SFH/MC DS-CDMAsystemusing10subcarriers.

Itcanbeshownthattheaverageprobabilitiesof intra-codeerrorandinter-codeerror foragivennumberofhits, K

h

,canbeapproximatedas:

P intra

(K h

; s

)(U 1)P(K h

; s

); (9)

Pinter(Kh;s)2 v

[A(Q;2v;U) 1]P

Kh; v

s 2

; (10)

whereinEq.(9)andEq.(10)wehave:

P(K h

;)= r

1+

(1+) ms

(m s

+ 1 2 ) 2

p

(m

s +1)

2

F 1

1;m

s +

1 2

;m s

+1; 1 1+

; (11)

=

s 2ms

=

q(L;2) 2mq(L;) ;

=

q(Lp;) 1 2N

p +

K h

q(Lp;) 3N

p +

20E

b N

0

1

1 ; (12)

and ()istheGammafunctiondenedas (z)= R

1 0

e t

t z 1

dt, z>0,

2 F

1

(a;b;;c;z)isthehypergeometricfunctiondened as[4 ]:

2F1(a;b;;c;z)= 1 X

k =0 (a)

k (b)

k z

k

(c)kk!

; (13)

and(a)k=a(a+1)(a+k 1); (a)0=1.

Theaveragebit errorprobabilityforaSFHbased sys-temcanbeexpressedas[6 ]:

Pb= K 1 X

K h

=0

K 1

Kh

P K

h h

(1 Ph) K 1 K

h

P(Kh;s); (14)

where0 Kh K 1andPh istheprobabilityofahit fromaninterferingsignal,whichcanbeexpressedas:

P h

= Q 1 U

k 1

Q U

k

=

U k Q

; (15)

ifweassumethattheFHpatternofthekthinterferinguser isdeterminedrandomlyby aconstant-weight codechosen fromthesetof

Q U

k

codes. TheprobabilityofP(K h

;s)inEq.(14)denotesthe con-ditionalbit error probability,given thatK

h

hitsoccurred

fromtheotherK 1interferingusers,which-accordingto Eq.(9)andEq.(10)anduponomittingthedetailed deriva-tions-canbeexpressedas:

P(K h

; s

)=

U 1

U P(K

h ;

s )

+ 2

v

[ A(Q;2v;U) 1] 2

P

K h

; vs

2

: (16)

5. NUMERICALRESULTS

In thissection,theaverage BERperformanceisevaluated asafunctionoftheaveragesignal-to-noiseratio(SNR)per bit,whichisobtainedbycomputing

b

= (1 e

Lp )

1 e

0 E

b N0

=q(Lp;)

0

E b N0

; (17)

forallsystemsdescribedabove.

Fig.4showstheBERperformanceoftheproposedSFH /MCDS-CDMAsystemwithrespecttothemultipath fad-ingparametersm=0:5; 1;2; 5; 10; 50.Therangeofother parameters used is explicitly stated in the corresponding gures. TheNakagamiparametermrepresentsthe dier-ent fadingenvironments,rangingfromtheworst-case one-sidedGaussianfadingtoRayleigh,andnallytothemost favourablenon-fadingcase. Theparametersusedareshown inthegure. Asexpected,foragivenSNRperbit,theBER decreasesuponincreasingthevalueofm,whichimpliesthat thechannelfadingbecomeslesssevere. Thesystem perfor-mance iscriticallyaectedbytheparameterm,iebythe communicationenvironmentencountered.

In Fig.5 we evaluated the intra-code word error rate (WER)accordingtoEq.(9)andtheinter-codeWERfrom Eq.(10), aswellastheirsumforourSFH/MCDS-CDMA systemusingblindsoft-detection. Fromtheresultswe con-cludedthatthetotalWERwastypicallydominatedbyone ofits contributing factors. Namely,forverylowSNRper bitvaluesitwasdominatedbytheWERoftheinter-code decisions,whileformoderatetohighSNRsperbit,bythe WERoftheintra-codeerrors. Sincetheinter-codeWERof Eq.(10)isafunctionofv,hence,fromEq.(9)andEq.(10) weinferthat,ifv>2,thetotalWERwillbedominatedby Eq.(9),providedthattheSNRperbit issuÆcientlyhigh. This property suggeststhat for v > 2 error-control tech-niques can be introduced, in order to correct the intra-code errors by increasing the minimumdistance between theintra-codes,andhencetodecreasetheintra-codeWER ofEq.(9),andconsequentlytodecrease thetotal WERof theblindsoft-detectionscheme.

Fig.6comparedtheperformanceofblindsoft-detection to that of hard-detection, which benetted from the ex-plicit knowledge of theFH patterns employed. Dierent Nakagamifading parameters, namelym = 1; 2; 10 were used,wheretheBERofhard-detectionwasintroducedasa benchmarker. TheresultsshowthatforasuÆcientlyhigh SNRperbitandasuÆcientlygoodchannelstate,theBER performanceofblindsoft-detectionwassuperiortothatof thehard-detection.AswediscussedinthecontextofFig.5, iferror-controlisintroducedforintra-codeerror-correction, then an improved BER performance can be achieved by blindsoft-detection.

InFig.7amulti-ratecommunicationsystemwas charac-terisedusingaconstantprocessinggainofN

p

(5)

Letthe rate ofeach transmittedsubcarrierbe Rb. Then thepractical rates supportedbythesystem mightbeR

b , 2R

b , 4R

b , 8R

b , 16R

b

, or 32R b

, since theconstant-weight codesC(32,2,1),..., C(32,32) as shown inthe gurewere assumed. Duetothehighminimumdistanceofthecodes C(32,8,4), C(32,14,8), C(32,16,16), and C(32,32), we ob-serve that even though thesystems transmit at dierent rates,amoreorlesssimilarBERperformancecanbe main-tained,whenthechannelqualityissuÆcientlyhigh- assum-ing appropriate constant-weight codes. By contrast, the BERperformanceofthesystemusingtheconstant-weight codesofC(32,2,1)andC(32,4,2)wasinferiorwithrespect totheothers',duetotheirrelativelylowminimumdistance.

Figure4: BERversusSNRperbitperformanceupon vary-ingthefadingparametermintherangeof

1 2

to50 employ-ingtheconstant-weightcodeC(16,12,8), Lp=3resolvable paths,diversityorderL=3,K=50users,bit-durationto chip-durationratioN=127andMIPdecayfactor=0.

6. REFERENCES

[1] E.Dahlman,B.Gudmundson,M.NilssonandJ.Skold, \UMTSandIMT-2000basedonwidebandCDMA," IEEECommun.Mag.,Vol.36,No.9,pp.70-80,Sept. 1998.

[2] N.Nakagami,\Them-distribution,ageneralformula forintensitydistributionofrapidfading,"inStatistical MethodsinRadioWave Propagation,W.G.Homan, ed.Oxford,England:Pergamon,1960.

[3] J. G. Proakis, Digital Communications, 3rd ed. New York: McGraw-Hill,1995.

[4] T. Eng and L. B. Milstein, \Coherent DS-CDMA performance in Nakagami multipath fading," IEEE Trans. on Commun., Vol. 43, No. 2/3/4, pp. 1134-1143,Feb./Mar./Apr.1995.

[5] S.KondoandL.B.Milstein,\Performanceof multicar-rierDSCDMAsystems,"IEEETrans.on Commun., Vol.44,No.2,pp.238-246,Feb.1996.

[6] T. Vlachos and E. Geraniotis, \Performance study of hybrid spread-spectrum random-access communi-cations," IEEE Trans. on Commun., Vol. 39, No. 6, pp.975-985,June1991.

Figure 5: WERversus SNRperbit performance ofblind soft-detectionuponvaryingthediversityorderL.

Figure 6: BER versus SNRper bit performance compari-son between hard-detectionandblind soft-detectionupon varyingthefadingparameterm.

References

Related documents

LO A~(CONFG 0) Retrieve contents of configuration reg. of bits per character.. NO PART OF THIS PROGRAM MAY BE PHOTOCOPIED, ;' REPRODUCED OR TRANSLATED TO ANOTHER

The kind of indicators are not just the ones referred to the history of planning (like urban standards as density, green surface, etc) but they involves also

This will establish the site, quality, intensity and type of pain or symptoms.. A 24-hour pattern also needs to

In 14-day-old females, the tBMC of the proximal metaphysis of the tibio- tarsus was positively correlated with body weight and bone weight, while negative correlations of

The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only

The study was focused on the evaluation of the resistance of gastrointes- tinal nematodes as recommended by the World Association for the Advancement of Veterinary

Each oxalate anion chelates to two Fe II ions, forming chains along the a axis. The chains are further connected by O—H O and C—H O hydrogen bonds, stabilizing the structure.

Dicyanamide (dca) has been shown to be a versatile ligand and may coordinate to metal ions as a terminal ligand through a nitrile or amide nitrogen. It also acts as a bridging