• No results found

2 (2′,3′,4′,6′ Tetra O acetyl β D gluco­pyran­osyl­thio) 4 pyridin 4 yl 6,7,8,9 tetra­hydro 5H cyclo­hepta­[b]­pyridine 3 carbo­nitrile

N/A
N/A
Protected

Academic year: 2020

Share "2 (2′,3′,4′,6′ Tetra O acetyl β D gluco­pyran­osyl­thio) 4 pyridin 4 yl 6,7,8,9 tetra­hydro 5H cyclo­hepta­[b]­pyridine 3 carbo­nitrile"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

o1244

Galal H. Elgemeieet al. C30H33N3O9S DOI: 10.1107/S160053680201872X Acta Cryst.(2002). E58, o1244±o1246 Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

2-(2

000

,3

000

,4

000

,6

000

-Tetra-O-acetyl-

b

-

D

-glucopyranosyl-

thio)-4-pyridin-4-yl-6,7,8,9-tetrahydro-5H-cyclo-hepta[b]pyridine-3-carbonitrile

Galal H. Elgemeie,aMona M. Husseinband Peter G. Jonesc*

aChemistry Department, Faculty of Science,

Helwan University, Helwan, Cairo, Egypt, bChemistry Department, Faculty of Science,

Cairo University, Giza, Egypt, andcInstitut fuÈr Anorganische und Analytische Chemie, Technische UniversitaÈt Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: jones@xray36.anchem.nat.tu-bs.de

Key indicators Single-crystal X-ray study T= 173 K

Mean(C±C) = 0.004 AÊ Rfactor = 0.045 wRfactor = 0.111

Data-to-parameter ratio = 18.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2002 International Union of Crystallography Printed in Great Britain ± all rights reserved

In the title compound, C30H33N3O9S, the glucoside moiety is

attached to the pyridone via the S atom. The expected absolute con®guration was con®rmed. Dimensions at sulfur are SÐC(pyridone) 1.780 (2), SÐC(glucoside) 1.803 (2) AÊ, CÐSÐC 98.15 (11). There are three short H O contacts

(<2.5 AÊ) that determine the molecular packing.

Comment

There is increasing interest in the synthesis of nucleoside analogues and their incorporation into DNA sequences for the study of ligand±DNA and protein±DNA interactions. In recent reports, we described the preparation of various novel functionalized pyridinethione glycosides, which displayed antagonistic activity against human carcinoma cells and HIV (Attia & Elgemeie, 1995; Elgemeieet al., 1997, 1998, 1999). In an earlier brief communication we had reported the use of dihydropyridinethione glycosides as P-glycoprotein (Pgp) substrates or inhibitors in the protein glycosylation process (Scalaet al., 1997). These common features encouraged us to develop a new straightforward synthesis of these compounds.

Here we describe a novel one-pot synthesis of the title pyri-dine thioglucoside (4) through reaction of a pyripyri-dine-2(1H

(2)

thione derivative (1) with 2,3,4,6-tetra±O-acetyl--d -gluco-pyranosyl bromide (2). However, this reaction could also give the pyridinethione N-glucoside regioisomer (3). Only one product was obtained; the spectra did not allow us to distin-guish between (3) and (4). Here we report the X-ray structure analysis, which determines the product unambiguously to be the pyridineS-glucoside, (4).

The title compound, (4), is shown in Fig. 1. The absolute con®guration was determined by anomalous dispersion effects and is consistent with the known con®guration of the sugar. Bond lengths and angles (e.g. at sulfur; Table 1) may be regarded as normal. The sugar ring displays the usual chair conformation, with absolute torsion angles between 52.9 and 68.6. The seven-membered ring adopts a conformation in

which the atoms C5,C9,C10,C11 are approximately coplanar (mean deviation 0.02 AÊ), and the atoms C6,C7,C8 form a second plane parallel to the ®rst [interplanar angle 1.0 (4)].

The torsion angles around the S atom in the atom sequence C21,C20,S,C2,C3 are approximately antiperiplanar.

There are several short H O contacts that could be interpreted as hydrogen bonds. Ignoring those contacts involving the poorly resolved methyl H atoms, the three shortest have uncorrected lengths ofca2.45 AÊ (Table 2) and lead to a three-dimensional packing.

Experimental

To a solution of the condensed pyridine-2(1H)-thione [(1); 2.81 g, (0.01 mol)] and potassium hydroxide [0.56 g, (0.01 mol) in distilled water (6 ml)] was added a solution of 2,3,4,6-tetra-O-acetyl-±d -glucopyranosyl bromide [(2); 4.52 g, (0.011 mol)] in dry acetone (20 ml). The reaction mixture was stirred at room temperature for 2 h. The solvent was evaporated under reduced pressure at 303 K and the residue was washed with distilled water to remove the potassium bromide which had formed. The product was dried, and crystallized from ethanol in 80% yield to afford pale-yellow crystals (m.p. 456 K).

Crystal data

C30H33N3O9S

Mr= 611.65

Orthorhombic,P212121

a= 8.0237 (14) AÊ

b= 10.2293 (14) AÊ

c= 38.636 (6) AÊ

V= 3171.1 (9) AÊ3

Z= 4

Dx= 1.281 Mg mÿ3

MoKradiation Cell parameters from 61

re¯ections

= 4.5±12.5 = 0.16 mmÿ1

T= 173 (2) K Tablet, pale yellow 0.600.450.25 mm

Data collection

SiemensP4 diffractometer

!scans

7824 measured re¯ections 7289 independent re¯ections 5529 re¯ections withI> 2(I)

Rint= 0.022 max= 27.5

h=ÿ10!10

k=ÿ13!0

l= 0!50

3 standard re¯ections every 247 re¯ections intensity decay: none

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.045

wR(F2) = 0.111

S= 0.96 7289 re¯ections 392 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0643P)2]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.018

max= 0.43 e AÊÿ3

min=ÿ0.28 e AÊÿ3

Absolute structure: Flack (1983), 3142 Friedel pairs

Flack parameter =ÿ0.09 (8)

Table 1

Selected geometric parameters (AÊ,).

SÐC2 1.780 (2)

SÐC20 1.803 (2) N1ÐC2N1ÐC10 1.327 (3)1.346 (3)

C2ÐSÐC20 98.15 (11) C2ÐN1ÐC10 119.1 (2)

C20ÐSÐC2ÐC3 167.95 (19) C24ÐO1ÐC20ÐC21 ÿ68.6 (2) C2ÐSÐC20ÐC21 160.43 (17) O1ÐC20ÐC21ÐC22 58.3 (2)

C20ÐC21ÐC22ÐC23 ÿ52.9 (2) C21ÐC22ÐC23ÐC24 55.6 (2) C20ÐO1ÐC24ÐC23 67.5 (2) C22ÐC23ÐC24ÐO1 ÿ59.7 (2)

Table 2

Hydrogen-bonding geometry (AÊ,).

DÐH A DÐH H A D A DÐH A

C37ÐH37C O1i 0.98 2.68 3.544 (3) 147

C24ÐH24 O6ii 1.00 2.45 3.288 (3) 142

C19ÐH19 O7iii 0.95 2.64 3.332 (3) 130

C38ÐH38C O7iii 0.98 2.67 3.379 (4) 129

C21ÐH21 O8iv 1.00 2.47 3.364 (3) 149

C5ÐH5A N13ii 0.99 2.59 3.561 (4) 168

C35ÐH35C N13v 0.98 2.44 3.401 (4) 168

C15ÐH15 N17vi 0.95 2.45 3.375 (4) 163

Symmetry codes: (i) xÿ1

2;12ÿy;2ÿz; (ii) xÿ1;y;z; (iii) x;1‡y;z; (iv) 1

2‡x;12ÿy;2ÿz; (v)x;yÿ1;z; (vi) 1ÿx;yÿ12;32ÿz.

Methyl H atoms were located in difference syntheses, idealized (CÐH 0.98 AÊ, HÐCÐH 109.5) and re®ned on the basis of rigid groups allowed to rotate but not tip. However, the maxima were not very distinct and convergence was slow for those attached to C36. Other H atoms were included using a riding model with ®xed CÐH bond lengths (aromatic 0.95, methylene 0.99, methine 1.00 AÊ);U(H) values were ®xed at 1.5Ueqof the parent atom for the methyl groups

and 1.2Ueqfor other H atoms.

Acta Cryst.(2002). E58, o1244±o1246 Galal H. Elgemeieet al. C30H33N3O9S

o1245

organic papers

Figure 1

(3)

organic papers

o1246

Galal H. Elgemeieet al. C30H33N3O9S Acta Cryst.(2002). E58, o1244±o1246

Data collection:XSCANS(Fait, 1991); cell re®nement:XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mr A. Weinkauf for technical assistance.

References

Attia, A. M. & Elgemeie, G. E. H. (1995).Carbohydr. Res.268, 295±300.

Elgemeie, G. E. H., Attia, A. M. & Hussain, B. A. (1998). Nucleosides Nucleotides,17, 855±868.

Elgemeie, G. E. H., Attia, A. M. & Shehada, L. A. (1997).Tetrahedron, 53, 17441±17448.

Elgemeie, G. E. H., Mansour, O. A. & Metwally, N. H. (1999).Nucleosides Nucleotides,18, 113±123.

Fait, J. (1991).Manuals to X-ray Program System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983).Acta Cryst. A39, 876±881.

Scala, S., Akhmed, N., Rao, U. S., Paull, K., Lan, L., Dickstein, B., Lee, J., Elgemeie, G. E. H., Stein, W. D. & Bates, S. E. (1997).Mol. Pharmacol.51, 1024±1033.

Sheldrick, G. M. (1990).Acta Cryst.A46, 467±473.

Sheldrick, G. M. (1997). SHELXL97. University of GoÈttingen, Ger-many.

(4)

supporting information

sup-1 Acta Cryst. (2002). E58, o1244–o1246

supporting information

Acta Cryst. (2002). E58, o1244–o1246 [https://doi.org/10.1107/S160053680201872X]

2-(2

,3

,4

,6

-Tetra-

O

-acetyl-

β

-

D

-glucopyranosylthio)-4-pyridin-4-yl-6,7,8,9-tetrahydro-5

H

-cyclohepta[

b

]pyridine-3-carbonitrile

Galal H. Elgemeie, Mona M. Hussein and Peter G. Jones

2-(2′,3′,4′,6′-Tetra-O-acetyl-β-D-glucopyranosylthio)-4-pyridin-4-yl- 6,7,8,9-tetrahydro-5H

-cyclohepta[b]pyridine-3-carbonitrile

Crystal data

C30H33N3O9S Mr = 611.65

Orthorhombic, P212121 a = 8.0237 (14) Å

b = 10.2293 (14) Å

c = 38.636 (6) Å

V = 3171.1 (9) Å3 Z = 4

F(000) = 1288

Dx = 1.281 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 61 reflections

θ = 4.5–12.5°

µ = 0.16 mm−1 T = 173 K Tablet, colourless 0.60 × 0.45 × 0.25 mm

Data collection

Siemens P4 diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω–scans

7824 measured reflections 7289 independent reflections 5529 reflections with I > 2σ(I)

Rint = 0.022

θmax = 27.5°, θmin = 3.2°

h = −10→10

k = −13→0

l = 0→50

3 standard reflections every 247 reflections intensity decay: none

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.045 wR(F2) = 0.111 S = 0.96 7289 reflections 392 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(Fo2) + (0.0643P)2]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.018

Δρmax = 0.43 e Å−3

Δρmin = −0.28 e Å−3

Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881

(5)

supporting information

sup-2 Acta Cryst. (2002). E58, o1244–o1246

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 2.3626 (0.0187) x + 5.2939 (0.0127) y + 31.0403 (0.0432) z = 28.5469 (0.0330)

* -0.0107 (0.0009) C5 * 0.0109 (0.0009) C9 * -0.0229 (0.0019) C10 * 0.0227 (0.0019) C11 - 1.2242 (0.0061) C6 - 1.2060 (0.0073) C7 - 1.1798 (0.0060) C8

Rms deviation of fitted atoms = 0.0178

- 2.3734 (0.0457) x + 5.4440 (0.0190) y + 30.6484 (0.0889) z = 27.1271 (0.0634) Angle to previous plane (with approximate e.s.d.) = 1.02 (0.42)

* 0.0000 (0.0000) C6 * 0.0000 (0.0000) C7 * 0.0000 (0.0000) C8 Rms deviation of fitted atoms = 0.0000

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

S 0.60092 (7) 0.49702 (6) 0.878323 (16) 0.03099 (13) O1 0.37769 (19) 0.42109 (14) 0.92324 (4) 0.0277 (3) O2 0.64631 (18) 0.18940 (15) 0.87778 (4) 0.0304 (4) O3 0.5351 (2) 0.04489 (14) 0.93768 (4) 0.0304 (4) O4 0.2138 (2) 0.11383 (15) 0.95799 (4) 0.0341 (4) O5 0.0610 (2) 0.51253 (18) 0.93864 (5) 0.0414 (4) O6 0.8998 (3) 0.2544 (3) 0.89351 (7) 0.0785 (8) O7 0.4022 (3) −0.09843 (16) 0.90312 (4) 0.0432 (4) O8 0.2244 (3) 0.1743 (2) 1.01388 (5) 0.0497 (5) O9 0.2129 (3) 0.66015 (19) 0.96802 (5) 0.0523 (5) N1 0.2985 (3) 0.52590 (19) 0.84962 (6) 0.0386 (5) C2 0.4462 (3) 0.5818 (2) 0.85412 (6) 0.0297 (5) C3 0.4818 (3) 0.7062 (2) 0.84100 (6) 0.0266 (5) C4 0.3653 (3) 0.7689 (2) 0.82020 (6) 0.0331 (5) C5 0.0740 (4) 0.7722 (3) 0.79327 (9) 0.0528 (8)

H5A −0.0228 0.7914 0.8083 0.063*

H5B 0.1161 0.8566 0.7843 0.063*

C6 0.0156 (5) 0.6917 (4) 0.76345 (9) 0.0723 (10)

H6A 0.1137 0.6502 0.7525 0.087*

H6B −0.0356 0.7505 0.7461 0.087*

C7 −0.1100 (5) 0.5851 (3) 0.77267 (9) 0.0672 (9)

H7A −0.2078 0.6266 0.7838 0.081*

H7B −0.1489 0.5435 0.7510 0.081*

C8 −0.0437 (4) 0.4786 (3) 0.79671 (10) 0.0707 (10)

H8A −0.1322 0.4122 0.8000 0.085*

H8B 0.0514 0.4350 0.7852 0.085*

C9 0.0117 (3) 0.5247 (3) 0.83142 (9) 0.0523 (8)

(6)

supporting information

sup-3 Acta Cryst. (2002). E58, o1244–o1246

H9B −0.0724 0.5867 0.8405 0.063*

C10 0.1800 (3) 0.5906 (3) 0.83190 (7) 0.0407 (6) C11 0.2089 (3) 0.7105 (3) 0.81512 (7) 0.0403 (6) C12 0.6375 (3) 0.7688 (2) 0.84973 (6) 0.0310 (5) N13 0.7596 (3) 0.8178 (2) 0.85719 (7) 0.0454 (6) C14 0.4056 (3) 0.9003 (2) 0.80537 (6) 0.0328 (5) C15 0.4877 (4) 0.9112 (3) 0.77388 (7) 0.0430 (6)

H15 0.5193 0.8356 0.7612 0.052*

C16 0.5222 (4) 1.0348 (3) 0.76147 (8) 0.0530 (8)

H16 0.5783 1.0410 0.7399 0.064*

N17 0.4835 (4) 1.1445 (2) 0.77724 (7) 0.0569 (7) C18 0.4039 (6) 1.1327 (3) 0.80750 (8) 0.0648 (10)

H18 0.3732 1.2104 0.8194 0.078*

C19 0.3636 (4) 1.0138 (3) 0.82255 (7) 0.0513 (8)

H19 0.3082 1.0105 0.8443 0.062*

C20 0.4705 (3) 0.3686 (2) 0.89534 (6) 0.0250 (5)

H20 0.3915 0.3397 0.8768 0.030*

C21 0.5714 (3) 0.2505 (2) 0.90755 (6) 0.0249 (5)

H21 0.6568 0.2756 0.9252 0.030*

C22 0.4460 (3) 0.1521 (2) 0.92205 (6) 0.0260 (5)

H22 0.3760 0.1179 0.9027 0.031*

C23 0.3333 (3) 0.2134 (2) 0.94904 (6) 0.0271 (5)

H23 0.3995 0.2392 0.9699 0.033*

C24 0.2474 (3) 0.3324 (2) 0.93358 (6) 0.0299 (5)

H24 0.1830 0.3049 0.9126 0.036*

C30 0.1334 (3) 0.4050 (2) 0.95776 (7) 0.0378 (6)

H30A 0.0446 0.3461 0.9663 0.045*

H30B 0.1969 0.4383 0.9779 0.045*

C31 0.8125 (3) 0.1985 (3) 0.87389 (8) 0.0404 (6) C32 0.4965 (3) −0.0777 (2) 0.92633 (6) 0.0337 (6) C33 0.1739 (3) 0.1009 (3) 0.99221 (7) 0.0371 (6) C34 0.1195 (3) 0.6331 (2) 0.94491 (7) 0.0398 (6) C35 0.8684 (4) 0.1336 (3) 0.84150 (8) 0.0544 (8)

H35A 0.9894 0.1427 0.8392 0.082*

H35B 0.8134 0.1746 0.8216 0.082*

H35C 0.8391 0.0406 0.8423 0.082*

C36 0.5863 (4) −0.1782 (2) 0.94682 (8) 0.0510 (7)

H36A 0.5232 −0.1975 0.9679 0.077*

H36B 0.6970 −0.1454 0.9530 0.077*

H36C 0.5978 −0.2581 0.9330 0.077*

C37 0.0610 (4) −0.0132 (3) 0.99696 (8) 0.0641 (10)

H37A 0.1169 −0.0928 0.9889 0.096*

H37B −0.0413 0.0004 0.9836 0.096*

H37C 0.0331 −0.0224 1.0215 0.096*

C38 0.0523 (4) 0.7278 (3) 0.91904 (9) 0.0583 (8)

H38A 0.0242 0.8101 0.9307 0.088*

H38B −0.0479 0.6913 0.9083 0.088*

(7)

supporting information

sup-4 Acta Cryst. (2002). E58, o1244–o1246

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(8)

supporting information

sup-5 Acta Cryst. (2002). E58, o1244–o1246

Geometric parameters (Å, º)

S—C2 1.780 (2) C12—N13 1.138 (3)

S—C20 1.803 (2) C14—C19 1.379 (4)

O1—C20 1.416 (3) C14—C15 1.388 (4)

O1—C24 1.441 (3) C15—C16 1.380 (4)

O2—C31 1.345 (3) C15—H15 0.9500

O2—C21 1.440 (3) C16—N17 1.315 (4)

O3—C32 1.364 (3) C16—H16 0.9500

O3—C22 1.442 (3) N17—C18 1.338 (4)

O4—C33 1.367 (3) C18—C19 1.387 (4)

O4—C23 1.441 (3) C18—H18 0.9500

O5—C34 1.342 (3) C19—H19 0.9500

O5—C30 1.447 (3) C20—C21 1.529 (3)

O6—C31 1.179 (3) C20—H20 1.0000

O7—C32 1.192 (3) C21—C22 1.529 (3)

O8—C33 1.195 (3) C21—H21 1.0000

O9—C34 1.198 (3) C22—C23 1.516 (3)

N1—C2 1.327 (3) C22—H22 1.0000

N1—C10 1.346 (3) C23—C24 1.521 (3)

C2—C3 1.399 (3) C23—H23 1.0000

C3—C4 1.390 (3) C24—C30 1.504 (3)

C3—C12 1.444 (3) C24—H24 1.0000

C4—C11 1.404 (4) C30—H30A 0.9900

C4—C14 1.496 (3) C30—H30B 0.9900

C5—C6 1.492 (5) C31—C35 1.486 (4)

C5—C11 1.510 (4) C32—C36 1.484 (4)

C5—H5A 0.9900 C33—C37 1.489 (4)

C5—H5B 0.9900 C34—C38 1.493 (4)

C6—C7 1.527 (5) C35—H35A 0.9800

C6—H6A 0.9900 C35—H35B 0.9800

C6—H6B 0.9900 C35—H35C 0.9800

C7—C8 1.527 (5) C36—H36A 0.9800

C7—H7A 0.9900 C36—H36B 0.9800

C7—H7B 0.9900 C36—H36C 0.9800

C8—C9 1.490 (5) C37—H37A 0.9800

C8—H8A 0.9900 C37—H37B 0.9800

C8—H8B 0.9900 C37—H37C 0.9800

C9—C10 1.510 (4) C38—H38A 0.9800

C9—H9A 0.9900 C38—H38B 0.9800

C9—H9B 0.9900 C38—H38C 0.9800

C10—C11 1.407 (4)

(9)

supporting information

sup-6 Acta Cryst. (2002). E58, o1244–o1246

C34—O5—C30 117.8 (2) O2—C21—C22 106.38 (17) C2—N1—C10 119.1 (2) C20—C21—C22 106.52 (17)

N1—C2—C3 121.7 (2) O2—C21—H21 111.7

N1—C2—S 118.82 (17) C20—C21—H21 111.7 C3—C2—S 119.42 (17) C22—C21—H21 111.7 C4—C3—C2 119.5 (2) O3—C22—C23 108.80 (18) C4—C3—C12 120.8 (2) O3—C22—C21 109.10 (17) C2—C3—C12 119.7 (2) C23—C22—C21 111.88 (18)

C3—C4—C11 119.1 (2) O3—C22—H22 109.0

C3—C4—C14 119.4 (2) C23—C22—H22 109.0 C11—C4—C14 121.5 (2) C21—C22—H22 109.0 C6—C5—C11 115.2 (3) O4—C23—C22 105.63 (17)

C6—C5—H5A 108.5 O4—C23—C24 110.98 (18)

C11—C5—H5A 108.5 C22—C23—C24 109.32 (18)

C6—C5—H5B 108.5 O4—C23—H23 110.3

C11—C5—H5B 108.5 C22—C23—H23 110.3

H5A—C5—H5B 107.5 C24—C23—H23 110.3

C5—C6—C7 114.9 (3) O1—C24—C30 107.60 (19)

C5—C6—H6A 108.5 O1—C24—C23 106.49 (17)

C7—C6—H6A 108.5 C30—C24—C23 115.3 (2)

C5—C6—H6B 108.5 O1—C24—H24 109.1

C7—C6—H6B 108.5 C30—C24—H24 109.1

H6A—C6—H6B 107.5 C23—C24—H24 109.1

C8—C7—C6 114.9 (3) O5—C30—C24 107.6 (2)

C8—C7—H7A 108.5 O5—C30—H30A 110.2

C6—C7—H7A 108.5 C24—C30—H30A 110.2

C8—C7—H7B 108.5 O5—C30—H30B 110.2

C6—C7—H7B 108.5 C24—C30—H30B 110.2

H7A—C7—H7B 107.5 H30A—C30—H30B 108.5

C9—C8—C7 115.2 (3) O6—C31—O2 123.4 (3)

C9—C8—H8A 108.5 O6—C31—C35 125.4 (3)

C7—C8—H8A 108.5 O2—C31—C35 111.2 (3)

C9—C8—H8B 108.5 O7—C32—O3 123.3 (2)

C7—C8—H8B 108.5 O7—C32—C36 125.9 (2)

H8A—C8—H8B 107.5 O3—C32—C36 110.8 (2)

C8—C9—C10 114.8 (3) O8—C33—O4 122.5 (2)

C8—C9—H9A 108.6 O8—C33—C37 127.8 (3)

C10—C9—H9A 108.6 O4—C33—C37 109.7 (2)

C8—C9—H9B 108.6 O9—C34—O5 124.4 (2)

C10—C9—H9B 108.6 O9—C34—C38 125.1 (3)

H9A—C9—H9B 107.5 O5—C34—C38 110.5 (2)

(10)

supporting information

sup-7 Acta Cryst. (2002). E58, o1244–o1246

C19—C14—C15 118.0 (2) C32—C36—H36B 109.5 C19—C14—C4 121.3 (2) H36A—C36—H36B 109.5 C15—C14—C4 120.7 (2) C32—C36—H36C 109.5 C16—C15—C14 118.3 (3) H36A—C36—H36C 109.5 C16—C15—H15 120.9 H36B—C36—H36C 109.5

C14—C15—H15 120.9 C33—C37—H37A 109.5

N17—C16—C15 125.0 (3) C33—C37—H37B 109.5 N17—C16—H16 117.5 H37A—C37—H37B 109.5

C15—C16—H16 117.5 C33—C37—H37C 109.5

C16—N17—C18 116.1 (3) H37A—C37—H37C 109.5 N17—C18—C19 123.8 (3) H37B—C37—H37C 109.5

N17—C18—H18 118.1 C34—C38—H38A 109.5

C19—C18—H18 118.1 C34—C38—H38B 109.5

C14—C19—C18 118.7 (3) H38A—C38—H38B 109.5

C14—C19—H19 120.7 C34—C38—H38C 109.5

C18—C19—H19 120.7 H38A—C38—H38C 109.5 O1—C20—C21 110.08 (17) H38B—C38—H38C 109.5 O1—C20—S 107.84 (14)

(11)

supporting information

sup-8 Acta Cryst. (2002). E58, o1244–o1246

C6—C5—C11—C10 −59.9 (4) C22—C23—C24—C30 −178.9 (2) C4—C3—C12—N13 126 (12) C34—O5—C30—C24 −104.6 (2) C2—C3—C12—N13 −53 (12) O1—C24—C30—O5 62.4 (2) C3—C4—C14—C19 −91.6 (3) C23—C24—C30—O5 −178.97 (19) C11—C4—C14—C19 85.0 (3) C21—O2—C31—O6 −0.3 (4) C3—C4—C14—C15 88.0 (3) C21—O2—C31—C35 −178.5 (2) C11—C4—C14—C15 −95.4 (3) C22—O3—C32—O7 4.8 (3) C19—C14—C15—C16 −0.2 (4) C22—O3—C32—C36 −174.9 (2) C4—C14—C15—C16 −179.8 (3) C23—O4—C33—O8 5.7 (4) C14—C15—C16—N17 0.1 (5) C23—O4—C33—C37 −175.1 (2) C15—C16—N17—C18 −0.3 (5) C30—O5—C34—O9 −9.4 (4) C16—N17—C18—C19 0.7 (5) C30—O5—C34—C38 170.5 (2) C15—C14—C19—C18 0.5 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

C37—H37C···O1i 0.98 2.68 3.544 (3) 147

C24—H24···O6ii 1.00 2.45 3.288 (3) 142

C19—H19···O7iii 0.95 2.64 3.332 (3) 130

C38—H38C···O7iii 0.98 2.67 3.379 (4) 129

C21—H21···O8iv 1.00 2.47 3.364 (3) 149

C5—H5A···N13ii 0.99 2.59 3.561 (4) 168

C35—H35C···N13v 0.98 2.44 3.401 (4) 168

C15—H15···N17vi 0.95 2.45 3.375 (4) 163

References

Related documents

In the construction of the example showing that multiple steady state can exist in the classical one capital good linear activity model developed by Bruno (1967), provided at least

10:30–10:55 Joint Word Segmentation and POS Tagging Using a Single Perceptron Yue Zhang and Stephen Clark. 10:55–11:20 A Cascaded Linear Model for Joint Chinese Word Segmentation

Conditional cooperators and free riders on average contributed 9.3 ECUs and 7.5 ECUs, respectively, to the joint accounts in the F-Sorting reputation community.. Figure 2 report

Requirements.&#34; The Harvard Law School Forum on Corporate Governance and Financial Regulation Money Market Mutual Funds Stress Testing New Regulatory Requirements

The main finding of this study was that CAIx decreased 20%-25% at two levels of aerobic exercise, following a dietary BJ, nitrate- rich treatment which increased the blood

Whereas Shleifer and Vishny (1994) claim that market socialism will merely give rise to rent-. seeking inefficiencies, Hayek argues that democratic socialism will produce

The empirical evidence suggests that Model 2, which assumes a homogeneous production technology for all credit unions regardless of their differing output mixes, tends to

Figure-9: Inflation-unemployment relationship over different frequency ranges for Sweden (Inflation targeting in 1993). Low-pass