• No results found

Jee 2014 Booklet5 Hwt Solutions Differential Calculus 1

N/A
N/A
Protected

Academic year: 2021

Share "Jee 2014 Booklet5 Hwt Solutions Differential Calculus 1"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

Solutions to Home Practice Test-5/Mathematics

1. For statement 1

2 0 2 2 1 x    x    x  ,           Also 2 4 0 2 x x      For x 2 4,x20 and 2 4 2 0 0 2 x x x               x  is in domain of the function.2

For   1 x 2 2 4x  and0 2 4 2 0 0 2 x x x           

   x 

1 2,

is in domain of the function.

For x2 2 4x  and0 2 4 2 0 0 2 x x x             

x > 2 is not in domain of the function  Domain of the function is x  

, 2

 

1 2,

For statement 2 2 4 3 0 xx            y24y  , where y = [x]3 0 

y1

 

y 3

0 or y 

,1   3,

or   x  

,1   3,

x 

,2

3,

For statement 3

2 3

0

sin log log x   log log x2 3 2n ,

2n1

 or log x3  22n,22n1   or 2 1 2 2 2 3 n 3 n x ,, nI  

4.

tan x

 

ytan y

xy log tan x

x log tan y

dy

y 2

x 2 dy

log tan x sec x log tan y sec y

dxtan x  tan y dx

2 2 2 2 2 2 2 2      y log tan y

log tan y y cos ec x

dy sin x cos x

x

dx log tan x log tan x x cos ec y sin y cos y

7. xa cos3dx 3a cos2sin d  3

ya sin dy3a sin2cos d 

dy tan dx  2 2 2 2 2 4 1 1 3 3 d y d dy d sec sec dx dx dx

dx a cos sin a cos sin

           

3 2 2 3 2 2 4 3 2 4 2 1 1 3 3 1 3 dy tan dx

a cos sin sec a sin cos d y a cos sin dx              10. 3 3 4 2 7 5 7 5 2 x x x x x x x x

lim lim lim

x x x x x

     

 

(2)

1.

 

 

1 3 1 3 1 1 1 3 1 1 3 1 3 1 3 1 x a

y tan tan x tan a

x a             

2 3 2 3 2 3 2 3 1 1 1 1 3 3 1 dy dx x x x x      3. 2 2 2 1 1 1 2 f x x x x x x         Put x 1 y x   , to get

 

2 2   f y y or f x

 

x22 4.

0 1 2 1 0 0 1 0 1 1 1 x x x

a log x sin x cos x lim e          

5. Note that f (x) is always +ve.

 

 

 

 

1 1 1 0 2 2 1 1 0 1 2 2 x x x f x f x f x f x x x x                                      

 

2 f x7. LHL =

 

2 5 5 0 0 2 0 2 x

sin cos x sin lim cos x              RHL =

 

 

2 5 1 5 1 1 2 x sin lim sin        8.

1 1 1 As 1                      n n n n n n n n x x lim y x lim y y y y 9.

 

3 1 3 2 3 1 3 2 4 4 0 5 1 0 5 5 log log .x    log logx        2 1 3 4 1 5 logx      2 4 1 5 3 x      2 17 0 15 x   or 2 17 15 x  or 17 17 15 15 x   , ,       Also, 1 3 2 4 0 5 logx     or 2 4 1 5 x   or 2 9 5 x  or 3 3 5 5 x  ,   and 2 4 0 5 x   or 2 4 5 x  or 2 2 5 5 x  ,    ,    

Combining all these results, we get : 17 3 3 17

15 5 5 15 x , ,        10. 1 1 1 2 1 6 1 1 2 1 6                                  x x x sin x x

lim x sin lim

x

x

Using LH rule, we get :

 

  

2 2 2 2 2 2 1 1 2 1 2 1 1 1 2 1 1 2 1 3 2 x x x x x x x x lim lim x x x x                  

1 2 2 3 2 1 3       x x lim x x

Differential Calculus - 1

HWT - 2

(3)

1. Check formula in option (B).

When 0 x 3, f x

 

x 3 2x 

3 x

2x x 3 When x3, f x

 

x 3 2x

x 3

2x3x3 3. f (x) is discontinuous when x2  is an integer.x 1

Check the graph of yx2  in the internalx 1 x

 

0 2,

The only points of discontinuity are when x2   andx 1 1 x2  x 1 2 2 1 1 x   x and x2  x 1 2  2 0 x  x and x2  x 1 0  x0 1, and 1 5 2 x  So, we get in the desired interval 11 5

2 x,5.

 

        1 4 2 1 4 2 2 1 2 1 3 9 27 219 3 9 9 219 9 x x x x x x f x                     1 4 73 9 219 81 x .      Now, 73 9 219 0 81   x . or 73 9 219 81 x . or 9x243 or 32x35 or 2x5 or 5 2 x7.

 

1 2 2 1 1 1 2 2 2 2 x x x x log

log log log

x x f x x x x                             Now

 

 

2 0 0 1 2 2 1 2 2 2 2 2 1 x x x x x x log x x x lim lim x                 (Using LH rule) 2 0 4 1 4 x lim x     As f (x) is continuous at x = 0,

 

 

0 0 1     x lim f x f a 2.

x2

0  x  2 0 1,

x   2, 1

x  

, 2

  

1,

3. 2 2 7 4 xxyy   2x y x dy2y dy 0 dx dx

1 2 2 2 5 2 1 1 4 x y dy dx x y             

4. ysin xsin xsin x. . . .sin xy

 2 ysin xy  2y dy cos x dy dx dx  2 1 dy cos x dxy

Differential Calculus - 1

HWT - 3

Differential Calculus - 1

HWT - 4

(4)

5.

 

2 3 2 3

3 2 3 2

x x

f x sin log x , y f sin log

x x                 

 

 

2 2 3 2 2 3 2 2 3 3 2 3 2 2 3 3 2 x x dy x x cos log dx x x x                   

 

2 3 12 3 2 2 3 3 2 x cos log x x x               dy dx at x = 1 is equal to 12 5 5 cos log  6.

3 2 3 3 4 2 3 4 23 3 1            x x x k x k x k lim lim k x  23 k 8  k15 7. 1

1

2 2 2

ysincos xcossin xx  x  x

    2 dy dx  1. 4 1 2 4 4 x tan x log lim x sin x                        Put 4 x  to get :t

0 1 4 2 1 4 t tan t log lim t sin t                      

Apply LH rule to get :

2 0 0 0 4 2 1 1 1 1 4 4 2 t t t sec t

lim lim lim

tan t sint sint

                  

Hence  doesn’t exist. 2. f x

 

 1 tan x

f (x) is not differentiable when tan x or x n , n Z0   .

Also, the function is discontinuous and non-differentiable when cos x = 0 or

2 1

2 xn , n .Z 4. 2 2 4 9 3 8 2 1 1 1 1 4 9 1 1              n n x x x x x . . . . . x n x x . . . . n x lim lim x (Using LH rule)

2

1

 

2 1

1 4 9 6 n n n . . . . n         5.

 

1 0 0 1 x x x sin x sin x

lim log lim log

x x x                

 

3 5 2 4 0 0 1 3 5 1 1 3 5                              x x x x x . . . . x x

log lim log lim log . . .

x x x 2 4 2 4 3 2 4 0 0 1 3 5 1 0 3 5 3 5 3 5                                             x x x x . . . . x x x x

lim log . . . . lim . . . .

x x x

. . . .

or e01

(5)

6.

 

0 0 0 1 1 1 1 1 h h x sin h sin h

lim f x lim lim sin

h h                          

 

 

0 0 1 h x sin h lim f x lim h              x0

 

lim f x does not exist.

7.

   

   

   

   

   

   

0 1 1              x p x p g x f p g p f x g x f p g p f x g p f p g p f p lim lim x pg

       

p f pg p fp 0 or

 

 

 

 

62 31 g p f p g p f p     

9. We need to ensure that the function is continuous at 2 x

2 1 p cos x x lim cos x q     or 2 0 1 2              p cos h hlim cos h p e q   and 2 2 2 cot x cot m x x lim e q              or     0 cot h cot m h h lim e        0 0 tan mh tan h mh h hlim e hlim e q            or m e qpm  and m qe

10. For inverse we have 2 2 1 1 y y y y y y e e e x e e e          1 2 1 y x e x     1 2 1 x log y x   Domain is x 

1 1,

And there is no point in domain where function is discontinuous.

1. f x

 

3x2 1  3x21 Critical points are 3x2 n , nZ

 3 n x  0 1 2 1 3 3 x, , ,f (x) is not continuous at 1 2 3 3 x, 4.

 

2 1 1 1 2 2 1 k k k k t cot k            

 

1 2 2 1 1 1 2 k tan k k k         

 

  

 

1 2 1 2 1 1 1 2 k k k k tan k k k            



1 1 1 2 1 k ttankk tank k  1

 

1

 

1 1 2 1 1 1 n k k t tann n tan      

 

 

1 1 1 2 2 tann n tan    

Differential Calculus - 1

HWT - 6

(6)

5. 9 0 9

2 2

x, , are the critical points for mod function.

f

 

x changes sign here.

6.

 

 

 

 

0 0 0 4 4 3 h h h h h x e e

lim f x lim h lim h

h h h            

 

 

 

1 0 0 0 4 4 0 1 1 h h h h x e e

lim f x lim h lim h

h                    f (x) is discontinuous at x = 0 7. u3x12, vx6  2 3  u vdu 6v 6x6 dv  8.

 

 

3 2 3 3 1 1 2 2                f f 27 1 8   35 8 

 

3

 

3 2 27 1 2 1 3 2 2 2 f   f               9. Let f x

 

3x log

1 3 x2x2

 

0 0 f

 

4 3

2 3 1 3 2 x f x x x      

 

0 0   f

 

2 2 2 8 12 5 1 3 2 x x f x x x      

 

0 f x   f

 

x   0 x 0  f x

 

  0 x 0 Now Let

 

2 2 5 1 3 2 3 2      x g x log x x x

 

0 0 g

 

2

4 3 3 5 1 3 2 x g x x x x       

 

0 0 g

 

2 2 2 8 12 5 5 1 3 2           x x g x x x

 

0 0 g

 

3 2 3 2 32 72 60 18 0 0 1 3 2 x x x g x x x x            g

 

x is increasing  x 0

(7)

2. 1 6 3 1 4 x     and 1

1

  

1 2 x , ,          4 6 3x4  10 3 x and 2 3 x  1 1 2 x   or 1 1 2 x   x 1 or x3  310 3 x  ,   3. 1 0 2 0 1 x x cos lim x          form Apply LH rule  2 2 2 1 2 2 2 sin x sin x                4. 5 3 243    x a x x lim x a will be 0 if a3  a3 5.

So f (x) is continuous and differentiable at x = 0

6. It has removable discontinuity as limit exists but it is not equal to f

 

0 (at (x = 0))

8.dy dy dt dx dx dt

2 2 2 1 1 dy dtt 2 2 t dx te dt    

2 2 4 2 4 t dy e dx t t t     9. For domain 2 4x 0 and 2 4 0 1 x x  and 1 x 0  x 

2 1,

Differential Calculus - 1

HWT - 7

(8)

1.

1 2

2 cos x sin x x x  

Limit does not exist. 2. 1 a x 2    12 0 2 0 1 1 b a x  a x     2

 

2 1 1 1 b sin a x b b b b a x                     3.

 

 

0 0      x x f x f x

 

2a x 2xaR

Also f (x) should be continuous at x = 0

 

 

0 0 x x f x f x       b = 0

4. Look for critical points of f (x) which are xI and x2I1

And 1

2 does not belong to any of these two sets  f (x) is continuous and differentiable at 1 2 x7. 0 3

1

1 0 3

1

2 . . log x  log x  2log0 3.

x 1

log0 3.

x1

2 0 3. 1 0 3. 1 log x log x Now, x 1 0  x1 Also,

x1

2  orx 1 x23x 2 0 

x1

 

x2

0  x 

,1

 

 2,

Combining above results, we get : x

2,

8. f x

 

    (Roots of quadratic equation)0 x R 9. tan1x is little less than x in proximity of zero

1 0 tan x x           1.

 

 

 

0 2 12 2 16 2 x f x f x f x lim       2 12 16 6 3 2 2 k k k k k      2. f (x) is discontinuous atx11 6,  2 2 f x       is discontinuous at 2 11 6 2 , x   24 7 11 3 x, 3. log xylog yx0

y log xx log y0  y log x y xy log y 0 x y      

2

2 y xy log x x  xy log yy

y x log y y y x y log x x     

Differential Calculus - 1

HWT - 8

Differential Calculus - 1

HWT - 9

(9)

4. dy 1 12 dt  t 1 1 dx dt  t  2 2 1 1 dy t dx t    5. Graph is like  even function 7. Let 0 1 1 cosec x x tan x lim sin x          

 

0 1 1 1 x

log lim log tan x log sin x sin x       

0 1 1 x

log tan x log sin x

x tan x sin x

lim . .

sin x tan x x sin x x

            

         

0 1 1.1 1 . 1 0 e 1      8. Since 0 < a < 1 We have

 

2 1 ! 0 1 n a a sin n lim n n     As n1 a   and 1 0 a n 9. f x

 

0 (a constant function) As tan I

 

  I : integer0 10. For x0 f x

 

1 

 

 

 

0 0 0 x x f x f x f        removable discontinuity 1. 2 1 1 1 9 dy dx y   . . . .(i)  2 1 9 dy y dx   2 2 2 9 1 9 d y y dy dx dx y 2 2 2 2 9 1 9 1 9 d y y y dx y   2 2 9 d y y dx

2. Since g is inverse of f we have f x

 

y

and g y

 

xf g y

 

y or f g x

 

xf

g x

 

g x

 

1

g x

 

cos ec g x

 

(10)

3. sin3

 

x   0 x R And period of tan

 

x is 1.

4. f x

 

 sin xcos x now sin xcos x Has values from 1 to 2

Range of f (x) is only {1}. 6. 3 0 2 x sin x a sin x lim b x  

     

3 5 3 5 3 0 2 2 2 3 5 3 5 x x x x x x . . . . . a x . . . . . lim b x                     2 a 0  a 2 and

 

3 2 1 3 3 a b b       7. From graph it is :

Non-differentiable when 2sin x 1 cos x [except x = 0]

 2 2

4 1cos x 1 cos x2cos x  5cos x2 2cos x 3 0

 2 64 2 8 6 3 10 10 10 5 cos x       1 3 1 3 5 5 x  cos   cos       10.

 

 

 

   

   

 

       

   

2 4 1 2 2 1 0 2 1 U x V x V x U x f x u x V x v x             

References

Related documents

including: the amendments to the School Governance (Constitution) (England) Regulations 2012; Department for Education, Constitution Statutory Guidance, May 2014 and March

When this system is selected for coverage in addition to the Quality System, all areas listed below should be covered; however, the actual depth of coverage may vary from the

mindful awareness, the study reported improvement for all symptoms immediately after training, and improvements were maintained at the 8-week follow up.. follow up,

The same relationship was observed in tensile test results. The material after hot rolling presents YS and UTS equal to 775 MPa and 1045 MPa, respectively. The application of

In summary, our analysis indicates that i net buyers of wheat are poorer than net sellers of wheat, ii there are more buyers of wheat than sellers of wheat at all levels of income,

Methods: To investigate the effect of GSRd on renal ischemia/reperfusion injury (IRI) and macrophage functional status, and their regulatory role on mouse polarized macrophages

The purpose of this study was to describe rural-urban differences in routes of administration for: buprenorphine, fentanyl, hydrocodone, hydromorphone, methadone, morphine,

Comparison of hepatic mRNA abundance changes following TCDD treatment identified several genes which were dysregulated in both species and may be involved in the onset of