• No results found

Hearing voices in the resting brain: A review of intrinsic functional connectivity research on auditory verbal hallucinations

N/A
N/A
Protected

Academic year: 2021

Share "Hearing voices in the resting brain: A review of intrinsic functional connectivity research on auditory verbal hallucinations"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatScienceDirect

Neuroscience

and

Biobehavioral

Reviews

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / n e u b i o r e v

Review

Hearing

voices

in

the

resting

brain:

A

review

of

intrinsic

functional

connectivity

research

on

auditory

verbal

hallucinations

Ben

Alderson-Day

a,∗

,

Simon

McCarthy-Jones

b

,

Charles

Fernyhough

a

aDepartmentofPsychology,DurhamUniversity,ScienceLaboratories,SouthRoad,DurhamDH13LE,UnitedKingdom bDepartmentofCognitiveScience,AustralianHearingHub,MacquarieUniversity,16UniversityAvenue,NSW2109,Australia

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received27November2014 Receivedinrevisedform16April2015 Accepted25April2015

Availableonline5May2015 Keywords:

Restingstate Defaultmodenetwork Voice-hearing Innerspeech Schizophrenia

a

b

s

t

r

a

c

t

Restingstatenetworks(RSNs)arethoughttoreflecttheintrinsicfunctionalconnectivityofbrainregions. AlterationstoRSNshavebeenproposedtounderpinvariouskindsofpsychopathology,includingthe occurrenceofauditoryverbalhallucinations(AVH).Thisreviewoutlinesthemainhypotheseslinking AVHandtherestingstate,andassessestheevidenceforalterationstointrinsicconnectivityprovided bystudiesofrestingfMRIinAVH.Theinfluenceofhallucinationsduringdataacquisition,medication confounds,andmovementarealsoconsidered.Despitealargevarietyofanalyticmethodsanddesigns beingdeployed,itispossibletoconcludethatrestingconnectivityinthelefttemporallobeingeneral andleftsuperiortemporalgyrusinparticulararedisruptedinAVH.Thereisalsopreliminaryevidenceof atypicalconnectivityinthedefaultmodenetworkanditsinteractionwithotherRSNs.Recommendations forfutureresearchincludetheadoptionofacommonanalysisprotocoltoallowformoreoverlapping datasetsandreplicationofintrinsicfunctionalconnectivityalterations.

©2015TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense

(http://creativecommons.org/licenses/by/4.0/).

Contents

1. Restingstatenetworksandpsychopathology... 79

2. Restingstatehypothesesandauditoryverbalhallucinations... 79

3. Resting-statefindingsinAVH-specificstudies... 80

3.1. Auditory/language-processingregions... 80

3.1.1. Primaryauditorycortex... 80

3.1.2. Superiorandmiddletemporalgyri... 80

3.1.3. Inferiorfrontalgyrus... 81

3.2. Defaultmoderegions... 82

3.2.1. Temporoparietaljunction... 82

3.2.2. Midlinestructures(cingulatecortexandprecuneus)... 82

3.2.3. Hippocampalformation(hippocampusandparahippocampalcortex)... 82

3.3. Othernetworksandbetween-networkinteractions... 82

3.3.1. Insulaandstriatum ... 82

3.3.2. InteractionsbetweentheDMNandothernetworks... 83

4. Confoundstotherestingstate:hallucinations,medication,andmovement ... 83

5. Discussion... 84

Acknowledgements... 85

References... 85

∗ Correspondingauthor.Tel.:+441913348147.

E-mailaddress:benjamin.alderson-day@durham.ac.uk(B.Alderson-Day).

Auditoryverbalhallucinations(AVH)refertohearingvoicesin theabsenceofanexternalstimulus.Theyareconsidereda core featureofschizophrenia,presentingin60–90%ofcases(Baethge etal.,2005;Baueretal.,2011).Theycanalsofeatureinarangeof otherpsychiatricdisorders(suchasbipolardisorderand depres-sion)andareexperiencedwithoutaneedforpsychiatriccarein http://dx.doi.org/10.1016/j.neubiorev.2015.04.016

(2)

aminorityofthegeneralpopulation(Johnsetal.,2014).A num-berofstudieshaveexaminedbrainactivationeitherduringAVH orinrelationtohallucinationpredisposition,buttheneuralbasis ofthephenomenonisstillnotwellunderstood(Allenetal.,2012). Inthiscontext,therehasbeenagrowinginterestinthepotential forrestingstatenetworks—i.e.,theintrinsicorganizationand spon-taneousactivationofgroupsofbrainregions—toexplainhowand whyhallucinatoryexperiencesoccur(Jardrietal.,2013;Northoff andQin,2011).

1. Restingstatenetworksandpsychopathology

Restingstatenetworks(RSNs)denotegroupsofbrainregions thatcorrelateintheirspontaneousactivitywhenidleor‘atrest’.In fMRI,suchspontaneouscorrelationsoccurduetolow-frequency fluctuationsinthehemodynamicresponse,andareinterpretedas evidenceofintrinsic,functionalconnectionsamongbrainregions. Intrinsicconnectivitycanbeassessedbyselectingaseedregionand examiningitscorrelationacrosstimewitheitherspecificregions ofinterestorthewholebrain.Alternatively,techniquessuchas independentcomponentsanalysis(ICA)canbeused toidentify networksofareasthattendtocovaryatrest,withouttheneedfor specifyingaseedregion.Partsofanetworkcanthenbeassessed fortheiraverageconnectivitywithotherregions(i.e.,connectivity strength)andtheextenttowhichtheymediateotherpathswithin thenetwork(sometimescalled‘betweennesscentrality’;Freeman, 1977).

Themost well-known restingnetwork isthe ‘default mode’ network(DMN;Raichleetal.,2001),acollectionofregions includ-ing the medial prefrontal cortex, medial temporal lobe, lateral parietalcortex,precuneus,andposteriorcingulate.TheDMNwas originallydefinedbyitstendencytonegativelycorrelatewith task-positive activity,promptingthe conceptof a default state.It is nowrecognizedthattheDMN,whileoftenanti-correlatedwith externally-guidedactivity,isactiveinarangeofinternally-directed cognitiveprocesses,includingmind-wandering,autobiographical memory,andfuturethinking(Buckneretal.,2008).Othernotable networksshowingintrinsicconnectivityatrestincludethecentral executivenetwork(CEN),whichlinksposteriorparietalregionsto prefrontalcortex(sometimesalsoreferredtoasthefronto-parietal network,orFPN),andthesaliencenetwork(SN),whichincludes theinsula and its connectiontotheanterior cingulateand the supplementarymotorarea(Bresslerand Menon,2010).Specific networksunderpinningsensoryprocessingarealsoevidentatrest, althoughthesewillusuallybemoreapparentduringengagement inanexternally-driven,task-positiveprocess.

ThepotentialrelevanceofRSNstounderstanding psychopathol-ogyin general, and psychosis in particular, hasbeen noted by anumber ofauthors(Broydetal.,2009;Whitfield-Gabrieliand Ford,2012;Williamson,2007).Studiesofpeoplewith schizophre-niahavereportedalteredconnectivitypatternsintheDMNand otherrestingnetworks,alongsideatypicalmodulationofinternally andexternallyfocusedattention(Kimetal.,2009;Öngüretal., 2010;Pomarol-Clotetetal.,2008).Itisunclear,however,howmuch schizophreniacase–controlstudiesalonecantellusaboutthe res-tingstateinrelationtoAVH,forthreereasons.

First,schizophreniaisahighlyheterogeneousdisorderinvolving widelyvaryingconfigurationsofpositiveandnegativesymptoms. Anyrestingdifferences observedbetweenpatientsand controls could relate to AVH, or a number of other symptoms or con-founds, including medication. Second, a significant minority of schizophreniapatientsdonotexperienceAVH(around1/3;e.g., Baueretal.,2011), againlimitinganyspecificconclusionsabout restingstatedifferencesandAVH.Third,moststudiesoftheresting stateinschizophreniahaveonlyexaminedrestingnetworksasif

theyreflectstable,trait-basedmarkersforpsychopathology.AVH, however,areintrinsicallytransientandunpredictablephenomena; understandinghowtheymightemergefromRSNsrequiresaclose examinationofthecurrenthallucinationstatusofparticipants,the presenceofhallucinationsduringscanning,andthetime-courseof neuralnetworkspriortohallucinationoccurring.

Thisproblemis nowbeginningtobeaddressedbya growth in the number of studies seekingdirectly to link resting-state characteristicstothepropensityforAVH.Insomecasesthishas involvedconstrainingschizophreniasamplestoonlyincludethose withAVH,andthencomparingthemeitherwithhealthycontrols (Sommeretal.,2012;Vercammenetal.,2010)orhealthycontrols plus a clinicalcontrol groupof participantswithschizophrenia but no hallucinations (Gavrilescu et al., 2010; Hoffman et al., 2011).Otherstudieshaveusedmixedschizophreniagroupsand specificallyreportedon correlationsbetween AVHseverityand resting-state characteristics (Rotarska-Jagiela et al., 2010; Sorg etal.,2013).Finally,twostudieshavereportedonintrinsic func-tional connectivityin a sample of peoplewho experience AVH withoutneedforpsychiatriccare,i.e.‘non-clinical’voice-hearers (Diederenetal.,2013;VanLutterveldetal.,2014).

Thefollowingreviewoutlineswhatcanbesaidsofaraboutthe restingstateanditsroleinunderstandingAVH.Section2outlines threemainhypothesesaboutrestingstatedysfunctionandAVH. InSection3,findingsfromAVH-specificresting-statestudiesare reviewed, organizedaccordingtothebrainareas andnetworks thathavebeentheprimaryfociofresearch.Section4considers aselectionofmethodologicalconfoundstostudyingintrinsic func-tionalconnectivityusingfMRI,andexamineshowtheyhavebeen addressedbyexistingstudies.

2. Restingstatehypothesesandauditoryverbal hallucinations

AsAVHbydefinitionoccurintheabsenceofanexternal stim-ulus,thereisanimmediateplausibilitytotheideathatanatypical restingstatecouldgiverisetoahallucinatoryexperience.A start-ingassumptionmaybethatAVHresultfromabnormallyhighor atypicallymoderatedrestingactivityinprimaryauditorycortices, givingrisetospontaneousinternalsignalsthataremisattributed asexternal,oranover-sensitivityofauditorycorticestotop–down expectancyeffects(foraccountsofthiskind,seeChoandWu,2013; Hunteretal.,2006;MintzandAlpert,1972).

Such hypotheses are supported by evidence of structural changestoprimaryauditorycortexinschizophreniapatientswith AVH(Hubletal.,2010),andcomputationalmodelsofschizophrenia that posit shallow differences between resting and externally-generatedneuronalstates(Rollsetal.,2008).However,theyare notnecessarilysupportedbyneuroimagingevidenceofthe audi-torycortexduringAVH.Whilesomesymptom-capturestudieshave observedprimaryauditorycorticalactivityduringtheexperience ofAVH(Dierksetal.,1999),recentmetaanalyseshaveindicated thatsuchactivationisnotobviouslyapparentduringhallucinations (Jardrietal.,2011;KühnandGallinat,2012).Manystudieshave insteadreportedactivationofsecondaryandassociationauditory areasfurtheruptheauditoryprocessingstream.Accordingly,ithas beensuggestedthatevidenceofprimaryauditorycortexactivity duringAVH,whereithasbeenobserved,ismorelikelytoreflecta back-propagationofactivityfromassociationcortices(Jardrietal., 2013).

Amorecommonresultinsymptom-capturestudieshasbeen the observation of activation in areas associated with speech production, such as the left inferior frontal gyrus (IFG) (Kühn and Gallinat, 2012).Such findings supportmodels of AVHthat explaintheexperienceintermsofafailuretomonitorone’sown

(3)

internalspeech,resultinginitsmistakenattributiontoanexternal source(Feinberg,1978;Fordetal.,2002;Frith,1992).Regarding therestingstate,suchmodelswouldpredictapatternofatypical functionalconnectivitybetweentypicalspeechprocessingareas, primarilywithinaleftfronto-temporalnetworkincludingtheIFG andsuperiorandmiddletemporalgyri,butpotentiallyextending torighthemispherelanguage‘homologue’areas(Sommeretal., 2008).Reducedstructuralconnectivityintheleftarcuate fascicu-lus,whichlinksfrontalandtemporallanguageregions,hasbeen foundin schizophreniapatientswithAVHcompared tohealthy controls(Geoffroyetal.,2014).Morerecentlythishasalsobeen observedforpatientswithAVHcomparedtobothschizophrenia patientswithouthallucinationsandschizophreniapatientswith hallucinationsinnon-auditoryverbalmodalities(McCarthy-Jones etal.,2015),supportingamodelofdisruptedfunctionalinteraction withinspeech-processingsystems.

AthirdhypothesisisthatAVHsomehowarisefromthe activ-ity and function of the DMN, which by definition will usually beprominent during rest.In suchan account AVHcould arise frommisattributedproductionsoftheDMN,eitherviaan atyp-ical interaction between the DMN and other networks at rest (NorthoffandQin,2011),orafailuretomaintaintheDMNin a stablestate(Jardrietal.,2013).Therangeoffunctionsassociated withtheDMN—includingintrospectivethought,autobiographical memoryandself–otherattributions—makeitamenableto explain-ingboththevariationinAVHsthatpeopleexperienceandtheir oftenpersonalandself-directednature(FfytcheandWible,2014; Vercammenetal.,2010).

Insupportofthelatterhypothesis,atypicalcharacteristicsof theDMNhavebeenfoundinschizophrenia.Comparedtohealthy controls,peoplewithschizophreniahaveshownreduced suppres-sionof theDMNduringtask-relatedperiods(Whitfield-Gabrieli etal.,2009),elevatedconnectivitywithintheDMNatrest(Zhou etal.,2007),atypicalconnectivitybetweenDMNhubs(Bluhmetal., 2007),andlessindependencebetweentheDMNandtask-positive networks(see Whitfield-Gabrieliand Ford,2012,for a review). WhilethesefindingspointtoatypicalDMNfunctionin schizophre-niaingeneral,theymayalsoplayaroleinthedevelopmentofAVH inparticular.

3. Resting-statefindingsinAVH-specificstudies

FindingsonrestandAVHcanbegroupedintothreeclusters: (i)restingconnectivityoftheauditorycortexandlanguageregions (includingtheleftinferiorfrontalgyrusandleftsuperiorand mid-dletemporalgyri);(ii)areasassociatedwithdefaultmodefunction, includinglateraltemporoparietalregions,midlinestructures,and thehippocampalformation(Buckneretal.,2008),and(iii)other individualareasandnetworks,includinginteractionsbetween dif-ferentRSNs(seeTable1).

3.1. Auditory/language-processingregions 3.1.1. Primaryauditorycortex

Twostudies have specifically examinedconnectivity of pri-maryauditorycortex(PAC)inAVH.Usingaseed-basedapproach, Gavrilescuetal.(2010)comparedrestingconnectivitybetweenthe leftandrightPACinpatientswithschizophreniaandAVH(SzAVH+ henceforth),patientswithschizophrenia butnoAVH(SzAVH−), andasampleofhealthycontrols(HC).SzAVH+participantsshowed reduced connectivity between left and right hemispheres for both primary and secondary auditory areas compared to the two other groups, leading the authors to propose that inter-hemisphericconnectivityproblemsmaybespecifictothosewith AVH.

Shinnetal. (2013)alsocomparedSzAVH+, SzAVH−, andHC groups,butexaminedPACconnectivityinrelationtotherestof thebrain.ForleftPAC,theyobservedincreasedconnectivitywith theleftsuperiorparietallobuleandleftmiddlefrontalgyrus,and reducedconnectivitytorighthippocampalandthalamicregionsin SzAVH+.Hallucinationseverityinthisgroupalsopositively corre-latedwiththeconnectivitybetweenleftPACandarangeofregions, includingleftIFG,left STG,theanteriorand posteriorcingulate cortex,andrightorbitofrontalcortex(noothersymptom correla-tionswerereported).Incontrast,noalteredconnectivitywasfound betweentherightPACandanyotherregion.

Thecontrastinfindingsbetweenthesetwostudiesislikelyto arisefromdifferencesinthekindofanalysisdeployed.Thefocus onleft–rightPACconnectivitybyGavrilescuetal.(2010)mayhave missedwiderconnectivityalterationswiththerestofthebrain. Incontrast,Shinnetal.’s(2013)whole-brainanalysiscouldhave highlightedspecificinterhemisphericproblems,butdidnot,even whenusingthesamevoxelthresholdasGavrilescuetal.(2010). ThelackofatypicalconnectivityforrightPACandwiderangeof connectivityalterationsforleftPACobservedbyShinnetal.(2013) suggestthatconnectivitydifferencesinAVHareunlikelyto pri-marilyresideinbilateralcommunicationoftheauditorycortices. Furthermore,thepresenceofsymptomcorrelationsinShinnetal. (2013)reinforcesthesuggestionthatintrinsicconnectivityofthe leftPACinparticularisrelatedtoAVH.

3.1.2. Superiorandmiddletemporalgyri

Fourstudieshavereportedonseedsplacedinsuperiorand mid-dletemporalgyri(Closetal.,2014;Diederenetal.,2013;Hoffman etal., 2011;Sommer etal., 2012),while two havereported on connectivityin these areasusing network-basedmethods (Van Lutterveldetal.,2014;Wolfetal.,2011).Hoffmanetal.(2011) examinedtheconnectivityofboththeleftandrightposterior supe-riortemporalgyri(STG)toleftinferiorfrontalgyrusinSzAVH+, SzAVH−, and HC individuals. Although no altered connectivity betweenthesetworegionswasfoundspecifictoSzAVH+,greater functionalconnectivitywasfoundinSzAVH+ comparedtoboth controlgroups,inacorticostriatalloopinvolvingtheIFG,the bilat-eralposteriorSTG,andtheputamen.Basedonevidenceofputamen involvement inlanguageinitiation(Price,2010), Hoffman etal. (2011)suggestedthatthismaygiverisetoan“overabundanceof languagerepresentationsthatcanbecomehallucinogenic”inthose withAVH(p.412).

Incontrast,Sommeretal.(2012)observedreducedconnectivity betweenleftSTGandleftIFGinasampleofparticipantswith psy-chosisandAVHcomparedtocontrols.Functionalconnectivitywas alsolowerbetweenleftSTGandlefthippocampus,aneffectthat wasparticularlyprominentinparticipantswhoreportedAVH dur-ingscanning,andcorrelatednegativelywithhallucinationseverity onthePANSS(Kayetal.,1987).Infurtheranalysisofthesame sam-ple,Closetal.(2014)alsoreportedreducedconnectivitybetweena seedinleftmiddletemporalgyrusandtherightSTG.However, neitherstudyincludeda comparison withindividuals who had psychosisbutnoAVH,meaningthattheobservedalterationsto connectivitymaynotbespecifictothepresenceofhallucinations. Onewaytoavoidsuchaconcernistostudyintrinsic connec-tivityinthosewithAVHbutnopsychosis.Diederenetal.(2013) comparedconnectivityin25non-clinicalparticipantswithAVH and25controlsacrossaselectionofseedsthatincludedleftand rightSTG. Elevatedconnectivitywasobservedbetweenthetwo STGsitesandtherightIFG.Networkanalysisofanoverlapping groupofparticipantsbyVanLutterveldetal.(2014)indicatedthat theleftSTGinparticularshowedgreaterconnectivitystrengthand betweennesscentralityinparticipantswithAVHcomparedto con-trols.Thatis,theleftSTGappeared toactasa moreimportant restinghubforthosewithAVH,intermsofbeingmorelikelyto

(4)

Table1

RestingfunctionalconnectivityMRIstudiesinindividualswithAVH.

Study Groups Method ConnectivityinAVH

participants

Symptomcorrelation

Gavrilescuetal.(2010) SzAVH+ SzAVH− HC

Seed

(leftandrightPAC)

↓LeftPAC-rightPAC – Shinnetal.(2013) SzAVH+

SzAVH− HC

Seed

(leftandrightPAC)

↑LeftPAC-leftSPL,left MFG

↓LeftPAC-rightPHC,right thalamus

↑LeftPAC-leftIFG, leftSTG,rightOFC, rightpre-andpost-central gyrus,ACCandPCC Hoffmanetal.(2011) SzAVH+

SzAVH− HC

Seed (bilateralSTG)

↑BilateralSTG-leftIFG -putamen

Sommeretal.(2012) Psychosis+AVH HC

Seed

(leftSTGandrightIFG)

↑RightIFG-rightPHC ↓RightIFG-rightDPLFC ↓LeftSTG-leftIFG,left hippocampus

↓LeftSTG-left hippocampus

Closetal.(2014) Psychosis+AVH HC

Seed

(leftIFG,MTG,AG, thalamus)

↑LeftIFG-leftinsula,SMA; Lefthippocampus-left thalamus

↓LeftIFG-leftIPL,left DLPFC,bilateralVLPFC ↓LeftMTG-rightSTG;left TPJ-leftAG;

Leftthalamus-right cerebellum

↑LeftIFG–leftVMPFC ↓Thalamus–rightPCG, rightPHC

Diederenetal.(2013) NC+AVH HC

Seed

(bilateralIFG,STG,PHC)

↑LeftSTG-rightSTG,right IFG;leftIFG-leftPHC VanLutterveldetal.(2014) NC+AVH

HC

Network/ICA ↑LeftSTG,rightMTG,PCC (strength)

↑LeftSTG(centrality) ↓LeftPCL,rightITG,right amygdala(centrality)

Wolfetal.(2011) SzAVH+ HC

Network/ICA ↑LeftSTG,rightSFG,right MFG,bilateralMTG ↓LeftACC,leftprecuneus, rightPCC

↑LeftSTG,rightMFG ↓LeftACC Vercammenetal.(2010) SzAVH+

HC

Seed

(leftandrightTPJ)

↓LeftTPJ-rightIFG ↓LeftTPJ-bilateralACC, amygdala

Rotarska-Jagielaetal.(2010) SZ HC

Network/ICA – ↓Lefthippocampus,left

STG Manoliuetal.(2014) SZ HC Network/ICA – ↓RightAI ↑DMN-CEN Sorgetal.(2013) SZ HC Network/ICA – ↓Putamen

Jardrietal.(2013) BriefPD HC

Network/ICA ↓GoFinDMN,DMN–ASC ↓DMNstability

AI=anteriorinsula,ACC=anteriorcingulatecortex,AG=angulargyrus,ASC=associationsensorycortex,AVH=auditoryverbalhallucination,CEN=centralexecutivenetwork, DLPFC=dorsolateralprefrontalcortex,DMN=defaultmodenetwork,GoF=goodnessoffit,HC=healthycontrol,ICA=independentcomponentsanalysis,IFG=inferiorfrontal gyrus,IPL=inferiorparietallobule,ITG=inferiortemporalgyrus,MFG=middlefrontalgyrus,MTG=middletemporalgyrus,NC=non-clinical,OFC=orbitofrontalcortex, PAC=primaryauditorycortex,PCC=posteriorcingulatecortex,PCG=precentralgyrus;PCL=paracentrallobule,PD=psychoticdisorder,PHC=parahippocampalcortex, SMA=supplementarymotorarea,SPL=superiorparietallobule,Sz=schizophrenia,SFG=superiorfrontalgyrus,STG=superiortemporalgyrus,TPJ=temporoparietaljunction, VLPFC=ventrolateralprefrontalcortex;VMPFC=ventromedialprefrontalcortex.

beconnectedtootherbrainareasingeneral.Inaddition,theright middletemporalgyrusalsoshowedgreaterlevelsofconnectivity tootherareasinAVHparticipants.Thesamplereportedoninthese twostudiesshowedsomeevidenceofsub-clinicalcharacteristics inotherdomainsofpsychosis(e.g.,unusualorgrandiosebeliefs), meaningthattheyshouldnotsimplybeseenastheequivalent ofhealthycontrolswithAVH(Sommeretal.,2010).However,it seemsunlikelythatsuchcharacteristicswouldexplainalterations toresting connectivitywhen the groupwas more prominently characterizedintermsofpronenesstoAVH.

ThefindingsofDiederen,vanLutterveld,and colleaguesalso correspondwithevidencefromanetworkanalysisinSzAVH+ indi-viduals.Wolfetal.(2011)foundthatSzAVH+participantsshowed increasedconnectivitystrength forleft STGand theMTG bilat-erallycomparedtoHC.Thisdidnot involvea non-hallucinating schizophrenia group, but did include some evidence of symp-tom correlation: a positive correlation was observed between symptom severity and left STG connectivity that was specific tohallucinations(asmeasuredonthePSYRATS;Haddock etal.,

1999)ratherthanpositivesymptomsingeneral(measuredonthe PANSS).

Insum,thereisevidenceofatypicalconnectivityoftheSTGand MTGfromresting-statestudies,butresultsareverymixed.Inboth clinicalandnon-clinicalparticipantsthereisevidencetosuggest thattheleftSTGinparticularislikelytoshowelevated connec-tivitytootherbrainregionsatrest.Thisisnotnecessarilythecase, however,forconnectivitybetweensuperiortemporalareasandleft IFG;insomecasesthishasbeenproposedtobeintactor possi-blyelevatedinthosewithAVH(Hoffmanetal.,2011),butthereis alsoevidenceofreducedSTG–IFGfunctionalconnectivity(Sommer etal.,2012).

3.1.3. Inferiorfrontalgyrus

Beyonditscouplingwithtemporalregions,threestudieshave specificallyreportedonconnectivityintheleftinferiorfrontalgyrus (IFG).Asnotedabove,Hoffmanetal.(2011)observedelevated con-nectivitybetweenleftIFGandtheputameninSzAVH+comparedto SzAVH−,whichformedpartofacorticostriatalloopencompassing

(5)

languageregionsandthestriatum.InClosetal.(2014),decreased connectivityfor AVHparticipantswasevident betweenleftIFG, leftdorsolateralprefrontalcortex,ventrolateralprefrontalcortex, andinferiorparietalareas(bilaterally).Alongsidethis,increased connectivitywasobservedbetweenleftIFG,leftinsula,andthe supplementarymotorarea,althoughthelackofanSzAVH− con-trolgrouplimitsinferencesaboutthespecificityofthesechanges toAVH.Finally,innon-clinicalhallucinatingparticipants,Diederen etal.(2013)observedincreasedconnectivitybetweenleftIFGand leftparahippocampalcortex,suggestingelevatedcommunication betweenlanguage regions and areas responsible for mediating memoryretrieval.

Inaddition totheleft IFG,the rightIFGhasalso beenused asa seedregion.Sommer etal. (2012)foundthat SzAVH+ had increasedconnectivitywiththerightparahippocampalgyrus, com-pared to healthy controls, but reduced connectivity with the rightdorsolateralprefrontalcortex(DLPFC).However,thestrong associationof therightDLPFC withdelusions(Coltheart, 2010) highlightsthatthelackofaSzAVH−controlgroupcouldhaveled totheseresultsbeingconfoundedbyothersymptomsassociated withschizophrenia.Thisbringsintoquestiontheirspecificityto AVH.

Fortheinferiorfrontalgyri,then,thereissomeevidenceof atyp-icalconnectivitywiththestriatum,prefrontalcortex,andmedial temporalareas.Evidenceofreducedconnectivitywithdorsaland ventrallateralprefrontalcortexinSommeretal.(2012)andClos etal.(2014)islimited,though,bythelackofacomparisongroupof non-hallucinatingparticipantswithpsychosis.Twostudiespointto increasedcouplingbetweeninferiorfrontalandparahippocampal regions,butindifferenthemispheres.

3.2. Defaultmoderegions 3.2.1. Temporoparietaljunction

Vercammenetal.(2010)comparedrestingfunctional connec-tivityinSzAVH+andHCparticipantsamongseedsintheleftand righttemporoparietaljunction(TPJ)andavarietyofROIs,including theIFG,anteriorcingulate,insula,andamygdala.Whilereductions inconnectivitywereevidentgenerallyinAVHparticipants,theonly groupdifferencesurvivingcorrectionformultiplecomparisonswas areductioninconnectivitybetweentheleftTPJandrightIFG. Symp-tomcorrelationsforhallucinationseveritywerealsoobservedfor linksbetweentheleftTPJandbilateralROIsintheamygdalaand anteriorcingulate,suchthatgreaterseveritywasassociatedwith reducedconnectivity.Thisrelationshipwasobservedfortwo sepa-ratemeasuresofhallucinationseverity(P3onthePANSSandtotal scoreontheAuditoryHallucinationRatingScale;Hoffmanetal., 2003)butnotforpositive,negative,orgeneralsymptomscoreson thePANSS.Closetal.(2014)alsoreportedevidenceofalteredleft TPJconnectivityintheirsampleofparticipantswithAVHand psy-chosis.ComparedtoHCcontrols,participantswithAVHshowed reducedcouplingbetweenleftTPJandleftangulargyrus,andthis wasparticularlyevidentinthosewhohallucinatedduring scan-ning,suggestingbothtraitandstatealterationstoTPJconnectivity inAVH.

AsinClosetal.(2014),Vercammenetal.’s(2010)studydidnot includeaclinicalcontrolgroupofparticipantswithpsychosisbut notAVH.However,theirevidenceofsymptomcorrelationsspecific toAVH,andevidence ofstateeffects in Closetal. (2014), par-tiallyaddresstheconcernaboutotherpsychoticfactorsactingas confounds.Inaddition,thereisalsosomeevidenceofatypicalTPJ connectivityinnon-patientindividualswithAVH:Diederenetal. (2013)observedanegativecorrelationbetweenleftTPJandright IFGincontrolparticipants,butthiswasnotevidentinparticipants withAVH.

3.2.2. Midlinestructures(cingulatecortexandprecuneus)

Evidenceofconnectivitypatternsinmidlinestructures(anterior cingulate,posteriorcingulate,andprecuneus)hastendedtocome fromstudiesemployingnetworkanalysisratherthanseed-based methods.Wolfetal.(2011)observedreducedconnectivitystrength forSzAH+individualsintheleftanteriorcingulate,rightposterior cingulate,andleftprecuneus,alongsideincreasedconnectivityin rightsuperiorfrontalgyrusandmiddlefrontalgyrus(with connec-tivitybeingdefinedasthevoxelweightingforthatregionwithin arestingnetwork).Connectivityintheleftanteriorcingulatewas alsonegativelyassociatedwithhallucinationseverity,i.e.greater connectivitystrengthinthatregionwasassociatedwithreduced hallucinationproneness.

ThissuggeststhatAVHmaybeassociatedwithreductionsinthe generalconnectivityofanteriorandposteriormidlinestructures. However,Wolfetal.(2011)didnotinclude anon-hallucinating patientgroup,whichlimitsinterpretationoftheirfindings. Con-trastingfindingswereevidentforposteriormedialcortexinVan Lutterveldetal.’s(2014)analysisofnon-clinicalAVHparticipants, whichfoundgreaterconnectivitystrengthfortherightposterior cingulateandprecuneus.CorrelationsbetweenACCconnectivity andhallucinationshavebeenobservedinotherstudies,butthey varywitharea: increasedhallucination severityhasbeen asso-ciatedwithreducedcouplingbetweenbilateralACCandleftTPJ (Vercammenetal.,2010),butelevatedconnectivitybetweenACC andleftPAC(Shinnetal.,2013).

3.2.3. Hippocampalformation(hippocampusand parahippocampalcortex)

Fourof theabove studies(Closet al.,2014; Diederen etal., 2013;Shinnetal.,2013;Sommeretal.,2012)andoneotherstudy (Rotarska-Jagiela etal.,2010)havereportedspecificresting dif-ferencesinthehippocampusandparahippocampalcortex(PHC). Rotarska-Jagielaetal.(2010)examinedrestingnetworksina sam-pleofpatientswithschizophreniaandahistoryofAVHcompared toanHCgroup.Whilegeneraldifferencesinconnectivitybetween Szand HCparticipantswerewidespread, hallucination severity wasrelated to decreased connectivity in thelower part ofthe hippocampusand theleft posterior STG.In both regions, how-ever,connectivityreductionswerealsoassociatedwithdelusion severity,suggestingarelationshipwithpositivesymptomatology ingeneral,ratherthanhallucinationsinparticular.

Elsewhere,increasedlevelsofconnectivityinAVHparticipants havebeenreported betweenleft hippocampustoleftthalamus (Closetal.,2014);leftPHCtoleftIFG(Diederenetal.,2013);and rightPHCtorightIFG(Sommeretal.,2012).Decreasedcoupling hasbeenobservedbetweenrightPHCandleftPAC(Shinnetal., 2013)andlefthippocampustoleftSTG(Sommeretal.,2012).The strongestofthesefindingsis providedbySommer etal.(2012), whoalsoobserveddecreasedSTG-hippocampusconnectivityfor thosewhoreportedAVHduringscanningandscoredhigherfor AVHsymptomsingeneral.

Overall,then,findingsonhippocampalconnectivityin individ-ualswithAVHareverymixedandnon-replicating.Primarilythere isevidenceofalterationsinrestingconnectivityamongavarietyof hippocampalandlanguageregions,butthismayalsoreflectchoice of seeding regions. Onlyone study—Sommer et al. (2012)—has reportedcombinedevidenceofconnectivityalteration,symptom correlation,andstateeffects.

3.3. Othernetworksandbetween-networkinteractions 3.3.1. Insulaandstriatum

Onestudyhasspecificallystudiedconnectivityofthe insula-basedsaliencenetwork.Manoliuetal.(2014)usedICAtocompare connectivitylevelswithinthesaliencenetworkforindividualswith

(6)

currentpsychosis,individualsinremission,andhealthycontrols. Hallucination(butnotdelusion)severitywasnegativelyassociated withconnectivitystrengthintherightanteriorinsulaspecifically. Increasedfunctionalconnectivitybetweentheleftinsulaandleft IFGwasalsoobservedinAVHparticipantsbyClosetal.(2014), whileVercammenetal. (2010)includedbilateralinsulaROIsin theiranalysisbutfoundnosignificantalterationsinconnectivity.

Sorgetal.(2013),usingthesamesampleasManoliuetal.(2014), reportedonrestingstateconnectivitywithinabasalganglia net-workthatincludedthestriatum,globuspallidus,andthethalamus. Hallucinationseveritywithinthenetworkwasspecifically associ-atedwithconnectivityintheputamen.However,thisrelationwas alsoobservedfordelusionscores.Thus,whilebothSorgetal.(2013) andManoliuetal.(2014)lackedaspecificcomparisonofclinical participantswithandwithoutAVH,onlythelattercould demon-stratehallucination-specificcorrelationswithrestingconnectivity. 3.3.2. InteractionsbetweentheDMNandothernetworks

Finally,two studies haveexaminedhow interactions among different networks may contribute toAVH (Jardri et al., 2013; Manoliuetal.,2014).Jardrietal.(2013)examinedneuralactivation duringhallucinatory episodesand at restin agroup of adoles-centswithbriefpsychoticdisorder,whoeitherexperiencedAVH, visualhallucinationsorboth.Hallucinationepisodeswere associ-atedwithgreateractivationinassociativesensoryareasspecificto themodalityofthehallucination(includingtheSTSand occipito-temporaljunction),andthiscorrelatedwithhallucinationseverity. Whenassociativesensorycorticalactivationincreased,this anti-correlated withactivityin theDMN, andhallucination severity predictedboththeDMNgoodnessoffit(ameasureofhowstable theDMNwasspatially)anditsvariabilityovertime.Furthermore, therewasnorelationshipobservedbetweenDMNinstabilityand positive symptomsin general.ThisledJardriand colleaguesto suggestthathallucinationperiodsmaybeprecededbyasudden disengagementofunstableDMNstates,leadingtointernal repre-sentations(suchasthoseactivatedbythememoryfunctionsofthe DMN)beingprocessedbyasiftheywereexternal,sensorystimuli. ThereisalsosomeevidencelinkingAVHwiththeinteraction betweentheDMNand thecentralexecutive network (CEN).In additiontoanalyzingthesaliencenetwork,Manoliuetal.(2014) examined properties of both the DMN and CEN in their sam-ple of participants with schizophrenia. A positive relationship wasobservedbetweenhallucinationseverityand interconnectiv-itybetweendorsalnodesoftheDMNandrightventralCEN,with nocorrespondingassociationfordelusionscores.Thus,while hal-lucinationonsetmaybeprompted byweakerormoreunstable interactionsbetweentheDMNandsensorynetworks,hallucination severitymaybeassociatedtotightercoupling(andbyextension, lessseparation)betweentheDMNandnetworksserving atten-tionalcontrol.

4. Confoundstotherestingstate:hallucinations, medication,andmovement

ObservingatypicalrestingstatesinthosepronetoAVHraises thequestionofwhethertheyshouldbeinterpretedastraitorstate effects:thatis,asmarkersofhallucination-pronenessoras charac-teristicsofthehallucinatorystateitself.Mostresting-statestudies focusontheformer,withseparatesymptom-capturedesignsbeing usedtostudythestudythestateofhallucination.Assuch,rulingout orcontrollingforthepresenceofAVHduringscanningisimportant forunderstandingtheircontributiontorestingdynamics.

Of the above studies, the majority have controlled for the state of AVH in various ways (see Table 2). Four studies only includedhallucination-freedata,eitherbyexcludingparticipants

whoexperiencedAVHduringscanning(Diederenetal.,2013;Van Lutterveldetal.,2014),analyzingAVHdataelsewhere(Hoffman etal.,2011),orcheckingthattheirparticipantsreportedno halluci-nations(Gavrilescuetal.,2010).Fourstudiesspecificallycompared datawithandwithoutAVH,eitherbetweenparticipants(Closetal., 2014;Shinnetal.,2013;Sommeretal.,2012)orwithin partici-pants(Jardrietal.,2013).Theremainingstudiesreportednospecific attemptstocontrolforthepresenceofhallucinations.

Useofantipsychoticmedicationisanotherfactorthatmaybe expected toaffectthe characteristicsof restingstatenetworks. Althoughthereareonlyalimitedofnumberofstudiesinthisarea, antipsychoticadministrationhasbeenfoundtoalterconnectivity strengthbetweenthevmPFCandtherestoftheDMN(Sambataro etal.,2009),betweenthemPFCandboththehippocampusand nucleusaccumbens(Boldingetal.,2012)andbetweentemporal and parietalregions, temporaland frontalregions andthe pre-cuneusandbasalganglia(Luietal.,2010).Antipsychoticshence havethepotentialtoactasanotableconfoundforexisting stud-iesoftherelationbetweenAVHandRSNs.Allofthestudiesthat includedclinicalparticipantgroupsreportedonmedicationuse, withtheexceptionofJardrietal.(2013),whospecificallyrecruited medication-freeparticipants.Attemptstocontrolformedication effects were mixed: two studies reportedno groupdifferences in medicationlevels betweenclinicalgroups with and without AVH(Gavrilescuetal.,2010;Shinnetal.,2013),whilefivestudies eithertestedforcorrelationswithmedicationlevelsorcorrected symptomcorrelationsaccordingtomedicationuse(seeTable2). Wolfetal.(2011)foundthatconnectivityabnormalitiesinright MTG in participantswith AVHalsocorrelated withmedication use,butnootherstudiesreportedsimilaroverlaps.Threestudies eitherreportednocorrectionformedicationuseorcouldnotdoso becauseofdiversityinthekindsofmedicationsused(Closetal., 2014;Sommeretal.,2012;Vercammenetal.,2010).

BeyondtheinfluenceofAVHandmedications,clinicalstatus is alsoassociated withother potentialconfounding factors.For instance,patientsoftenmoveinthescannermorethancontrols, andthiscangreatlyaffectconnectivityresultsforseed-based meth-odsinparticular(VanDijketal.,2012).Motionproblemsareknown toaffectimagingreliabilityinresearchwithchildren(Satterthwaite etal.,2012),olderadults(Mowinckeletal.,2012),andindividuals highinimpulsivity(Kongetal.,2014),anditishighlylikelythat studieswithpeoplecurrentlyexperiencingpsychosiswillbe sim-ilarlyaffected.Thisproblemcanbeaddressedtosomedegreeby regressingouthead-motionparametersandothernuisance vari-ables(suchascardiorespiratorymeasures)fromfMRItimeseries, buteventhishasbeenarguedtoleaveconsiderableartifactsinthe data,leadingtooverestimationoflocalconnectivityand underes-timationoflongdistanceconnectivity(Poweretal.,2012).Useof ICA-basedmethodsallowsfortheremovalofmovement-related components, but alsoinvolves a degree of subjective decision-makingintheidentificationofwhich componentstoignore.Of the above studies,six report useof standard regression meth-odstocorrectforheadmotion,whiletwo usedbothregression andICA(Rotarska-Jagielaetal.,2010;VanLutterveldetal.,2014). Theremainderreportednospecificmotioncorrectionbutmany ofthem diduseICA,which mayhave includedidentificationof motioneffects.Notably,onlytwostudiesreportedgroup compar-isonsforoveralllevelsofheadmovementduringscanning:Shinn etal.(2013)andVanLutterveldetal.(2014).

Finally,concurrentproblemswithagitationoranxietymaybe expectedtobemorecommoninpatientscomparedtocontrol par-ticipants,butoftheabovestudies,onlyone(Shinnetal.,2013) reportedspecificallyaskingparticipantsabouttheiranxietylevels andgeneralmoodduringscanning(theparticipantsstudiedbySorg andManoliuwereaskedaboutany“oddfeelings”duringscanning, butmorespecificdetailsarenotreported).Nostudieshaveused

(7)

Table2

Controlforstateeffectsofhallucination,medication,andmovementinrestingstateAVHstudies.

Study AVHcontrol? Medicationcontrol? Motioncontrol?

Gavrilescuetal.(2010) Yes(noAVHdataincluded) Yes(nogroupdifference) Regression

Shinnetal.(2013) Yes(groupcontrast) Yes(nogroupdifference) Regressionandgroupcomparison Hoffmanetal.(2011) Yes(noAVHdataincluded) Yes(correlation) Regression

Sommeretal.(2012) Yes(groupcontrast) No Regression

Closetal.(2014) Yes(groupcontrast) No Regression

Diederenetal.(2013) Yes(noAVHdataincluded) N/Aa Regression

VanLutterveldetal.(2014) Yes(noAVHdataincluded) N/Aa Regression,ICAandgroupcomparison

Wolfetal.(2011) No Yes(correlation) Nonereported(ICAused)

Vercammenetal.(2010) No No Nonereported

Rotarska-Jagielaetal.(2010) No Yes(correlation) RegressionandICA

Manoliuetal.(2014) No Yes(correlation) Nonereported(ICAused)

Sorgetal.(2013) No Yes(correlation) Nonereported(ICAused)

Jardrietal.(2013) Yes(within-subjectcontrast) Yes(unmedicated) Nonereported(ICAused) AVH=auditoryverbalhallucination,ICA=independentcomponentsanalysis.

aParticipantsinDiederenetal.(2013)andVanLutterveldetal.(2014)camefromthenon-clinicalpopulation.

standardizedstatemeasuresofanxiety,despitethefactthatitcan influenceresting-statecharacteristics(Dennisetal.,2011). 5. Discussion

Withinarelativelyshortspaceoftime(2010–2014),anumber ofstudieshavereportedonalterationsinintrinsicfunctional con-nectivityinindividualswithAVH.Thefirstkeyobservationtomake isthatfewifanyfindingshavedirectlyreplicatedacrossstudies. PerhapsmoststronglyimplicatedistheconnectivityoftheleftSTG, buteventhisshowsevidenceofbothelevatedandreduced func-tionalconnectivityacrossdifferentstudies.Thatsaid,fewstudies showdirectlyconflictingresults,withtheexceptionof IFG–STG connectivity(Hoffmanetal.,2011;Sommeretal.,2012)andthe resultsforprimaryauditoryareas(Gavrilescuetal.,2010;Shinn etal.,2013).

Thelackofreplicationacrossstudieslargelyreflects method-ologicalheterogeneity, ratherthan necessarily implying contra-dictoryfindings. Thestudies reviewed vary inseveral respects, including their use of seed-based or network methods, their selectionofseedplacements,theirchoiceofROIorwhole-brain connectivityanalyses, artifactcorrections, andthespecificity of participantgroups.Thisvariationacrossstudiesmakesita chal-lengetoclearlydistinguishreliablefindingsfromfalsepositives.

Nevertheless,thereviewedstudiesdohighlightsomeregions andnetworkswhoseintrinsicfunctionalconnectivityislikelyto beimplicatedinpronenesstoAVH.Inparticular,connectivityin lefttemporalcortexappearstobestronglyinvolvedinAVH, ran-gingfromPACtothesuperiortemporalgyrusandontotheleftTPJ area.LeftPACshowsmixedlevelsofconnectivityforitscoupling withfrontalcortexandhippocampalstructures,andmayalsohave reducedinterhemisphericconnectivitywithrightPAC,but resting-statedifferences arebynomeansconfinedtothis area(cf.Cho andWu,2013).LeftSTGshowsmostly elevatedfunctional con-nectivityacrossseed-andnetwork-basedstudies,butalsoreduced couplingwithhippocampalandthalamicareas.Thereisevidence oftheleftTPJshowingreducedcouplingwithimmediately sur-roundingstructures(angulargyrus),inferiorfrontalcortex,andthe anteriorcingulate.Inmanycasesrighttemporalseedregionshave alsobeenstudiedbuthavenotyieldedcomparablealterationsto connectivity,highlightingthespecificimportanceoflefttemporal cortextoAVH.

AlterationstorestingconnectivityinleftSTGareconsistentwith evidenceofassociationsbetweenhallucinationseverityandgray matterreductioninthisarea(Modinosetal.,2013;Palaniyappan etal.,2012),evidenceofitsactivationinsymptom-capturestudies (Jardri et al.,2011), and atypical connectivity withfrontal cor-texduring self-monitoring tasks(Wanget al., 2011).However,

evidenceofatypicalrestingconnectivitybetweenspeech produc-tionandcomprehensionareasismuchmoreequivocal,incontrast toevidenceofreducedstructuralconnectivitybetweenleftSTGand leftIFG(Geoffroyetal.,2014;McCarthy-Jonesetal.,2015).One studyhasindicated reduced IFG–STGsynchronization (Sommer etal., 2012),while anotherhasobservedelevatedconnectivity, albeitalonganextended loopthatalsocontainsstriatalregions (Hoffmanetal.,2011).Otherstudiesthatincludedthesameor simi-larseedregionsreportednoalterationstoleftIFG–STGconnectivity (Diederenetal.,2013;Vercammenetal.,2010).Takentogether, theresultsforleftPACandSTGsuggestthatbothbasicand higher-levelspeech-processingareasshowalteredintrinsicconnectivity, butnotnecessarilyintheircouplingwithspeechproductionareas. AlterationstorestingconnectivityinleftTPJand—toa more variedextent—hippocampalandmidlinestructuresimplicatesthe defaultmodenetworkinthedevelopmentofAVH.Thebest evi-denceof DMNinvolvementis provided byJardrietal.’s(2013) finding that DMN instability predicted hallucination severity. WeakercouplingwithintheDMN,asthecollectionoffindingsfor leftTPJandACCwouldappeartohighlight,couldconceivably con-tributetoanunstablerestingnetwork.Theexceptiontothisisthe findingofgreaterconnectivitystrengthinPCC/precuneusbyVan Lutterveldetal.(2014),althoughthismaybeduetotheuseof non-clinicalparticipantswithAVH.Basedonevidenceofgreater correlationbetweentheDMNandothernetworksinthosewith AVH(e.g.,Manoliuetal.,2014),itseemsplausiblethatatypical modulationof theDMNin eitherdirection(thatis, aweakand unstableDMNoranoverlystrongandactiveDMN)couldgiverise tointernalcognitionsbeingmistakenlyprocessedinsensory asso-ciationareas,andthatthismayvaryacrossclinicalandnon-clinical participantgroups. AtypicalDMNmodulationisalso evidentin generalschizophreniagroups(Whitfield-GabrieliandFord,2012), however,meaningthatmoreworkisneededtodelineatewhy hal-lucinations(andnototherpsychoticsymptoms)couldariseinthis way.

Methodologically,mostoftheabovestudieshavetakenclear stepstocontrolforthepotentialinfluenceofantipsychotic med-ication where appropriate, with only three studies making no correctionatall(Closetal.,2014;Sommeretal.,2012;Vercammen etal.,2010).ThosethatsoughttofocusspecificallyonAVH(rather than reporting on a general schizophrenia group with symp-tomcorrelations)alsocontrolledforthepresenceofAVHduring scanning,eitherviaexcludingAVHdataorincludingdirect com-parisonsbetweenparticipantsorepochsinwhichhallucinations werereported.Ofgreaterconcernisthegenerallackofspecific measurestocombatmotionartifacts,overandabovestandard nui-sance regression techniques.Headmotion—which is influenced bya rangeofindividualdifferences, includingclinicalstatus—is

(8)

thoughttospecificallyreducelong-rangeconnectivityindicesand affectanterior–posteriornetworkssuchastheDMNorCEN(Van Dijketal.,2012).Assuch,evidenceofconnectivityreductionsfor thesenetworksinAVHparticipantscomparedtocontrolsmustbe interpretedwithcautionintheabsenceofmoreextensivemotion correctionmethods, suchas‘scrubbing’ of specificepochs with largeartifacts(Poweretal.,2012).Apparentdeficitsinlong-range functionalconnectivityhavebeenobservedtolargelydisappear whensuchtechniquesaredeployedinotherclinicalparticipant groups,suchasautism(Tyszkaetal.,2013);itmaybefruitfulto adoptsimilartechniquesinfutureresearchwithAVHsamples.

One of theclearest ways to minimizesuch confoundsis to includeanon-AVHclinicalcomparisongroupalongsideahealthy controlgroup.Medicationstatus,movementissues,andpresence ofother symptomsareall controlledfortoa greater degreein thethreestudiesthatincludedbothSzAVH+andSzAVH−groups (Gavrilescuetal.,2010;Hoffmanetal.,2011;Shinnetal.,2013)than theeightpatientstudiesthatdidnot.Theinclusionofaclinical com-parisongroup—ormultiplecomparisongroups,suchasparticipants withpost-traumaticstressdisorder,orbipolardisorder—is impor-tantforathoroughexaminationofwhatrestingstateabnormalities sayaboutthespecificmechanismsunderlyingAVH.Thelackof aclinicalcomparisongroupinanumberofthestudiesreviewed herelimitstheirevidentialvalue,althoughinmostcases signifi-cantsymptomcorrelations,specifictohallucinationseverity,were alsoreported.

Giventherangeofprocessingmethodsthatcanbedeployedfor measuringrestingconnectivity,someformofminimumanalysis protocolmayalsobenecessaryforfuturestudiesonthetopic,to allowfordirectcomparisonacrossdatasetsandconfidenceinthe reliabilityoffindings.Thismightincludeclearreportingpolicies ontheoverallstateofparticipantsduringscanning(includingbut notexclusivetothepresenceofAVH),specificmeasurestocounter motionproblems,anduseofcomprehensivesetsoftheory-driven ROIs(asinVercammenetal.,2010,andDiederenetal.,2013,for example).Thesecouldbereportedonforeachresting-statestudy ofAVHbeforethedeploymentofmore complexorexploratory analysis,suchas network or graph theoreticalapproaches. The specificationofseedregionswilldependonthedevelopmentof goodtheoreticalmodelsforthedevelopmentofAVH,althoughthis couldbeachievedinaniterativemanner,withrestingstate find-ingsandneurocognitivemodelsmutuallyinformingoneanother. The specification of prospective subtypes for AVH, including a distinction between voices relating to inner speech and mem-oryprocesses(McCarthy-Jonesetal.,2014),andthedevelopment ofcross-laboratory protocols, asadvocatedbytheInternational ConsortiumonHallucinationResearch(ICHR:Watersetal.,2012, 2014),couldprovideapreliminaryframeworkfornominating can-didateseedregions.

Otherfactors important to consider arehow resting neuro-physiologicaldifferencesmaycontributetoAVH,andtherelation between structural and functional connectivity alterations in those prone to hallucination. In particular, fluctuation in EEG ‘microstates’—short-lastingbutstablecouplingsbetweenneuronal assembles—hasbeenlinkedtotheoccurrenceofAVH(Kindleretal., 2011).Howrestingdynamicsvaryonscaleofmilliseconds (com-paredtothe>1stemporalresolutionoffMRI),andhowtheyrelate totheRSNsdiscussedabove,requiresuseofcombinedEEG/MRI methodsorimprovedsourcelocalizationmethodsinMEG.Akey questioniswhethersuchfluctuationscouldunderpintheapparent instabilityintheDMNobservedbyJardrietal.(2013)for partici-pantswithhallucinations.

Resting functional connectivity also often (but not always) reflects underlying white-matter connections (Greicius et al., 2009). In the case of AVH, structural alterations may be expectedtoreflecttraitcharacteristicsofanetwork,whileresting

functionalconnectivityseemlikelytoreflectbothtraitandstate characteristics.Asnotedabove,evidenceofstructuralreductions in white-matter integrity in the left arcuate fasciculus do not clearly map ontoalterations in intrinsic functional connectivity betweenspeechproductionandcomprehensionregions(Hoffman et al., 2011).However, two issues are worthy of consideration here.First, thefailure of restingstatestudies tofindclear evi-dence for functional changes between leftIFG and left STG, in thecontextofdocumentedstructuralchangestotheleftarcuate fasciculus,maybedue tothelowtemporal resolution of fMRI-basedfunctionalconnectivitystudies.Evidencehasbeenfoundthat reducedstructuralintegrityintheleftarcuatefasciculusof peo-plewithschizophreniaisassociatedwithanapproximately50ms delayincorollarydischargesignalingbetweenfrontalandtemporal regions(Whitfordetal.,2011),potentiallyduetodysmyelination ordemyelinationofthistract(McCarthy-Jonesetal.,2015).Such subtletimingdifferencesmakeassessmentoffunctional connectiv-ityusingmixed-methods,includingEEG/MEG(e.g.,Brookesetal., 2011)apromisingwaytofurtherexplorehowunderlying differ-encesinphysicalconnectivitycontributetoRSNdynamicsinAVH. Second,theoreticalarguments(Whitfordetal.,2012)and empiri-calevidence(McCarthy-Jonesetal.,2015)thatstateAVHmaybe non-linearlyrelatedtostructuralchangesintheleftarcuate fas-ciculus,suggestthatexploringnon-linearrelationsbetweenAVH andIFG–STGfunctionalconnectivitymaybefruitful.

Inconclusion,initialresearchonintrinsicfunctional connectiv-ityinAVHhashighlightedavarietyofregionsthatshowaltered restingpropertiesinthosepronetohallucinations,includingareas implicated languageand default modenetworks.The strongest evidencesupportsalteredrestingconnectivityintheleftsuperior temporalgyrus,althoughthereisevidenceofconnectivity alter-ationsthroughoutthelefttemporalcortex.Thefieldofrestingstate researchhasgreatpotentialforunmaskingtheunderlying mech-anismsofAVHandindoingsoprovideacleartestinggroundfor differenttheoriesofvoice-hearing.However,comparisonsacross studies are limited by extensivemethodological heterogeneity, suggestingthatanagreedanalysispipeline,withmoreattemptsat directreplication,maybeimportantforfutureresearchtoprogress effectivelyandsystematically.

Acknowledgements

This work was supported by the Wellcome Trust (WT098455MA), and by an Australian Research Council Dis-covery EarlyCareer ResearcherAward(DE140101077)awarded toSimonMcCarthy-Jones.ChristianSorgandKellyDiederenare thankedforprovidinginformationonparticipantgroups.

References

Allen,P.,Modinos,G.,Hubl,D.,Shields,G.,Cachia,A.,Jardri,R.,Thomas,P., Wood-ward,T.,Shotbolt,P.,Plaze,M.,Hoffman,R.,2012.Neuroimagingauditory hallucinationsinschizophrenia:fromneuroanatomytoneurochemistryand beyond. Schizophr.Bull. 38(4),695–703,http://dx.doi.org/10.1093/schbul/ sbs066

Baethge,C.,Baldessarini,R.J.,Freudenthal,K.,Streeruwitz,A.,Bauer,M.,Bschor, T.,2005.Hallucinationsinbipolardisorder:characteristicsandcomparisonto unipolardepressionandschizophrenia.BipolarDisord.7(2),136–145,http:// dx.doi.org/10.1111/j.1399-5618.2004.00175.x

Bauer,S.M.,Schanda,H.,Karakula,H.,Olajossy-Hilkesberger,L.,Rudaleviciene,P., Okribelashvili,N.,Chaudhry,H.R.,Idemudia,S.E.,Gscheider,S.,Ritter,K.,Stompe, T.,2011.Cultureandtheprevalenceofhallucinationsinschizophrenia.Compr. Psychiatry52(3),319–325,http://dx.doi.org/10.1016/j.comppsych.2010.06.008 Bluhm,R.L.,Miller,J.,Lanius,R.A.,Osuch,E.A.,Boksman,K.,Neufeld,R.W.J.,Théberge, J.,Schaefer,B.,Williamson,P.,2007.Spontaneouslow-frequencyfluctuationsin theboldsignalinschizophrenicpatients:anomaliesinthedefaultnetwork. Schizophr.Bull.33(4),1004–1012,http://dx.doi.org/10.1093/schbul/sbm052 Bolding,M.S.,White,D.M.,Hadley,J.A.,Weiler,M.,Holcomb,H.H.,Lahti,A.C.,2012.

(9)

cortex,hippocampus,andnucleusaccumbensasmeasuredbyH215OPET.Front. Psychiatry3,105,http://dx.doi.org/10.3389/fpsyt.2012.00105

Bressler,S.L.,Menon,V.,2010.Large-scalebrainnetworksincognition:emerging methodsandprinciples.TrendsCogn.Sci.14(6),277–290,http://dx.doi.org/10. 1016/j.tics.2010.04.004

Brookes,M.J.,Hale,J.R.,Zumer,J.M.,Stevenson,C.M.,Francis,S.T.,Barnes,G.R.,Owen, J.P.,Morris,P.G.,Nagarajan,S.S.,2011.Measuringfunctionalconnectivityusing MEG:methodologyandcomparisonwithfcMRI.Neuroimage56(3),1082–1104, http://dx.doi.org/10.1016/j.neuroimage.2011.02.054

Broyd,S.J.,Demanuele,C.,Debener,S.,Helps,S.K.,James,C.J.,Sonuga-Barke,E.J.S., 2009.Default-modebraindysfunctioninmentaldisorders:asystematicreview. Neurosci.Biobehav.Rev.33(3),279–296,http://dx.doi.org/10.1016/j.neubiorev. 2008.09.002

Buckner,R.L.,Andrews-Hanna,J.R.,Schacter,D.L.,2008.Thebrain’sdefaultnetwork: anatomy,function,andrelevancetodisease.Ann.N.Y.Acad.Sci.1124,1–38, http://dx.doi.org/10.1196/annals.1440.011

Cho,R.,Wu,W.,2013.Mechanismsofauditoryverbalhallucinationinschizophrenia. Front.Schizophr.4,155,http://dx.doi.org/10.3389/fpsyt.2013.00155 Clos,M.,Diederen,K.M.J.,Meijering,A.L.,Sommer,I.E.,Eickhoff,S.B.,2014.Aberrant

connectivityofareasfordecodingdegradedspeechinpatientswithauditory verbalhallucinations.BrainStruct.Funct.219(2),581–594,http://dx.doi.org/ 10.1007/s00429-013-0519-5

Coltheart,M.,2010.Theneuropsychologyofdelusions.Ann.N.Y.Acad.Sci.1191(1), 16–26,http://dx.doi.org/10.1111/j.1749-6632.2010.05496.x

Dennis,E.L.,Gotlib,I.H.,Thompson,P.M.,Thomason,M.E.,2011.Anxiety modu-latesinsularecruitmentinresting-statefunctionalmagneticresonanceimaging inyouthandadults.BrainConnect.1(3),245–254,http://dx.doi.org/10.1089/ brain.2011.0030

Diederen,K.M.J.,Neggers,S.F.W.,deWeijer,A.D.,vanLutterveld,R.,Daalman,K., Eickhoff,S.B.,Clos,M.,Kahn,R.S.,Sommer,I.E.C.,2013.Aberrantresting-state connectivityinnon-psychoticindividualswithauditoryhallucinations.Psychol. Med.43(8),1685–1696,http://dx.doi.org/10.1017/S0033291712002541 Dierks,T.,Linden,D.E.J.,Jandl,M.,Formisano,E.,Goebel,R.,Lanfermann,H.,Singer,

W.,1999.ActivationofHeschl’sgyrusduringauditoryhallucinations.Neuron 22(3),615–621.

Feinberg,I.,1978.Efferencecopyandcorollarydischarge:implicationsforthinking anditsdisorders.Schizophr.Bull.4(4),636–640.

Ffytche,D.H.,Wible,C.G.,2014.Fromtonesintinnitustosensedsocialinteractionin schizophrenia:howunderstandingcorticalorganizationcaninformthestudy ofhallucinationsandpsychosis.Schizophr.Bull.40(Suppl.4),305–316,http:// dx.doi.org/10.1093/schbul/sbu041

Ford,J.,Mathalon,D.H.,Whitfield,S.,Faustman,W.O.,Roth,W.T.,2002.Reduced communication between frontal and temporal lobes during talking in schizophrenia.Biol.Psychiatry51(6),485–492.

Freeman,L.C.,1977.Asetofmeasuresofcentralitybasedonbetweenness. Sociom-etry40(1),35–41,http://dx.doi.org/10.2307/3033543

Frith,C.,1992.TheCognitiveNeuropsychologyofSchizophrenia.PsychologyPress, Hove.

Gavrilescu,M.,Rossell,S.,Stuart,G.W.,Shea,T.L.,Innes-Brown,H.,Henshall,K., McKay,C.,Sergejew,A.A.,Copolov,D.,Egan,G.F.,2010.Reducedconnectivity oftheauditorycortexinpatientswithauditoryhallucinations:arestingstate functionalmagneticresonanceimagingstudy.Psychol.Med.40(7),1149–1158, http://dx.doi.org/10.1017/S0033291709991632

Geoffroy,P.A.,Houenou,J.,Duhamel,A.,Amad,A.,DeWeijer,A.D., ´Curˇci ´c-Blake,B., Linden,D.E.,Thomas,P.,Jardri,R.,2014.Thearcuatefasciculusinauditory-verbal hallucinations:ameta-analysisofdiffusion-tensor-imagingstudies.Schizophr. Res.159(1),234–237,http://dx.doi.org/10.1016/j.schres.2014.07.014 Greicius,M.D.,Supekar,K.,Menon,V.,Dougherty,R.F.,2009.Resting-statefunctional

connectivityreflectsstructuralconnectivityinthedefaultmodenetwork.Cereb. Cortex19(1),72–78,http://dx.doi.org/10.1093/cercor/bhn059

Haddock,G.,McCarron,J.,Tarrier,N.,Faragher,E.,1999.Scalestomeasure dimen-sionsofhallucinationsanddelusions:thepsychoticsymptomratingscales (PSYRATS).Psychol.Med.29(4),879–889.

Hoffman,R.E.,Fernandez,T.,Pittman,B.,Hampson,M.,2011.Elevatedfunctional connectivityalongacorticostriatalloopandthemechanismofauditory/verbal hallucinationsinpatientswithschizophrenia.Biol.Psychiatry69(5),407–414, http://dx.doi.org/10.1016/j.biopsych.2010.09.050

Hoffman,R.E.,Hawkins,K.A.,Gueorguieva,R.,Boutros,N.N.,Rachid,F.,Carroll,K., Krystal,J.H.,2003.Transcranialmagneticstimulationoflefttemporoparietal cortexandmedication-resistantauditoryhallucinations.Arch.Gen.Psychiatry 60(1),49–56.

Hubl,D.,Dougoud-Chauvin,V., Zeller,M.,Federspiel, A.,Boesch, C.,Strik,W., Dierks,T.,Koenig,T.,2010.StructuralanalysisofHeschl’sgyrusinschizophrenia patientswithauditoryhallucinations.Neuropsychobiology61(1),1–9,http:// dx.doi.org/10.1159/000258637

Hunter,M.D.,Eickhoff,S.B.,Miller,T.W.R.,Farrow,T.F.D.,Wilkinson,I.D.,Woodruff, P.W.R.,2006.Neuralactivityinspeech-sensitiveauditorycortexduringsilence. Proc.Natl.Acad.Sci.U.S.A.103(1),189–194,http://dx.doi.org/10.1073/pnas. 0506268103

Jardri,R.,Pouchet,A.,Pins,D.,Thomas,P.,2011.Corticalactivationsduringauditory verbalhallucinationsinschizophrenia:acoordinate-basedmeta-analysis.Am. J.Psychiatry168(1),73–81,http://dx.doi.org/10.1176/appi.ajp.2010.09101522 Jardri,R.,Thomas,P.,Delmaire,C.,Delion,P.,Pins,D.,2013.Theneurodynamic orga-nizationofmodality-dependenthallucinations.Cereb.Cortex23(5),1108–1117, http://dx.doi.org/10.1093/cercor/bhs082

Johns,L.C.,Kompus,K.,Connell,M.,Humpston,C.,Lincoln,T.M.,Longden,E.,Preti, A.,Alderson-Day,B.,Badcock,J.C.,Cella,M.,Fernyhough,C.,McCarthy-Jones,S., Peters,E.,Raballo,A.,Scott,J.,Siddi,S.,Sommer,I.E.,Larøi,F.,2014.Auditory verbalhallucinationsinpersonswithandwithoutaneedforcare.Schizophr. Bull.40(Suppl.4),255–264,http://dx.doi.org/10.1093/schbul/sbu005 Kay,S.R.,Fiszbein,A.,Opfer,L.A.,1987.Thepositiveandnegativesyndromescale

(PANSS)forschizophrenia.Schizophr.Bull.13(2),261.

Kim,D.I.,Manoach,D.S.,Mathalon,D.H.,Turner,J.A.,Mannell,M.,Brown,G.G.,Ford, J.M.,Gollub,R.L.,White,T.,Wible,C.,Belger,A.,Bockholt,H.J.,Clark,V.P., Lau-riello,J.,O’Leary,D.,Mueller,B.A.,Lim,K.O.,Andreasen,N.,Potkin,S.G.,Calhoun, V.D.,2009.Dysregulationofworkingmemoryanddefault-modenetworksin schizophreniausingindependentcomponentanalysis:anfBIRNandMCICstudy. Hum.BrainMapp.30(11),3795–3811,http://dx.doi.org/10.1002/hbm.20807 Kindler,J.,Hubl,D.,Strik,W.K.,Dierks,T.,Koenig,T.,2011.Resting-stateEEGin

schizophrenia:auditoryverbalhallucinationsarerelatedtoshorteningof spe-cificmicrostates.Clin.Neurophysiol.122(6),1179–1182,http://dx.doi.org/10. 1016/j.clinph.2010.10.042

Kong,X.,Zhen,Z.,Li,X.,Lu,H.,Wang,R.,Liu,L.,He,Y.,Zang,Y.,Liu,J.,2014.Individual differencesinimpulsivitypredictheadmotionduringmagneticresonance imag-ing.PLOSONE9(8),e104989,http://dx.doi.org/10.1371/journal.pone.0104989 Kühn,S.,Gallinat,J.,2012.Quantitativemeta-analysisonstateandtraitaspectsof auditoryverbalhallucinationsinschizophrenia.Schizophr.Bull.38(4),779–786, http://dx.doi.org/10.1093/schbul/sbq152

Lui,S.,Li,T.,Deng,W.,Jiang,L.,Wu,Q.,Tang,H.,Yue,Q.,Huang,X.,Chan,R.C., Col-lier,D.A.,Meda,S.A.,Pearlson,G.,Mechelli,A.,Sweeney,J.A.,Gong,Q.,2010. Short-termeffectsofantipsychotictreatmentoncerebralfunctionindrug-naive first-episodeschizophreniarevealedby“restingstate”functionalmagnetic reso-nanceimaging.Arch.Gen.Psychiatry67(8),783–792,http://dx.doi.org/10.1001/ archgenpsychiatry.2010.84

Manoliu,A.,Riedl,V.,Zherdin,A.,Mühlau,M.,Schwerthöffer,D.,Scherr,M.,Peters, H.,Zimmer,C.,Förstl,H.,Bäuml,J.,Wohlschläger,A.M.,Sorg,C.,2014.Aberrant dependenceofdefaultmode/centralexecutivenetworkinteractionson ante-riorinsularsaliencenetworkactivityinschizophrenia.Schizophr.Bull.40(2), 428–437,http://dx.doi.org/10.1093/schbul/sbt037

McCarthy-Jones,S.,Oesterich,L.,AustralianSchizophreniaResearchBank,Whitford, T.J.,2015.Reducedintegrityoftheleftarcuatefasciculusisspecificallyassociated withauditoryverbalhallucinationsinschizophrenia.Schizophr.Res.162(1–3), 1–6.

McCarthy-Jones,S.,Thomas,N.,Strauss,C.,Dodgson,G.,Jones,N.,Woods,A.,Brewin, C.R.,Hayward,M.,Stephane,M.,Barton,J.,Kingdon,D.,Sommer,I.E.,2014.Better thanmermaidsandstraydogs?Subtypingauditoryverbalhallucinationsandits implicationsforresearchandpractice.Schizophr.Bull.40(Suppl.4),275–284, http://dx.doi.org/10.1093/schbul/sbu018

Mintz,S.,Alpert,M.,1972.Imageryvividness,realitytesting,andschizophrenic hallucinations.J.Abnorm.Psychol.79(3),310–316,http://dx.doi.org/10.1037/ h0033209

Modinos,G.,Costafreda,S.G.,vanTol,M.-J.,McGuire,P.K.,Aleman,A.,Allen,P.,2013. Neuroanatomyofauditoryverbalhallucinationsinschizophrenia:aquantitative meta-analysisofvoxel-basedmorphometrystudies.Cortex49(4),1046–1055, http://dx.doi.org/10.1016/j.cortex.2012.01.009

Mowinckel,A.M.,Espeseth,T.,Westlye,L.T.,2012.Network-specificeffectsofage andin-scannersubjectmotion:aresting-statefMRIstudyof238healthyadults. Neuroimage63(3),1364–1373,http://dx.doi.org/10.1016/j.neuroimage.2012. 08.004

Northoff,G.,Qin,P.,2011.Howcanthebrain’srestingstateactivitygenerate hallucinations?A“restingstatehypothesis”ofauditoryverbalhallucinations. Schizophr.Res.127(1–3),202–214,http://dx.doi.org/10.1016/j.schres.2010.11. 009

Öngür,D.,Lundy,M.,Greenhouse,I.,Shinn,A.K.,Menon,V.,Cohen,B.M., Ren-shaw,P.F.,2010.Defaultmodenetworkabnormalitiesinbipolardisorderand schizophrenia.PsychiatryRes.:Neuroimaging183(1),59–68,http://dx.doi.org/ 10.1016/j.pscychresns.2010.04.008

Palaniyappan,L.,Balain,V.,Radua,J.,Liddle,P.F.,2012.Structuralcorrelatesof audi-toryhallucinationsinschizophrenia:ameta-analysis.Schizophr.Res.137(1–3), 169–173,http://dx.doi.org/10.1016/j.schres.2012.01.038

Pomarol-Clotet,E.,Salvador,R.,Sarró,S.,Gomar,J.,Vila,F.,Martínez,Á.,Guerrero,A., Ortiz-Gil,J.,Sans-Sansa,B.,Capdevila,A.,Cebamanos,J.M.,McKenna,P.J.,2008. Failuretodeactivateintheprefrontalcortexinschizophrenia:dysfunctionof thedefaultmodenetwork?Psychol.Med.38(8),1185–1193,http://dx.doi.org/ 10.1017/S0033291708003565

Power,J.D.,Barnes,K.A.,Snyder,A.Z.,Schlaggar,B.L.,Petersen,S.E.,2012. Spuri-ousbutsystematiccorrelationsinfunctionalconnectivityMRInetworksarise fromsubjectmotion.Neuroimage59(3),2142–2154,http://dx.doi.org/10.1016/ j.neuroimage.2011.10.018

Price,C.J.,2010.Theanatomyoflanguage:areviewof100fMRIstudiespublishedin 2009.Ann.N.Y.Acad.Sci.1191,62–88,http://dx.doi.org/10.1111/j.1749-6632. 2010.05444.x

Raichle,M.E.,MacLeod,A.M.,Snyder,A.Z.,Powers,W.J.,Gusnard,D.A.,Shulman, G.L.,2001.Adefaultmodeofbrainfunction.Proc.Natl.Acad.Sci.U.S.A.98(2), 676–682,http://dx.doi.org/10.1073/pnas.98.2.676

Rolls,E.T.,Loh,M.,Deco,G.,Winterer,G.,2008.Computationalmodelsof schizophre-niaanddopaminemodulationintheprefrontalcortex.Nat.Rev.Neurosci.9(9), 696–709,http://dx.doi.org/10.1038/nrn2462

Rotarska-Jagiela,A.,vandeVen,V.,Oertel-Knöchel,V.,Uhlhaas,P.J.,Vogeley,K., Linden,D.E.J.,2010.Resting-statefunctionalnetworkcorrelatesofpsychotic

(10)

symptomsinschizophrenia.Schizophr.Res.117(1),21–30,http://dx.doi.org/ 10.1016/j.schres.2010.01.001

Sambataro,F.,Blasi,G.,Fazio,L.,Caforio,G.,Taurisano,P.,Romano,R.,DiGiorgio,A., Gelao,B.,LoBianco,L.,Papazacharias,A.,Popolizio,T.,Nardini,M.,Bertolino,A., 2009.Treatmentwitholanzapineisassociatedwithmodulationofthedefault modenetworkinpatientswithschizophrenia.Neuropsychopharmacology35 (4),904–912,http://dx.doi.org/10.1038/npp.2009.192

Satterthwaite,T.D.,Wolf,D.H.,Loughead,J.,Ruparel,K.,Elliott,M.A.,Hakonarson,H., Gur,R.C.,Gur,R.E.,2012.Impactofin-scannerheadmotiononmultiplemeasures offunctionalconnectivity:relevanceforstudiesofneurodevelopmentinyouth. Neuroimage60(1),623–632,http://dx.doi.org/10.1016/j.neuroimage.2011.12. 063

Shinn,A.K.,Baker,J.T.,Cohen,B.M.,Öngür,D.,2013.Functionalconnectivityof leftHeschl’sgyrusinvulnerabilitytoauditoryhallucinationsinschizophrenia. Schizophr.Res.143(2–3),260–268,http://dx.doi.org/10.1016/j.schres.2012.11. 037

Sommer,I.E.,Clos,M.,Meijering,A.L.,Diederen,K.M.J.,Eickhoff,S.B.,2012.Resting statefunctionalconnectivityinpatientswithchronichallucinations.PLoSONE 7(9),e43516,http://dx.doi.org/10.1371/journal.pone.0043516

Sommer, I.E.,Daalman, K., Rietkerk,T., Diederen, K.M.J., Bakker, S., Wijkstra, J.,Boks,M.P.M.,2010.Healthy individualswithauditoryverbal hallucina-tions;whoare they?Psychiatricassessmentsofaselectedsampleof103 subjects.Schizophr.Bull.36(3),633–641,http://dx.doi.org/10.1093/schbul/ sbn130

Sommer,I.E.,Diederen,K.M.J.,Blom,J.-D.,Willems,A.,Kushan,L.,Slotema,K.,Boks, M.P.,Daalman,K.,Hoek,H.W.,Neggers,S.F.,Kahn,R.S.,2008.Auditoryverbal hallucinationspredominantlyactivatetherightinferiorfrontalarea.Brain131 (12),3169–3177,http://dx.doi.org/10.1093/brain/awn251

Sorg,C.,Manoliu,A.,Neufang,S.,Myers,N.,Peters,H.,Schwerthöffer,D.,Scherr,M., Mühlau,M.,Zimmer,C.,Drzezga,A.,Förstl,H.,Bäuml,J.,Eichele,T.,Wohlschläger, A.M.,Riedl,V.,2013.Increasedintrinsicbrainactivityinthestriatumreflects symptomdimensionsinschizophrenia.Schizophr.Bull.39(2),387–395,http:// dx.doi.org/10.1093/schbul/sbr184

Tyszka,J.M.,Kennedy,D.P.,Paul,L.K.,Adolphs,R.,2013.Largelytypicalpatterns ofresting-statefunctionalconnectivityinhigh-functioningadultswithautism. Cereb.Cortex,http://dx.doi.org/10.1093/cercor/bht040

VanDijk,K.R.A.,Sabuncu,M.R.,Buckner,R.L.,2012.Theinfluenceofheadmotion onintrinsicfunctionalconnectivityMRI.Neuroimage59(1),431–438,http:// dx.doi.org/10.1016/j.neuroimage.2011.07.044

VanLutterveld,R.,Diederen,K.M.J.,Otte,W.M.,Sommer,I.E.,2014.Networkanalysis ofauditoryhallucinationsinnonpsychoticindividuals.Hum.BrainMapp.35(4), 1436–1445,http://dx.doi.org/10.1002/hbm.22264

Vercammen,A.,Knegtering,H.,Boer,J.A.den,Liemburg,E.J.,Aleman,A.,2010. Audi-toryhallucinationsinschizophreniaareassociatedwithreducedfunctional connectivityofthetemporo-parietalarea.Biol.Psychiatry67(10),912–918, http://dx.doi.org/10.1016/j.biopsych.2009.11.017

Wang, L., Metzak, P.D., Woodward, T.S., 2011. Aberrant connectivity during self–other source monitoringin schizophrenia.Schizophr. Res. 125(2–3), 136–142,http://dx.doi.org/10.1016/j.schres.2010.11.012

Waters,F.,Aleman,A.,Fernyhough,C.,Allen,P.,2012.Reportontheinaugural meet-ingoftheInternationalConsortiumonHallucinationResearch:aclinicaland researchupdate,and16consensus-setgoalsforfutureresearch.Schizophr.Bull. 38,258–262.

Waters,F.,Woods,A.,Fernyhough,C.,2014.Reportonthe2ndInternational Con-sortiumonHallucinationResearch(ICHR):evolvingdirectionsandtop-10‘hot spots’inhallucinationresearch.Schizophr.Bull.40,24–27.

Whitfield-Gabrieli,S.,Ford,J.M.,2012.Defaultmodenetworkactivityand connec-tivityinpsychopathology.Annu.Rev.Clin.Psychol.8(1),49–76,http://dx.doi. org/10.1146/annurev-clinpsy-032511-143049

Whitfield-Gabrieli,S.,Thermenos,H.W.,Milanovic,S.,Tsuang,M.T.,Faraone,S.V., McCarley,R.W.,Shenton,M.E.,Green,A.I.,Nieto-Castanon,A.,LaViolette,P., Woj-cik,J.,Gabrieli,J.D.,Seidman,L.J.,2009.Hyperactivityandhyperconnectivityof thedefaultnetworkinschizophreniaandinfirst-degreerelativesofpersons withschizophrenia.Proc.Natl.Acad.Sci.U.S.A.106(4),1279–1284,http://dx. doi.org/10.1073/pnas.0809141106

Whitford, T.J., Ford, J.M., Mathalon, D.H., Kubicki, M., Shenton, M.E., 2012. Schizophrenia,myelination,anddelayedcorollarydischarges:ahypothesis. Schizophr.Bull.38(3),486–494,http://dx.doi.org/10.1093/schbul/sbq105 Whitford, T.J.,Mathalon,D.H.,Shenton, M.E.,Roach, B.J.,Bammer, R.,Adcock,

R.A.,Bouix,S.,Kubicki,M.,DeSiebenthal,J.,Rausch,A.C.,Schneiderman,J.S., Ford,J.M.,2011.Electrophysiologicalanddiffusiontensorimagingevidenceof delayedcorollarydischargesinpatientswithschizophrenia.Psychol.Med.41 (5),959–969,http://dx.doi.org/10.1017/S0033291710001376

Williamson, P., 2007. Are anticorrelated networks in the brain relevant to schizophrenia?Schizophr.Bull.33(4),994–1003,http://dx.doi.org/10.1093/ schbul/sbm043

Wolf,N.D.,Sambataro,F.,Vasic,N.,Frasch,K.,Schmid,M.,Schönfeldt-Lecuona, C.,Thomann,P.A.,Wolf,R.C.,2011.Dysconnectivityofmultipleresting-state networksinpatientswithschizophreniawhohavepersistentauditory ver-balhallucinations.J.PsychiatryNeurosci.36(6),366–374,http://dx.doi.org/10. 1503/jpn.110008

Zhou,Y.,Liang,M.,Tian,L.,Wang,K.,Hao,Y.,Liu,H.,Liu,Z.,Jiang,T.,2007.Functional disintegrationinparanoidschizophreniausingresting-statefMRI.Schizophr. Res.97(1–3),194–205,http://dx.doi.org/10.1016/j.schres.2007.05.029.

References

Related documents

Therefore, in our opinion, the geographical proximity of financial analysts to hubs of expertise improves the quality of industry knowledge and allows analysts to develop

• The MISO-wide reserve margin requirement is shared among the zones, and zones may import capacity to meet this requirement • The Independent Market Monitor reviews the

We can build either a model of the network using state vectors with parameters from all mobile cells or a general one cell model trained using one cell state vectors from all cells..

Our adaptive IDEA manages robustness as a restriction and improves the original IDEA for solving the industrial problem both in robustness and optimization performance. Therefore,

In this paper we present new evidence on the characteristics of knowledge spillovers across the European regions based on a database on patents citations developed at the NBER which

 Produced  in  collaboration   with  Blackbird...  Cooperation  with

While noting that these traditional conditions remain important factors for cross- country differences in inequality, Cornia argues that the increased global inequality in

Dongarra, “Impact of Architecture and Technology for Extreme Scale on Software and Algorithm Design,” Cross- cutting Technologies for Computing at the Exascale, February 2-5,