• No results found

Genetic linkage of type VII collagen (COL7A1) to dominant dystrophic epidermolysis bullosa in families with abnormal anchoring fibrils

N/A
N/A
Protected

Academic year: 2020

Share "Genetic linkage of type VII collagen (COL7A1) to dominant dystrophic epidermolysis bullosa in families with abnormal anchoring fibrils"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

Genetic linkage of type VII collagen (COL7A1) to

dominant dystrophic epidermolysis bullosa in

families with abnormal anchoring fibrils.

M Ryynänen, … , R G Knowlton, J Uitto

J Clin Invest. 1992;89(3):974-980. https://doi.org/10.1172/JCI115680.

Epidermolysis bullosa (EB) in a group of genodermatoses characterized by the fragility of skin. Previous studies on the dystrophic (scarring) forms of EB have suggested

abnormalities in anchoring fibrils, morphologically recognizable attachment structures that provide stability to the association of the cutaneous basement membrane to the underlying dermis. Since type VII collagen is the major component of the anchoring fibrils, we

examined the genetic linkage of dominant dystrophic EB (EBDD) and the type VII collagen gene (COL7A1) locus, which we have recently mapped to chromosome 3p, in three large kindreds with abnormal anchoring fibrils. Strong genetic linkage of EBDD and COL7A1 loci was demonstrated with the maximum logarithm of odds (LOD) score of 8.77 at theta = 0. This linkage was further confirmed with two additional markers in this region of the short arm of chromosome 3, and these analyses allowed further refinement of the map locus of

COL7A1. Since there were no recombinants between the COL7A1 and EBDD loci, our findings suggest that type VII collagen is the candidate gene that may harbor the mutations responsible for the EB phenotype in these three families.

Research Article

Find the latest version:

http://jci.me/115680/pdf

(2)

Genetic Linkage

of

Type

VII

Collagen (COL7A1)

to

Dominant

Dystrophic

Epidermolysis Bullosa

in

Families

with Abnormal Anchoring Fibrils

MarkkuRyyninen,JaanaRyynanen,StephanSollberg, Renato V.lozzo, Robert G. Knowlton, and Jouni Ultto

DepartmentsofDermatology, Biochemistry and Molecular Biology, and Pathology and Cell Biology, JeffersonMedicalCollege; and Section ofMolecularDermatology, Jefferson Institute ofMolecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107

Abstract

Epidermolysis bullosa (EB) is a group of genodermatoses char-acterized by the fragility of skin. Previous studies on the dys-trophic (scarring) forms of EB have suggested abnormalities in anchoring fibrils, morphologically recognizable attachment structures that provide stability to the association ofthe

cutane-ousbasement membrane tothe underlying dermis. Since type VII collagen is the major component of the anchoring fibrils, we examined the genetic linkage of dominant dystrophic EB (EBDD) and the type VII collagen gene (COL7A1) locus, which we have recently mapped to chromosome 3p, in three large kindreds with abnormal anchoringfibrils. Strong genetic linkageof EBDDandCOL7A1loci was demonstratedwith the maximum logarithm of odds (LOD) score of 8.77 ata =0. This linkage was further confirmed with two additional markers in thisregion of the short arm of chromosome 3, and these

analy-sesallowed further refinement ofthemaplocusofCOL7A1. Sincethere were norecombinants between theCOL7A1 and

EBDDloci,ourfindings suggest that type VII collagen is the candidate gene that may harbor the mutations responsible for the EB phenotype in these three families. (J. Clin. Invest.

1992.89:974-980.)Key words:basement membranezone* bul-lousdermatosis * genetic skin diseases

Introduction

Epidermolysis bullosa (EB)' is a heterogenous group of

me-chano-bullousdiseases characterized by easyblisteringas a re-sultof minortrauma.EB canbedivided into threemajor

cate-goriesonthebasis of the level of tissueseparationwithin the

cutaneousbasement membranezone atthedermal-epidermal

junction. Inthesimplex(nonscarring) forms,theblisters

de-velop within the epidermisatthe level ofthe basal layer of

keratinocytes; in thejunctional forms, the tissue separation

occurswithin the basement membraneatthelevelof the lam-inalucida; andin the dystrophic (scarring)

forms,

the blister formation occursbelow thebasement membrane withinthe

AddresscorrespondencetoJouniUitto,M.D.,Ph.D.,Thomas

Jeffer-sonUniversity, Department ofDermatology,BluemleLife Sciences Building,233 South 10thStreet,Suite450,Philadelphia,PA19107.

Receivedfor publication 19August 1991 andinrevisedform24

October1991.

1. Abbreviations usedinthis paper:COL7A1,type VIIcollagengene;

EB,epidermolysisbullosa;EBDD, dominantdystrophicEB;EBS,

sim-plexEB;LOD,logarithmofodds; RFLP,restrictionfragmentlength

polymorphism.

papillary dermis. The inheritance pattern can be either autoso-mal dominant orautosomal recessive (for reviews see refer-ences 1-3).

The patientswith dystrophic EB have the most severe form

ofthis condition.Inautosomalrecessive EB, the tissue

separa-tioncanresultfrom minor trauma, and the healing occurs with

eitheratrophic or hypertophic scarring. In somewhat less

se-vere, dominantlyinherited forms of dystrophic EB (EBDD), the clinicalmanifestations are primarily present at thepressure

points, hands, and feet; and the cutaneous changes are often associated withcharacteristic naildystrophy. Adiagnostic

ultra-structural feature of the dystrophic formsofEB is altered

mor-phology and marked reduction in the number of anchoring

fibrils,attachmentcomplexesatthedermalside of the cutane-ousbasementmembrane zone (4-6). In severe recessive dys-trophicforms ofEB, theanchoring fibrils can be entirely absent (7), whereas inEBDD some anchoring fibrils may be present,

buttheyareoftenhypoplastic and appear abnormal (4). Type VII collagen is the major component of anchoring

fibrils(8, 9). Thiscollagen isahomotrimer,

lal(VII)J3,

and the individual molecules have been suggested to form antiparallel dimers,whichaggregatelaterallytoformanchoring fibrils (10, 11). Because thenumber of anchoring fibrils (which are re-strictedintheirdistributiontothestratifying squamous epithe-lia) is extremely loweven innormalhumanskin, elucidation of abnormalities in typeVIIcollagenat theprotein level isnotyet feasible. However,recentcloningof human typeVIIcollagen

cDNAshasprovideda means tostudyanchoring fibril involve-ment in thepathogenesis ofEBthroughgeneticlinkage

analy-ses(12).Mapping of the typeVIIcollagen gene(COL7A1) has revealedasinglelocus in theshort armof humanchromosome

3 (12). Using a PvuII restriction fragment length polymor-phism (RFLP)in theCOL7A1 gene,werecentlydemonstrated

linkage between COL7AIand EBphenotype inafamilywith

EBDD (13).Inthisstudy,weexaminedthegeneticlinkageof the EBphenotypeto theCOL7A1locus andtwo otherpolymor-phic markersontheshortarmof chromosome 3in three

fami-lies with EBDD, demonstrating abnormal anchoring fibrils.

Thesegregationanalyses,whichdefined thegenetic map loca-tions ofEBDDandCOL7A1 onchromosome3, provided evi-dence forstronglinkagebetweenCOL7A1and the EBDD phe-notype,suggestingthatCOL7AI harbors the mutation in these threefamilies withEBDD.

Methods

Clinical.ThreeFinnishpedigreeswith EBDDweresubjectedtostudy.

One of them(FEB33)consisted of 13affected and 16 unaffectedliving individualsintwogenerations(Fig.1A).Theinheritance ofEBDD in

thisfamilywasconsistent withautosomaldominantpattern with

com-plete penetrance. Thediagnosis ofEBDD(theCockayne-Touraine

type)wasmadeonthebasis ofclinicalobservations,includingmarked

tendencyforblisteringand erosions notedatbirthorshortlythereafter. Theerosions healed withextensivescarring,and theaffectedpatients

J.Clin. Invest.

© TheAmerican Society forClinicalInvestigation,Inc.

0021-9738/92/03/0974/07 $2.00

(3)

A. FEB 33

I

14

II

YNZ86.1 -_

COL7A1

--EFD145.1 -*

III

YNZ86.1 -*

COL7A1 -_

EFD145.1 -*

B. FEB 37

YNZ86.1 _-*

COL7A1

_-EFD145.1 _

II

YNZ86.1

--COL7A1 --*

EFD145.1 -_

In

C.

FEB32

II

YNZ86.1 -*

COL7A1 -.

EFD145.1 -*

III

YNZ86.1 -_

COL7AI _-*

EFD145.1 -_

IV

YNZ86.1 -* COL7A1 -_ EFD145.1

--V

YNZ86.1

--COL7A1 -*

EFD145.1

--Figure1.SegregtionofD3S30,COL7A1,andD3S32lociin three kindreds withEBDD. The allelesateach locusareindicated under thesymbol

(4)

hadcharacteristic nail dystrophy.Anotherfamily(FEB37)with5

af-fected and 10 unafaf-fected members was alsostudied(Fig. 1 B). The

clinical featuresweresimilartothosefoundinFEB33,and the diagno-sisofEBDD wasconfirmed by histopathology.Theinheritancewas

also consistent withanautosomaldominantpattern.Thethird family (FEB32), withan EBDDmutation previously shown to be linked to

COL7A1locus(13),wasalsoexamined with additionalRFLPs onthe

chromosome3p (Fig. I C).

Skin biopsy specimenswereobtained for routine histopathological examinationbyhematoxylin-eosin stain, for indirect

immunofluores-cencewitha monoclonalanti-typeVIIcollagen antibody L3D (14),

andfordiagnosticelectronmicroscopy.

Southern analyses.DNA was isolated from peripheral blood leuko-cytes andsubjectedtodigestions with restrictionenzymes. The South-ernanalyseswereperformedasdescribedpreviously (15).The DNA probes usedfor hybridizationsof the Southern blots are described in Table I. Thetwo-pointlinkage data were analyzed by the LIPED pro-gram (16), and the multipoint linkage analyses were performed with theLINKAGEprograms(17).

Results

Demonstration oftype VIIcollagenandanchoringfibril defects

infamilies withEBDD. Alarge kindred(FEB33) withEBDD

with 13affectedand16 unaffectedfamilymemberswas

exam-ined (Fig. 1A). Routine histopathology of the apparently nor-malskin into which mildtrauma wasappliedrevealed

subepi-dermal blisterformation, apparentlywithin the upperdermis (Fig.2A). Indirect immunofluorescence oftheunaffected peri-lesional skin withaMAb L3D demonstratedthe presenceof

type VIIcollagenepitopesin the dermal-epidermal junction

(Fig.2 B). However, thestainingpatternwasweak,irregular,

anddiscontinuouscompared withthestainingpatternof con-trol skin from an unrelated healthy individual examined in

parallel (Fig.2C),suggestingalterations in type VIIcollagen.

Diagnostic transmissionelectron microscopy oftheclinically

unaffected skin fromapatientinthisfamilyrevealedpaucityof

anchoring fibrils, andseveralareasalongthe basement

mem-branezonewerecompletelydevoid ofrecognizableanchoring

fibrils(Fig.3,A-C).Therelativelyfewanchoringfibrils present werelargelyhypoplasticand demonstratedamarkedlyreduced diameter(Fig.3A)comparedwithhealthycontrol skin froma

normalperson(Fig.3D).Thus,theanchoringfibrilswere ab-normal both inmorphology and innumericaldensity inthe

skin of affected individualsinthisfamily.Similar

histopatho-logicaland electronmicroscopicobservationsweremadein the twootherfamiliesexamined inthisstudy(resultsnotshown).

Thus,COL7A1 could serve as acandidategene in these fami-lieswithEBDD.

Geneticlinkage ofEBDD and COL7AI loci. The families

withEBDD were then analyzed for segregation ofRFLPs at the

COL7A1 locus and nearby on the short arm of human chro-mosome 3 (12, 18-20; Table I). Since type VII collagen is the major component of anchoring fibrils(11), COL7A1was first testedasacandidategene in the FEB33 family by using a

two-allelePvuIIRFLP,whichwehavepreviouslyshown to have an

allelicfrequencyof 0.65/0.35 in a normal population with the

polymorphism informationcontentof0.35 (13). Southern

hy-bridizations of genomic DNA revealed cosegregation of the PvuII polymorphism with the EB phenotype in pedigree

FEB33 (Fig. 1 A),witha peak logarithm ofodds (LOD) score of

2.10atO=0(Table II).

Cytogenetic mapping has recently localized COL7A1 to

3p21 (12).Furtherevidencefor linkage ofthe EBDD mutation tothisregion ofchromosome 3 wasobtainedwith analysis of twoanonymous markers (see Table I). Specifically,theprobe pYNZ86 (D3S30) yielded Z = 2.1 at 0 = 0, and the probe pEFD145.1 (D3S32) gave a maximum LOD score of 3.74 at

O

=0.

RFLPanalysisindicated the same chromosome 3 map

lo-cation for theEBDDmutationsin twoadditional families.In

family FEB37 (Fig. 1 B),theCOL7A1 andD3S30RFLPs were

uninformative forlinkageto EBDD, but D3S32 cosegregated

withthe disease,withamaximumLOD score of 1.51 at 0 =0 (TableII). Thethird family (FEB32, Fig. 1 C), inwhich we havepreviously demonstrated linkage ofEBDDandCOL7A1 (13), was also analyzedfor segregation ofD3S30 andD3S32.

The resultsfrom FEB32alsosupported linkage ofEBDD tothe chromosome 3p markers. The Z for linkage ofEBDD to D3S32 was 2.27 at 0 =0, and toD3S30,Z =0.88at 0= 0.17

(TableII). Withtheaddition ofnewfamilymembers,the maxi-mumZforCOL7A1 andEBDDin thefamilyis now6.66at 0 =0.

Thecombined LODscorefromthe threefamilies for

link-ageofEBDDtoCOL7A1 locuswas8.77at0=0.Multipoint

analysis withthe LINKAGE programplacedthe EBDDlocus

closertoD3S32thantoD3S30, with maximum likelihood(Z

=8.2)atD3S32(Fig.4). Thus, thelinkagedata indicateasingle

locus on chromosome3pasthesite of theEBDDmutation in

all three ofthese families. The absence of recombinants be-tweenthe COL7A1 and EBDDlociand thedemonstrated

an-choring fibril defectsin theaffected individualsstronglysuggest thatCOL7A1 harbors theunderlyingmutationinthese

fami-lies.

TableL RFLPs inChromosome 3LociUtilizedforLinkageAnalysis

Allele

Locus Map DNA

symbol location probe Enzyme Symbol Size Reference

kb

D3S30 3p pYNZ86.1 MspI A 2.0 Nakamuraetal.

(19)

B 1.9

COL7A1 3p21 K-131 PvuII C 3.6 Parenteetal.(12)

D 1.9,1.7

D3S32 3p pEFD145.1 RsaI E 2.4 Fujimotoetal.(20)

(5)

A -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~A

.0

*

< n;

,,.

%

Vv.,>.

2 _rOf* t.

/§.A;?,

d i ,^a.

'

e v aim E

K SS f < r a; OfI §

Figure2. Histopathologyandimmunofluorescencewithanti-type

VIIcollagen antibody.(A) Histopathologyof theperilesionalskin

intowhich mildtrauma wasapplieddemonstrates the presence ofa

subepidermalblister formation(.). (B)Indirectimmunofluorescence

withaMAb(L3D) recognizingtypeVIIcollagenepitopesreveals weak andirregular stainingin theunaffected skin ofthepatientwith EBDD from kindred FEB33. Notediscontinuitiesin thestainingpattern in theaffectedskin(arrows) comparedwith the strong linearstainingat

thecutaneousbasement membranezoneof control skin(C).e,

epi-dermis; d,dermis.Bars, 100 ,um.

Discussion

Inthis

study,

wehavedemonstrated stronggenetic linkageof

theEB

phenotype

and theCOL7A1 locusonchromosome3p

in three families with the dominant dystrophic form ofthe disease. The

diagnosis

ofEBDDin thesefamilieswasbasedon

characteristicclinical

presentation

andwasconfirmed

histologi-cally by thepresenceof subepidermal blistersand byelectron microscopic demonstrationof abnormal anchoring fibrils.

Abnormalities in theanchoring fibrilsandthe paucityof type VII collagen have been demonstrated in the dystrophic

forms ofEB(4-6), and the anchoring fibrils andtype VII colla-gen areabsent insome caseswithsevere recessivedystrophic EB(7). Previouscellbiological investigations concerningthe pathogenesis of recessive dystrophicEBhave centeredaround proteolytic degradation oftheanchoring fibrils(21). It has been demonstrated thattype VII collagen canbedegraded by the interstitial (fibroblast) collagenase (22); and it hasbeen sug-gested that enhanced levels of collagenase and/or other matrix metalloproteinases,such asstromelysin(MMP-3), cause degra-dationofanchoring fibrils and result in the clinical phenotype (23-25). However,our presentresultsraise the possibilitythat structural and/or biosyntheticabnormalitiesin COL7A1 may betheprimarygenetic defect in patients with recessive dystro-phicEB. In supportofthis interpretationis a recent

demonstra-tion that the collagenase locus on chromosome 11 was ex-cludedasthecandidategeneinafamily with recessive

dystro-phicEBbygenetic linkage analysis (26). These observations raiseatleast the possibility ofgenetic heterogeneity of recessive

dystrophicEB.

Asindicated above,EBisagroupofheritable diseases, and

different kindsofmutationsareexpectedtobetheunderlying

cause ofclinically distinct phenotypes (27). Previous linkage analyses have suggested thepresenceofthe mutated locuson thelongarmofchromosome 1 insomefamilieswith the

sim-plex form ofEB(EBS) (28, 29). Furthermore,astronggenetic linkagetotheGPTlocusonchromosome 8 hasbeen demon-strated inafamilywith therareOgnavariantofEBS (30).In thesecases, no candidategene hasbeenidentified, however, and nidogen atthe chromosomal locus 1q43 (31) has been excludedasthecandidategeneinafamilywith EBS linkedto chromosome lq (32). More recently,we(33) and others (34) demonstratedastronggenetic linkage ofEBStoepidermal ker-atingeneclusterseitheronchromosome12qor 17q,suggesting

thatkeratin mutationsmayunderliesomeformsof EBS. This interpretation is supported by recent immunocytochemical demonstrations ofalteredkeratin geneexpressioninpatients

with EBS (35). Furthermore, development oftransgenicmice thatexpressed truncated human keratin14resulted ina

pheno-typereminiscentofthe human EBS(36).

ItisconceivablethatastructuralmutationinCOL7A1 in-terferes with thebiosynthesis, secretion, orprocessingof the molecules, manifestingatthesupramolecular levelas abnor-malanchoringfibrils.Thus,COL7A1 defects could be similar tothose identified in othercollagengenesassociatedwith herit-abledisorders of connective tissue(37). Forexample, alarge

numberofmutations have been identifiedin type Icollagen genes in patients manifesting with osteogenesis imperfecta (38); defectsin thetype IIcollagengene,primarily expressedin thecartilaginous tissues,have beenidentified inpatientswith

chondrodystrophies (39);andtype IIIcollagendefectsarethe

likelycauseof vascular andcutaneousfragilityinpatientswith theEhlers-Danlossyndrome type IV(40). Defectsin a5(IV)

chainoftype IVcollagen, which ispredominantly expressedin thekidneybasementmembranes, are themajorcauseof Al-port'ssyndrome (41). Thus, geneticmutations intype VII col-lagen,whichisexpressedexclusivelyin thestratifiedsquamous

epithelia,could wellexplainthemanifestations ofEBDDin the skin and themucousmembranes.

(6)

Figure 3. Ultrastructural demonstration of anchoring fibril abnormalities in the skin of a patient from pedigree FEB33. These electron micro-graphs are representative of three different regions ofdermoepidermaljunction and show paucity of anchoring fibrils (A and B) and the presence

ofonly afew fibrils(C). In the most affected areas (A and C, o) the fibrils appear thin and rudimentary compared with normal controlskin fromahealthy individual (D). As expected, boththelamina densa (LD) and the interstitial collagen fibers(Co)areunremarkable.Original

magnifications:AandB, x43,500;C and D, X47,500.

Thepossibilityof a secretion defect in type VII collagen has beensuggested by recent observations thattype VII collagen

epitopes accumulate within the basal keratinocytes in some

individuals with eitherthedominantdystrophic or the reces-sivedystrophic form ofEB(42, 43). Recentstudieshave also

indicatedthat both epidermalkeratinocytesand dermal fibro-blasts arecapable ofexpressing COL7AI in culture, but the basalkeratinocytesappear to be theprimarycell type

responsi-blefor synthesisof typeVIIcollagenduring fetal skin develop-ment (44, 45). Specifically, in situ hybridizations of human skin from fetusof19 wkgestationrevealed anabundanceof

type VIIcollagen mRNAs in the basalkeratinocytes adjacent

to thedevelopingbasement membrane zone, whereas dermal fibroblasts were devoidoftypeVIIcollagenmRNAs(45). Fur-thermore, immunofluorescence studies ofreconstituted hu-man skin equivalent have suggested that epidermal keratino-cytesaretheprimary sourceoftypeVIIcollagen inanchoring fibrils (44).Thus, byanalogy withother heritabledisordersof connective tissue, fibroblasts or keratinocytes cultured from patients with EBDD shouldprovideasystem to identifythe precise mutations and to study the phenotype at the molecular level. Such information will be helpful toward accurate

diagno-z

1-3.]

2.] 1 j

-20 0 20 40 60 80

D3S30 D3S32 MAPDISTANCE (cM)

Figure 4.Multipoint analysis ofthelinkage ofEBDDlocustoD3S30 andD3S32onthe shortarmofchromosome3. Malegeneticmap distances(in cM)fromD3S30areshown. Thesex-specificmap

dis-tances betweenD3S30and D3S32werereported by Leppertetal.

(18).Theverticalaxis represents themultipointLODscore(Z)for

(7)

Table II. Maximum Two-Point LOD Scores (Z) forLinkage of Chromosome 3 Loci and EBDD

Loci 0 Z

COL7A1 vs. EBDD

FEB33 0 2.10

FEB37 NI NI

FEB32 0 6.66

Combined 0 8.77

D3S30 vs. EBDD

FEB33 0 2.10

FEB37 NI NI

FEB32 0.17 0.88

Combined 0.10 2.45

D3S32vs. EBDD

FEB33 0 3.74

FEB37 0 1.51

FEB32 0 2.27

Combined 0 8.11

D3S30vs.COL7AI

FEB33 0 2.11

FEB37 NI NI

FEB32 0.17 0.77

Combined 0.11 2.32

D3S32vs.COL7A1

FEB33 0.50 0

FEB37 NI NI

FEB32 0.11 0.82

Combined 0.12 0.66

LOD scoreswerecalculatedforassumed valuesofrecombination

fractions (0) bythe LIPED program(16).a and Zaremaximum

like-lihoodvalues.NI,notinformative.

sis, both pre- and postnatal, in these families, and it would

potentially allow identification ofsubtypes ofEBDD at the molecular level. Identification of such mutations mightalso allow formulation of rational pharmacological approachesto counteractthediseaseactivity,perhapsusingapproaches that would allow enhanced expression of the normal allele. Inthis regard, it isofinterestthattransforminggrowthfactor-,B is able tosignificantly enhance COL7A expression in cultured kera-tinocytes (46).

Acknowledgments

We thank Debra Pawlicki for secretarial help and BodilTumsfor

tech-nical assistance.Drs.MattiKero and Jaakko Karvonen participated in

clinical evaluation ofthepatients.Wealso thank Dr.LairdJacksonfor hissupportand encouragement.

Thisstudy was supported in part by the U. S. Public Health Service,

National Institutesof Health grants RO1-CA-3948 1, RO1-CA-47282,

PO1-AR-38923, andT32-AR-07869; the Dermatology Foundation; the Paulo Foundation; and the Ella and Georg Ehrnrooth Foundation. M. Ryynanen was a postdoctoral fellow supported by the Division of Medical Genetics, Jefferson Medical College; R. V. Iozzo was recipient ofaFacultyResearch Award from the American Cancer Society (FRA-376);andS. Sollberg was supported by the "Deutsche Forschungsge-meinschaft" grant So239/1-1.

References

1.Kero,M. 1984.Epidermolysisbullosa inFinland: clinicalfeatures,

mor-phology and relationtocollagenmetabolism. Acta Dermato-Venereol.Suppl.

110:1-51.

2.Gedde-Dahl, T.,Jr. 1981. Sixteen types ofepidermolysisbullosa. On the

clinicaldiscrimination, therapyandprenataldiagnosis.ActaDermato- Venereol.

Suppl.95:74-78.

3.Fine, J.-D.,E. A.Bauer,R. A.Briggaman,D. M.Carter,R.A. J.Eady,N. B. Esterly,K. A. Holbrook,S.Hurwitz,L.Johnson,A.Lin,etal. 1991. Revised clinical andlaboratorycriteriaforsubtypesininheritedepidermolysisbullosa:

consensusreportbythe subcommitteeonDiagnosisandClassification of the NationalEpidermolysisBullosaRegistry.J. Am. Acad.Dermatol.24:119-135.

4.Ghadially,F. N. 1988. UltrastructuralPathologyof theCell and Matrix. Vol. 2.3rd ed.Butterworths,London.1228-1230.

5.Tidman,M.J.,and R. A. J.Eady.1985.Evaluation ofanchoringfibrils and other components of thedermal-epidermal junctionindystrophicepidermolysis bullosabyaquantitativeultrastructuraltechnique. J.Invest.Dermatol. 84:374-377.

6.Briggaman,R. A.1985. Is there anyspecificitytodefects ofanchoringfibrils inepidermolysisbullosadystrophica,and what does thismeanintermsof patho-genesis?J.Invest.Dermatol.84:371-373.

7.Bruckner-Tuderman, L., Y. Mitsuhashi, U. W. Schnyder, and P. Bruckner. 1989.Anchoringfibrils and type VIIcollagenareabsent from skin insevere

recessivedystrophic epidermolysis.J.Invest.Dermatol.93:3-9.

8.Sakai,L.Y.,D. R.Keene,N. P.Morris,and R. E.Burgeson.1986.TypeVII

collagen isa majorstructural component ofanchoring fibrils. J. CellBiol.

103:1577-1586.

9.Keene,D.R.,L.Y.Sakai,G. P.Lunstrum,N. P.Morris,and R. E. Burge-son. 1987.TypeVIIcollagenformsanextended network of anchoring fibrils. J. CellBiol. 104:611-621.

10.Morris,N.P.,D. R.Keene,R.W. Glanville, H.Bentz,and R. E.

Burge-son.1986. The tissue form of type VII collagen isanantiparallel dimer. J.Biol.

Chem.261:5638-5644.

11.Burgeson,R.E.,G. P.Lunstrum,B.Rokosova,C. S.Rimberg,L. M.

Rosenbaum,and D. R. Keene. 1990. Thestructureandfunction of type VII collagen. Ann. NYAcad. Sci. 580:32-43.

12.Parente,M.G.,L. C.Chung,J.Ryynanen,D.Woodley,K. C.Wynn,E.

Bauer,M.-L.Chu,andJ. Uitto. 1991. Human type VIIcollagen:cDNAcloning andchromosomal mapping of the gene. Proc.Natl.Acad. Sci. USA. 88:693 1-6935.

13.Ryynanen, M.,R. G.Knowlton,M. G.Parente,L. C. Chung, M.-L.Chu, and J. Uitto. 1991. Human type VII collagen: genetic linkage of the gene

(COL7A 1)onchromosome 3todominantdystrophic epidermolysisbullosa. Am. J.Hum. Genet. 49:797-803.

14.Paller, A. S., L. L. Queen, D. T. Woodley, E. J. O'Keefe, W. R.Gammon,

and R. A. Briggaman. 1985. A mouse monoclonal antibody against anewly

discovered basement membrane component, the epidermolysis bullosaacquisita antigen.J.Invest.Dermatol.82:215-217.

15.Knowlton, R. G., E. J. Weaver, A. F. Stryuk, W. H. Knobloch, R. A.King,

K.Norris, A. Shamban, J. Uitto, S. A. Jimenez, and D. J. Prockop. 1989. Genetic

linkage analysisofhereditaryarthro-ophthalmopathy (Strickler syndrome) and the type II procollagen gene. Am. J. Hum.Genet.45:681-688.

16. Ott, J. 1974. Estimation of the recombination fraction in human

pedi-grees: efficientcomputation of the likelihood for human linkage studies. Am.J.

Hum.Genet. 26:588-597.

17.Lathrop,G.M., J.-M.Lalouel,C.Julier,andJ. Ott. 1984.Strategiesfor multilocus linkage analysis in humans. Proc. Natl. Acad. Sci. USA. 81:3443-3446.

18. Leppert, M., P. O'Connell, Y. Nakamura, P. Cartwright, M.Lathrop,

J.-M.Lalouel, and R. White. 1987. Two linkage groups on chromosome 3.

Cyto-genet. Cell Genet. 46:648.

19.Nakamura,Y., M.Culver,S.Gillian,P.O'Connell, M. Leppert, G. M. Lathrop, J.-M. Lalouel, and R. White. 1987. Isolation andmappingofa polymor-phicDNA sequence pYNZ86.1 on chromosome 3 (D3S30). Nucleic Acids Res.

15:10079.

20.Fujimoto,E., Y.Nakamura,J.Gill, P. O'Connell, M. Leppert, G. M. Lathrop, J.-M. Lalouel, and R. White. 1988. Isolation and mapping ofa

polymor-phicDNA sequence (pEFD145) on chromosome 3 (D3S32).NucleicAcids Res. 16:9357.

21.Bauer,E. A. 1984.Collagenasein recessive dystrophic epidermolysis bul-losa. Ann.NYAcad. Sci. 460:311-320.

22.Seltzer, J. L., A. Z.Eisen,E. A.Bauer, N. P. Morris, R. W. Glanville, and R. E. Burgeson. 1989. Cleavage oftype VII collagen by interstitial collagenase and type IV collagenase (gelatinase) derived from human skin. J. Biol. Chem. 264:3822-3826.

23. Takamori, K., K. Naito, A. Taneda, and H. Ogawa. 1983. Increased neutral protease and collagenase activity in recessive dystrophic epidermolysis bullosa. Br. J. Dermatol. 108:687-694.

24.Winberg, J.-O.,T.Gedde-Dahl,Jr., and E. Bauer. 1989. Collagenase

ex-pressionin skinfibroblastsfromfamilieswithrecessive dystrophic epidermolysis bullosa. J. Invest.Dermatot. 92:82-85.

25.Sawamura,D.,T.Sugawara, I.Hashimoto,L.Bruckner-Tuderman,D.

Fujimoto,Y.Okada,N.Utsumi,and H.Shikata.1991. Increasedgeneexpression

(8)

severerecessivedystrophicepidermolysisbullosa. Biochem.Biophys.Res.

Com-mun.174:1003-1008.

26. Hovnanian, A., P. Duquesnoy, S. Amselem, C. Blanchet-Bardon, M. Lathrop, L. Dubertret, and M.Goossens. 1991.Exclusion oflinkagebetween the collagenase gene andgeneralizedrecessivedystrophic epidermolysisbullosa

phe-notype. J.Clin.Invest.88:1716-1721.

27.McKusick,V. A.1988. Mendelian Inheritancein Man.Catalogsof

Auto-somalDominant,AutosomalRecessive,and X-linkedPhenotypes.8th ed. The

JohnsHopkins University Press, Baltimore,pp. 232-234.

28. Mulley, J.C.,C. M.Nicholls,D. N.Propert,T.Turner,andG. R. Suther-land.1984.Geneticlinkage analysisofepidermolysisbullosasimplex,Koebner type. Am.J.Med.Genet. 19:573-577.

29.Humphries,M.M., D.Shiels,M.Lawler, G. J. Farrar,P.McWilliam,P. Kenna, D.G.Bradley,E. M.Sharp,M.Young, J.Uitto,etal. 1990. Autosomal

dominantsimplex epidermolysisbullosa: evidence forlinkagetogeneticmarkers onchromosome 1. Genomics. 7:377-381.

30.Olaisen,B., and T.Gedde-Dahl,Jr. 1973.GPT-epidermolysisbullosa

simplex (EBS Ogna) linkagein man.Hum. Hered. 23:189-196.

31. Olsen, D. R., T.Nagayoshi,M.Fazio,M.-G.Mattei,E.Passage,D.Weil,

R.Timpl,M.-L.Chu,and J.Uitto. 1989.Humannidogen:cDNAcloning, cellu-larexpression,andmapping of thegene to chromosome lq43.Am. J. Hum.

Genet.44:876-885.

32.Humphries,M., K.Nagayoshi,Y.Sugita,M.-G.Mattei, M.-L. Chu,R. Knowlton,andJ.Uitto. 1990.Humannidogengene:identification ofmultiple RFLPsandexclusionascandidategene inafamilywithepidermolysisbullosa

simplex (EBS2)with evidence forlinkagetochromosome 1. J. Invest. Dermatol.

95:568-570.

33.Ryynanen,M.,R.G.Knowlton,and J. Uitto. 1991.Mappingof epider-molysis bullosa simplex mutation to chromosome 12.Am. J. Hum. Genet. 49:978-984.

34.Bonifas,J.M.,A.-L.Rothman,and E.Epstein.1991.Linkageof epider-molysis bullosasimplextoprobesin theregion ofkeratin gene clusterson chro-mosome12qand17q. J.Invest.Dermatol.96:550.(Abstr.)

35.Ito,M., C.Okuda,N.Shimizu,T.Tazawa, andY.Sato. 1991.

Epidermo-lysis bullosa simplex(Koebner) isakeratin disorder. Ultrastructuraland immuno-histochemical study. Arch. Dermatol. 127:367-372.

36. Vassar,R.,P. A.Coulombe,L.Degenstein,K.Albers,and E. Fuchs. 1991. Mutantkeratinexpression intransgenicmicecausesmarked abnormalities

re-semblingahumangeneticskin disease. Cell.64:365-380.

37. Kuivaniemi, H., G. Tromp, and D. J. Prockop. 1991. Mutations in colla-gen colla-genes: causesof rare and some common diseases in humans. FASEB (Fed. Am. Soc. Exp.Biol.)J. 5:2052-2060.

38. Prockop, D. J. 1990. Mutations that alter the primary structure oftype I collagen: theperils ofasystem for generating large structures by the principle of nucleated growth. J.Biol. Chem. 265:15349-15352.

39.Vissing, H., M. D'Alessio, B. Lee, F. Ramirez, M. Godfrey, and D. W. Hollister. 1989. Glycine to serine substitution in the triple helicaldomainof

proal(II)collagen results in a lethal perinatal form of short-limbed dwarfism. J.

Biol. Chem.264:18265-18267.

40.Kontusaari, S., G. Tromp, H. Kuivaniemi, R.Ladda,and D. J. Prockop.

1990.Inheritance ofan RNA splicing mutation(G+Inw1 in the type III procolla-gen procolla-gene(COL3A1) in a family having aortic aneurysms and easy bruisability:

phenotypicoverlapbetween familial arterial aneurysms and Ehlers-Danlos syn-drome type IV. Am. J. Hum. Genet. 47:112-120.

41. Zhou, J., D. F.Barker, S. L. Hostikka, M. C. Gregory, C. L. Atkin, and K. Tryggvason. 1991. Single base mutation inaS(IV)collagenchaingene converting aconservedcysteinetoserinein Alport syndrome. Genomics. 9:10-18.

42. Fine,J.-D., Y.Horiguchi,D. H. Stein, N. B. Esterly, andI.M. Leigh. 1990.

Intraepidermaltype VII collagen, evidence for abnormal intracytoplasmic

pro-cessing ofamajorbasementmembraneprotein inrare patients with dominant

andpossibly localized recessive forms ofdystrophicepidermolysis bullosa. J. Am.

Acad. Dermatol.22:188-195.

43.Smith,L. T., and V. P. Sybert. 1990. Intra-epidermal retention oftype VII

collagen inapatient withrecessive dystrophic epidermolysis bullosa. J. Invest.

Dermatol.94:261-264.

44. Konig,A.,andL. Bruckner-Tuderman. 1991.Epithelial-mesenchymal interactions enhanceexpression of collagenVIIinvitro.J. Invest.Dermatol. 96:803-808.

45.Ryynalnen, J., S.Sollberg,M.G. Parente, L. C. Chung, A. M. Christiano, and J.Uitto. 1992.Type VIIcollagengeneexpressionbyculturedhuman cells andin fetal skin.Abundant mRNA andprotein levels in epidermal keratinocytes. J. Clin.Invest.89:163-168.

46. Ryynanen, J., S.Sollberg,D. R.Olsen, andJ.Uitto.1991. Transforming

growthfactor-jI up-regulatestype VIIcollagengeneexpression innormal and

transformedepidermal keratinocytesin culture.Biochem.Biophys.Res.

References

Related documents

Importantly, ER ` knockdown in the human prostate cancer PacMetUT1 cells as well as pharmacological inhibition of ER ` with ICI 182,780 inhibited osteoblastic lesion formation

To identify the elasticity characteristics of laminated carbon fiber plates with orthotropic layers, the technique based on solving the inverse coefficient problem

This analysis used three stable peptides for the quantitative determination of two putative muscle biomarkers for pork and beef in minced meat with a 25-min analysis.. Good

The results suggest that: (1) interacting proteins are not equal in the PPI network, and their function may be same or similar, or just related; (2) functional difference

This suggests that (i) the North Atlantic is a key pacemaker in driving the long-term hydroclimatic variability of the Levant during the Holocene, and (ii) there is a nonlinear

In the model I propose, which is an extension of the model by Laubach and Williams (2003), the natural rate of interest is defined as in Wicksell (1936) as the real short- term

Bilateral Cystic Periventricular Leukomalacia in the Premature Infant:

By exhaust search,we also find 3840 offset pairs with discrete four terms and 736 offset pairs with continue two terms for constructing Golay complemen- tary sequences over 16-