• No results found

Cargo Securing – Comparison of Different Quality Roads

N/A
N/A
Protected

Academic year: 2020

Share "Cargo Securing – Comparison of Different Quality Roads"

Copied!
9
0
0

Loading.... (view fulltext now)

Full text

(1)

1015

Volume 67 88 Number 4, 2019

CARGO SECURING – COMPARISON

OF DIFFERENT QUALITY ROADS

Martin Vlkovský

1

, Petr Veselík

2

1DepartmentofLogistics,FacultyofMilitaryLeadership,UniversityofDefenceinBrno,Kounicova65,662 10 Brno, Czech Republic

2DepartmentofQuantitativeMethods,FacultyofMilitaryLeadership,UniversityofDefenceinBrno,Kounicova 65, 662 10 Brno, Czech Republic

Tolinktothisarticle: https: /  / doi.org / 10.11118 / actaun201967041015 Received: 10.4.2019, Accepted: 26.6.2019

Tocitethisarticle: VLKOVSKÝ MARTIN,VESELÍKPETR.2019.CargoSecuring – ComparisonofDifferentQuality Roads.Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis,67(4): 1015 – 1023.

Abstract

Thearticledealswiththe subjectofthe impactwhichroadsurfaceshaveontocargoandthe securing of cargo against shocks during road transport. The  applicability of the  key EN 12191‑1:2010 standardisdiscussed,notonlyforcommonconditions,butalsoforspecifictransportconditionson low‑qualityroadsurfaces.Partofthe articleinvolvescarryingouta transportexperimentona road pavedwithgraniteblocksandona highway,fromwhichdataonthe impactofshocksoncargo (accelerationcoefficientsvalues)wereobtained.The datawerestatisticallyevaluatedandcompared to the  normatively determined values of these acceleration coefficients. A  parametric statistical analysis(two‑samplet‑test)wasusedtocomparethe valuesofthe accelerationcoefficientsfrom the twotypesofsurfaces.The analysisconductedshowsstatisticallysignificantdifferencesbetween the datameasuredonthe roadpavedwithgraniteblocksandonthe highway.Usingcorrelation analysis,the dependenceofthe accelerationcoefficientvaluesandinertialforcesaffectingcargo duringtransportwereverified.Forthe relevantaxes(x – longitudinalandy – transverse),a very strongcorrelationwasfound.

Keywords: transport, cargo securing, acceleration coefficient, inertial force, parametric methods, two‑samplet‑test

INTRODUCTION

Althoughcargosecuringinroadfreightvehicles is not a  new issue, a  number of shortcomings occursinthisarea.The mainshortcomingsinclude aboveallthe linkwithroadtrafficaccidentrates, orthe eventoftrafficaccidentscausedbyincorrect orinsufficientcargosecuring.Withinthe European Union, it is estimated that up to 25% of all accidents

caused by truck drivers are caused by improper cargosecuring(ECDGET,2014).

(2)

a relatedproblem,where,accordingtodatafrom the RoadTransportServicesCentreestablishedby the  Ministry of Transport of the  Czech Republic, almosthalfofthe vehicleswereoverloadedduring weightchecks(ROADTRANSPORTCENTER,2014).

Shortcomingsinthe areaofcargosecuringcan be divided into:

• Deliberate: primarilyforeconomicreasons,such asoverloadingvehicles,choosingan insufficient number of fastening devices, or using old and damagedfasteners.

• Causedbynegligence: primarilyduetothe lack of knowledge of the  relevant regulations and requirements on fastening the  cargo, including the choiceofsuitablefasteners.

• Unintentional:  that is, when the  worker responsible for loading the  cargo distributes the  fasteners in good faith in accordance with the knownregulationsandrequirements.

Based on the  list above, it can be stated that the  first two problems are primarily those of management  –  motivation and supervision over subordinates’activities.The lastproblemisinstead a  transport‑technical one, where for the  purpose of correct cargo securing, it is necessary to know the  parameters of transportation before securing is deployed. Such parameters include knowing the  (assumed) magnitude of the  inertial forces affecting cargo during transport. These can be determined using normative values of acceleration coefficients on individual axes (x, y and z), however this is a  theoretical assumption basedonempiricalstudiescarriedoutinthe past whenthe parametersofthe transportsystemwere different (e.g. vehicles, road surfaces). A  more laborious and time‑consuming procedure is the experimentaldetectionofshocks(acceleration coefficient values) during transport under similar conditionsusingdataloggers.Suchmeasurements, ceteris paribus, assist in choosing the  appropriate load‑securing methods for transportation under similarconditions.

data that is necessary either for software processing of the  cargo securing plan, or for a  manual solution. On the  basis of pre‑research, significant deviations were found, especially under specific conditions – onlow‑qualityroads(Vlkovský et al.,

2017; Vlkovský  et  al., 2018). In connection with the  accident rate, it is also possible to quantify the  impact of improper or insufficient cargo securing economically in the  form of social loss causedbydeathorinjurytopersonsandproperty losses(Vlkovský,VeselíkandGrzesica,2018).

Theseimpactsmaybesignificantlygreaterduring the  transport of dangerous goods. In such cases, it is not possible to speak of a  higher likelihood of an accident, but of higher impact on persons, technology,infrastructure,andthe environment.In the contextofthe above,the likelihoodofa traffic accident will be higher on low‑quality roads (see RiskMatrixinFig. 1).

Thetransportofdangerousgoodsonlow‑quality roads is carried out by, for example, the  military (ammunition, fuel, etc.) or farmers (pesticides, disinfecting chemicals, diesel, pressure cylinders, etc.),(Walter,2018).

(3)

of the  acceleration coefficients defined in EN 12195:1‑2010 (EN 12195:1‑2010) are intended for use on common roads although there may be differences – seee.g.(VlkovskýandRak,2017).

Theissueoffreighttransportisthe areaofroad transport,whichisbasedona widerangeofgeneral regulations, as well as specific manuals covering the transportofspecificcommodities.Inaccordance withthe standardEN12195‑1:2010(EN 12195‑1:2010), EN 12195‑2:2000 (EN  12195‑2:2000) is used for the  tested method of fastening with the  aid of fastening straps. For correct fastening it is necessarytoknowthe capacityofthe load‑bearing anchoring points, which is covered by EN 12640:2000(EN12640:2000),andthe construction ofthe trucksorsemi‑trailersandtrailersaccording to EN 12642:2001 (EN 12642:2001). Instructions of the  Association of German Engineers VDI 2700:2009(VDI2700:2009)areapplicabletoo.

The principles of proper cargo securing are further elaborated by other multinational institutions, in particular the  European Best Practice Guidelines on Cargo Securing for Road Transport (UNECE, 2014) or the IMO / ILO / UNECE Code of Practice for Packing of Cargo Transport

Units (CTU Code, 2014), or focused on dangerous goods  –  European Agreement Concerning the  International Carriage of Dangerous Goods by Road (ADR, 2017), or for abnormal goods  – Road Safety:  Best Practice Guidelines on Cargo Securing and Abnormal Transport (EC DGET, 2016). These standards, manuals and documents are further elaborated by specific multinational companies, reflecting the  transport of commodities that are the subjectoftheirbusinesses.Severalmonographs are dedicated to the  issue of cargo securing. It is worthmentioningT.Lerher’sbookCargo Securing in Road Transport Using Restraining Method with Top‑Over Lashing, where the  author discusses some general rules of road cargo securing with

particularfocusontop‑overlashing(Lerher,2015). The monographofT.Lerherbuildsonthe bookby G. Grossman and M. Kassman onSafe Packaging and Load Securing in Transport, who present in theirbookthe methodsofcargosecuring,including top‑over lashing models using fastening straps (GrossmanandKassman,2018).

The specifics of oversized cargo are then discussed by W. Galor and a  team of authors in his book Carriage and Securing of Oversized Cargo in Transport (Galor  et  al., 2011) or in the  paper (Vrabel et al.,2018).Articlesdealingwiththe area ofcargosecuringareusuallyfocusedonthe issue of software simulations, e.g. (Zong  et  al., 2017) or (Neumann, 2015). The  discussion on the  data source for models (e.g. acceleration coefficients) appear rather sporadically, e.g. (Zámečník  et  al.,

2017orJagelčák,2017).

MATERIALS AND METHODS

To obtain the  necessary data for the  statistical analysis, a  transport experiment was conducted with the  medium freight terrain vehicle Tatra 810‑V‑1R0R26131776 × 6.1R(hereinafter“T‑810”) (Kolmaš,2007)ona highwayanda low‑qualityroad (roadpavedwithgraniteblocks)witha mileageof lessthan45,000 km.The transportexperimentwas carriedoutwiththe T‑810withoutload.

As a  measuring device a  three‑axis accelerometer with data logger and OMEGA  – –  OM‑CP‑ULTRASHOCK‑5 calibration certificate with the  measurement range ± 5 g was used to record the  shocks (acceleration coefficient values)oneachofthe threeaxes(x – longitudinal, y  –  transverse andz  –  vertical) every second. The  measuring device was placed on the  central steelframeofthe vehiclebody.

(4)

withgraniteblocksonthe sectionDědice(training area)  –  Vyškov and consists of 1,203 values (401 peraxis).The averagetransportspeedwasroughly halfthatofthe firstdataset: 38.60km.h–1.The aim

of the  article is to statistically evaluate the  two measured data sets (d1 and d2) and consequently compare them to the  values of normatively determinedvaluesofaccelerationcoefficientsand (theoretical) values of the  inertial forces obtained fromthe calculationsaccordingtothe relationships ofthe standard(EN12195‑1,2010).

Beforethe statisticalanalysis,normalitytestswere performedusingskewnessandkurtosiscoefficients (Johnson and Wichern, 1992). The  significance level was α = 0.05. The  data normality was also verified using Q‑Q plots and histograms. The  Q‑Q plots were drawn for acceleration coefficients in each of the  three axes (x, y, z). Although in some datasetsthe distributionofaccelerationcoefficients was not normal but symmetrical (which was verified by Q‑Q plots, histogram and skewness coefficients)andincludedoutliers,furtheranalysis was carried out assuming normal distribution. Whencomparingtwoindependentdatasetsd1and

d2 from two normal distributions, both the  match of variance (σ12 = σ22) and the  match of mean values(µ1 = µ2)weretested(Neubauer et al.,2012). When testing the  absolute values of mean values (arithmeticmeansofaccelerationcoefficientvalues on individual axes) were used, i.e. µ1(abs), or µ2(abs) becauseofthe valuedistribution.Becausethe shocks

2015), a  statistical link between the  acceleration coefficientvaluesandthe resultinginertialforces actingonthe loadwasfound.The valuesofinertial forces (Fx and Fy) are calculated (implicitly) from the  tensile strength requirements of the  lashing strapsandthe equalityofthe twoforces: 

[ ]

µ

µ α

⋅ ⋅ ⋅

⋅ ⋅ ⋅

x z

x s

c  –  c m g

F  =  n f       

2n   sin N

(

µ

)

[ ]

µ α

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

x z

x s

c  –  c m g

F  =  n f       

2n   sin N

(

)

,

(1)

[ ]

µ

µ α

⋅ ⋅ ⋅

⋅ ⋅ ⋅

y z

y s

c –    c  m  g

F  =   f        

2n sin

( )

N , (2)

where Fx is longitudinal, Fy transverse inertial force to the  vehicle movement, respectively (see Fig.  2),cx, cy, cz are the  acceleration coefficients the individualaxes,µisthe coefficientoffriction,m

isthe massofthe load,gisthe gravityacceleration,

fs isthe coefficientofsafetyforfrictionallashing,n isthe requirednumberoflashingstrapsandα is the anglebetweenthe lashingstrapandthe deck ofthe vehicle.

RESULTS

Itisclearfromthe statisticalanalysisofdatasets that the  relatively large number of acceleration coefficients exceeded the  normative values stated in the  standard EN 12195‑1:2010, which are set

I: The arithmetic means and medians of the absolute values of the acceleration coefficients for all axes and arithmetic means of inertial values for both datasets (values which exceed normative limits are highlighted in yellow, and the values which exceed normative limits by more than two are highlighted in red)

Acceleration coefficients [–] Inertial forces [N]

Arithmetic mean Median Arithmetic mean

cx cy cz Fxn Fyn Fxi Fyi

d1 0.601 0.640 1.638 0.590 0.610 1.620 30,363 19,820 17,989 12,265

(5)

asfollows: 0.8,0.6and1.0forthe x, y and zaxes, respectively. In data setd1, the  normatively set limits were exceeded in 20.61% of cases, and exceeded by a  factor of two in 0.58% of cases. The excesswasmostcommononthe y‑axis.Indata set d2,the normativelysetlimitswereexceededin 61.68% of cases, by a  factor of two in 10.72% of cases.Also,the excessony‑axisprevailed,although the differencesbetweenaxesweresmallerthanin the d1dataset.

Tab. I shows the  results of the  descriptive statistics for the  absolute acceleration coefficient values, specifically the  arithmetic means and mediansforthe axesx, y and z, for both datasets (d1 and d2). In addition, the  table  also includes the  results of inertial forces values, which are essential for the  choice of cargo securing system (not the  value of acceleration coefficients). The magnitudeofthe inertialforceswascalculated usingformulas(1)and(2)andfurthernormative limits (Fxn and Fyn). Subsequently, the  relevant

values of inertial forces were calculated for both datasets(markedasFxi and FyiinTab. I).Itcanbe seenfromTab. Ithatthe lowestarithmeticmeanof the absolutevaluesofthe accelerationcoefficients (0.601)wasmeasuredonthe x‑axisofthe firstdata set. Contrarily, in the  second data set, the  highest arithmetic mean of the  absolute values of the accelerationcoefficients(2.005)wasmeasured onthe z‑axis.

ThedescriptivestatisticspresentedinTab. Ishow thatthe datasetsdiffergreatly.The averagevalues ofthe inertialforcesonthe x‑axisandy‑axiswere exceeded in both data sets, ind2 even more than twice.Inthe seconddataset,normativelysetlimits according to EN 12195‑1:2010 were exceeded in five cases, where the  excess reached almost 67%

forthe y‑axis.Incontrast,ind2,the excessoccurred only in two cases on the y‑axis and the  excess wasrelativelysmall – lessthan7%.Thisismainly due to the  relatively low normative values of accelerationcoefficientsonthe y‑axis(cy),whichis based on greater risks when loosening the  cargo inthe directiontransversetovehiclemotion.Both data sets will be subjected to detailed statistical analysisinnextpartofthisarticle.

Because the  measured data (the  values of accelerationcoefficients)wereconsideredcoming fromnormaldistributionforallaxes,a parametric two‑samplet‑test was used to evaluate both data sets. The  test was performed for all three axes at a  significance level ofα  =  0.05. The  results of the performedtestsareshowninTab. II.Inthe first column of this table, the  relevant acceleration coefficients are listed. In the  second column (AHF), an  alternative test hypothesis of variance matchisshown.IncolumnF,the teststatisticsof variancematchtestisshown.Inthe fourthcolumn the  alternative hypothesis of mean values match, andfinally,the columndenotedtcontainsthe test statistics of a  mean values match test assuming heteroskedasticity.

The results of the  two‑samplet‑test shown in Tab. IIshowthatstatisticallysignificantdifferences existbetweenthe twodatasetsatthe significance level α = 0.05 for the  two tested statistics. These resultspointtothe verydifferentvaluesofshocks generated on the  highway (d1) and on the  road paved with granite blocks (d2) despite the  almost halved average speed of vehicles on low‑quality roads.

Subsequent one‑sided tests showed, at the  significance level α = 0.05, that for both monitoredparameters(arithmeticmeanofabsolute 2: Directions of inertial forces

(6)

the arithmeticmeansofabsolutevaluesaresmaller for d1than for d21 < µ2)orthe variancesofvalues

are smaller for d1 than for d212 < σ22).

Considering the  laboriousness of determining the inertialvaluesespeciallyforpractice,the extent of correlation between acceleration coefficients (cxcy)andthe relevantinertialvalues(Fxi and Fyi)is further calculated. For the  calculation the  Pearson correlation coefficient was used. First, however, a  graphical comparison was made, the  values of the  inertial forces were plotted on the  horizontal axisandthe correspondingaccelerationcoefficients wereplottedonthe verticalaxis.Inbothcases,itwas shownthatthe givenpairsshowa lineartrend – see Fig.  3. Since the  individual graphs well document the lineartrend,the statisticalrelationshipbetween the  acceleration coefficients and the  resulting

Fig.  3 and the  Pearson correlation coefficient valuesinTab. IIIshowa verystrongdependence between the  corresponding acceleration coefficientsandthe valuesofinertialforcesacting uponcargo.The valuesofthe Pearsoncorrelation coefficient range from 0.990 to 0.997. From such a  strong dependence between the  measured coefficients and the  calculated inertial values, it can be concluded that the  results can already be interpreted from the  acceleration coefficient analysis (measured shocks). Nevertheless, the  analysis shows a  difference in the  extent of exceeding the  normatively set limits for the  acceleration coefficient and the  subsequent difference contrary to the  inertial forces by using the  normatively determined acceleration coefficientvalues.

3: Correlation analysis between cx and Fxi (left figure) and cy and Fyi (right figure)

III: Correlation between acceleration coefficients and the corresponding inertial values

Fx1 Fx2 Fy1 Fy2

cxi 0.995 0.990 – –

(7)

DISCUSSION

It follows from the  performed analysis that on the  examined T‑810 vehicle, the  shocks generated on the  high‑quality road (highway) and the  lower‑quality road (paved with granite blocks) differ in a  statistically significant way. On the  basis of the  one‑sided test, it is clear that the  cargo securing requirements will be higher in terms of lashing capacity during cargo transportongranite‑block‑pavedroads.Itcanbe assumed that the  similar conclusion will apply toothertypesofvehiclestoo.The keyimpactof the resultsisthenonvehicleswhichoperateon lower‑quality roads (military, integrated rescue system,farmers,etc.).

The benefit may also be seen in an increase in the  safety of the  cargo securing during the  transport of dangerous goods, where the  risk arisingfromimproperorinsufficientfasteningof the  load may be significantly higher. In military conditions,isspokenprimarilyofthe transportof

ammunitionandfuelinmultinationaloperations. In the  case of farmers, transport of pressure cylinders, fuels, pesticides, disinfection chemicals or hazardous waste from agricultural production are the  most dangerous. Potential accidents can causedamagetothe healthofpersons,the vehicle and other technical equipment and last but not leastthe environment.

Also, the  impact of shocks and vibrations onto the vehicleanddriverisa relativelyindependent area. The  vehicle may experience faster wear due to shocks and vibrations, which can shorten the  maintenance period or cause more frequent occurrence of defects, which must be removed at extra cost. The  impact on drivers is mainly in the healtharea,whereshocksandvibrationscan cause fatigue, reduced attention span, longer reaction time (Buscuházy  et  al., 2016), impaired perception and reduced performance as a  result of muscle, joint, tendon and other pain and thus negativelyaffectcargosecuringingeneral.

CONCLUSION

Statistical analysis of data sets from the  transport experiment had led to important findings regardingthe existenceofstatisticallysignificantdifferencesbetweenthe measuredvaluesof shocks generated on highways and roads paved with granite blocks, which can be considered as third‑classroads.Thisconclusionhasimpactsmainlyoncompletelydifferentrequirementsfor cargosecuringonroadsofdifferentquality(thatis,differentclassesofroads).

The basic evaluation of the  measured values of the  acceleration coefficients show significant differencesinthe numberofexceedancesofthe prescribedvaluesduringthe giventransports. On the  highway, the  normatively set limits were exceeded in 20.61% of cases, and exceeded bya factoroftwoin0.58%ofcases.However,inthird‑classroad,normativelysetlimitswere exceededin61.68%ofcases,bya factoroftwoin10.72%ofcases.Thisimpliesmuchhigher likelihood of emergencies during transport (cargo release, accidents, etc.) on the  third‑class roaddespitea significantlylowertransportspeed.The resultsofthe performedt‑testindicate a statisticallysignificantdifferencesata significancelevelα = 0.05betweenthe twotypesofroad surfacesinbothmonitoredparameters(arithmeticmeansandvariances).

Thecorrelationbetweenthe experimentallydeterminedvaluesofthe accelerationcoefficients andthe resultinginertialforcesisverifiedforpracticaluse.The Pearsoncorrelationcoefficient rangesfrom0.990to0.997,indicatinga stronglineardependence.Thus,fromthe experimentally determined the  acceleration coefficients values, conclusions can be made without acceptable inertialcalculationswithadequateaccuracy.

Changes in the  Czech transport system, especially after 1989, are evident. It is not only infrastructure,butalsomeansoftransportandincreasedtransportcapacity.The poorcondition ofmanytransportroutesinthe CzechRepubliccanresultnotonlyinincreasedrepaircostsand shortenedvehiclelife‑cycles(Binar et al.,2017),butalsoinincreasedaccidentrates,whichcan bediscussedinaneconomiccontext(Vlkovský,VeselíkandGrzesica,2018).

(8)

REFERENCES

ASSOCIATIONOFGERMANENGINEERS.2009.Securing of Loads on Road Vehicles.VDI2700.Berlin:VERLAG. BINAR,T. et al.2017.The spreadofcorrosionincastironanditseffectonthe lifecycleoftransportation

vehicles. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis,65(2):383–389.

BUCSUHÁZY, K.  et  al. 2016. Analysis of Driver Reaction Time Using the  Acquisition of Bionsignals. In: Proceedings of the 3rd International Conference on Traffic and Transport Engineering. University of Belgrade,

24–25November.Belgrade:CityNetScientificResearchCenterLtd.,pp.68–74.

DEKRA. ©2016. Cargo Securing in Road Transport [in Czech: Zajištění nákladu v  silniční dopravě].  [Online]. Available at: https://www.dekra‑automobil.cz/akademie/konference‑prihlaska/pdf/Semsch_ prezentace_01_CZ.pdf[Accessed:2019,January05].

ECONOMIC COMMISION FOR EUROPE – INLAND TRANSPORT COMMITTEE. 2017.European Agreement

Concerning the International Carriage of Dangerous Goods by Road.NewYorkandGeneva:UNECE.

EUROPEANCOMMISION–DIRECTORATE‑GENERALFORENERGYANDTRANSPORT.2016.Road Safety: Best Practice Guidelines on Cargo Securing and Abnormal Transport.[Online].Availableat:https://ec.europa.eu/ transport/road_safety/sites/ roadsafety/files/vehicles/doc/abnormal_transport_guidelines_en.pdf [Accessed: 2019,January16].

EUROPEAN COMMISION – DIRECTORATE‑GENERAL FOR ENERGY AND TRANSPORT. 2014.European Best Practice Guidelines on Cargo Securing for Road Transport. [Online]. Available at: www.uirr.com/fr/ component/downloads/downloads/302.html[Accessed:2019,January15].

EUROPEAN COMMITTEE FOR STANDARDIZATION. 2000. Load Restraint Assemblies on Road

Vehicles – Safety – Part 2: Web Lashing Made From Man‑made Fibres.EN12195‑2.Brussels:CEN.

EUROPEAN COMMITTEE FOR STANDARDIZATION. 2000.Securing of Cargo on Road Vehicles – Lashing

Points on Commercial Vehicles for Goods Transportation – Minimum Requirements and Testing.EN12640. Brussels:CEN.

EUROPEANCOMMITTEEFORSTANDARDIZATION.2001.Securing of Cargo on Road Vehicles – Body Structure of Comercial Vehicles – Minimum Requirements.EN12642.Brussels:CEN.

EUROPEANCOMMITTEEFORSTANDARDIZATION.2010.Load Restraining on Road Vehicles – Safety – Part 1: Calculation of Securing Forces.EN12195‑1.Brussels:CEN.

GALOR,W. et al.2011.Carriage and Securing of Oversize Cargo in Transport.Szczecin:AkademiaMorska.

GROSSMANN,G.andKASSMAN,M.2018.Safe Packing and Load Securing in Transport.3rdEdition.Renningen:

ExpertVerlag.

GRZESICA, D. 2018. Measurement and Analysis of Truck Vibrations during Off‑road Transportation.

In: Proceedings of the 14th International Conference on Vibration Engineering and Technology of Machinery.

MATECWebofConferences,10 – 13September.Lisbon.

HENDL,J.2015.Overview of Statistical Methods [in Czech: Přehled statistických metod].Prague:Portál.

JAGELČÁK, J. 2007. Equation of the  Standard EN 12195‑1 Stipulates Unreasonable Demands for Cargo Securing.Communications,9(4):30–33.

JOHNSON, R. A. and WICHERN, D. W. 1992.Applied multivariate Statistical Analysis. Englewood Cliffs:

Prentice‑HallInternational.

KOLMAŠ, V.  et  al. 2007.Catalog of Automotive and Tracked Vehicles Used in the  ACR [in Czech: Katalog

(9)

KOŠÍČEK, M.  et  al. 2012. Route Planning Module as a  Part of Supply Chain Management.Universitatis

Agriculturae et Silviculturae Mendelianae Brunensis,60(2):135–142.

KUČERA,P.andKREJČÍ,I.2013.ContributionofSimpleHeurisitcsforthe VehicleRoutingProblem – A Case Studyofa SmallBrewery.Universitatis Agriculturae et Silviculturae Mendelianae Brunensis,61(7):2393–2401. LERHER,T.2015.Cargo Securing in Road Transport Using Restraining Method with Top‑over Lashing.New

York:Nova.

NEUBAUER,J. et al.2012.Principles of Statistics: Applications in Technical and Economic Disciplines [in Czech:

Základy statistiky: Aplikace v technických a ekonomických oborech].Prague:Grada.

NEUMANN,V.2015.PossibilitiesofVehicleMovementEvaluation.In:Proceedings of the 19th International Scientific Conference on Transport Means.KaunasUniversityofTechnology,22–23October.Kaunas:Kaunas UniversityofTechnology,pp.177–180.

POLICE OF THE CR. ©2018. Accident Statistics 2017 [in Czech: Statistika nehodovosti 2017].Policie České republiky.  [Online]. Available at: http://www.policie.cz/clanek/statistika‑nehodovosti‑900835 .aspx?q=Y2hudW09Mw%3d%3d[Accessed:2019,January28].

ROADTRANSPORTCENTER.©2014.MobileExpertUnits [inCzech:Mobilníexpertníjednotky]. Centrum služeb pro silniční dopravu. [Online]. Available at: https://www.cspsd.cz/mobilni‑expertni‑jednotky [Accessed:2019,January28].

SDRUŽENÍŘIDIČŮCZ,Z.S.2019.Základní informace o upínanínákladu.[Online].Availableat:http://soubory.

proridice.eu/naklady/upevneni_nakladuCZ.pdf[Accessed:10.6.2019].

SISA/ČESMADBOHEMIA.2018.AlmostHalfofthe CargoIsNotSecuredProperly[inCzech:Téměřpolovina nákladunenísprávněupevněna]. Dopravní noviny.[Online].Availableat:http://www.dnoviny.cz/silnicni‑ doprava/temer‑polovina‑nakladu‑neni‑spravne‑upevnena[Accessed:2019,January21].

STODOLA, P. 2018.Information Support of Commander´s Decision‑making Process [in Czech: Informační

podpora rozhodovacícho procesu velitele].Prague:PowerPrint.

UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE. 2014.IMO/ILO/UNECE Code of Practice for

Packing of Cargo Transport Units (CTU Code). [Online]. Available at: https://www.unece.org/fileadmin/ DAM/trans/doc/2014/wp24/CTU_Code_January_2014.pdf[Accessed:2019,January16].

VLKOVSKÝ,M.andRAK,L.2017.CargoSecuringinSelectedVehiclesandTransportofExplosives[inCzech: Upevněnínákladuuvybranýchdruhůvozidela přepravatřaskavin].Perner‘s Contacts,12(3):101–110.

VLKOVSKÝ, M.  et  al. 2017. Cargo Securing During Transport Depending on the  Type of a  Road. In: IOP Conference Series: Materials Science and Engineering of the  World Multidisciplinary Civil Engineering‑ Architecture‑Urban Planning Symposium.12–16June.Prague:IOPPublishingLtd.pp.1–9.

VLKOVSKÝ, M.  et  al. 2018. Wavelet Based Analysis of Truck Vibrations during Off‑road Transportation. In: Proceedings of the 14th International Conference on Vibration Engineering and Technology of Machinery. MATECWebofConferences,10–13September,Lisbon.

VLKOVSKÝ,M.,VESELÍK,P.andGRZESICA,D.2018.CargoSecuringanditsEconomicConsequences.In:

Proceedings of the 22nd International Scientific Conference on Transport Means Part I. Kaunas University of

Technology,3–5October.Kaunas:KaunasUniversityofTechnology,pp.129–135.

VRABEL,J. et al.2018.Determinationofthe MaximumPermissibleCargoLengthExceedingthe Articulated

VehicleLengthinOrdertoDetectitsCriticalRotationRadius.In:Proceedins of 11th International Scientific

and Technical Conference on Automotive Safety.InstituteofElectricalandElectronicsEngineers,18 – 20 April.CastaPapiernicka:InstituteofElectricalandElectronicsEngineers.

WALTER,M.2018.ADR Agreement in Agriculture [in Czech: Dohoda ADR v zemědělství].[Online].Availableat: https://www.zscr.cz/download/files/Dohoda_ADR_v_zemedelstvi.pdf[Accessed:2019,February10].

ZÁMEČNÍK,J. et al.2017.Influenceofa LashingStrapWindinginTensioningRatchetonthe Resultsof the StrengthTestsandCyclicLoadingTestsAccordingtothe StandardEN12195‑2.Communications,19(2): 10–17.

ZONG, C.  et  al. 2017. Research on the  Influence of Cargo Securing Force with Typical Road Alignments

and Vehicle Working Conditions. In:Proceedings of the  4th International Conference on Transportation

Information and Safety.InstituteofElectricalandElectronicsEngineers,8 – 10August.Banff:Instituteof ElectricalandElectronicsEngineers,pp.27–32.

Contact information MartinVlkovský:martin.vlkovsky@unob.cz

Figure

Fig.  2), cx, cy, cz are the  acceleration coefficientsthe individualaxes,µisthe coefficientoffriction,m isthe massofthe load,gisthe gravityacceleration,
Fig.  3. Since the  individual graphs well documentshownthatthe givenpairsshowa lineartrend – seethe lineartrend,the statisticalrelationshipbetween

References

Related documents

In addition, modelling was undertaken to examine the potential impacts on the Australian economy if assistance to the automotive industry were to cease entirely

Elegant events is an event company who mainly organize events with an elegant touch.. Exchange of ideas, innovations, knowledge and experiences keeps

The Bellport Academic Center services students who have mild behavioral and/or intensive counseling concerns and/or mild to moderate learning disabilities. Ninth and tenth

Referral is a professional obligation that is present throughout all phases and aspects of the chiropractic practice. The primary obligation of Doctors of Chiropractic is to

Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you

A member may have been incorrectly transferred from student membership to nurse first year discount membership either because there is an incorrect training completion date

D-Pantothenic Acid (calcium pantothenate) 50 mg Vitamin B6 (pyridoxine hydrochloride) 50 mg Vitamin B12 (cyanocobalamin) 50 mcg Biotin 50 mcg Folic Acid 1 mg Lipotropic Factors:

The explanation for Germany probably lies in the substantial flexibility of German labor market, where drop of employment in construction (F) and manufacturing (C) is compensated