• No results found

Global behavior for a diffusive predator-prey system with Holling type II functional response

N/A
N/A
Protected

Academic year: 2020

Share "Global behavior for a diffusive predator-prey system with Holling type II functional response"

Copied!
11
0
0

Loading.... (view fulltext now)

Full text

(1)

R E S E A R C H

Open Access

Global behavior for a diffusive predator-prey

system with Holling type II functional

response

Yanzhong Zhao

*

*Correspondence: yanzhongz@yahoo.com.cn Department of Basic Research, Qinghai University, Xining, 810016, China

Abstract

A strongly coupled self- and cross-diffusion predator-prey system with Holling type II functional response is considered. Using the energy estimate, Sobolev embedding theorem and bootstrap arguments, the global existence of non-negative classical solutions to this system in which the space dimension is not more than five is obtained.

MSC: 35K50; 35K55; 35K57; 92D40

Keywords: predator-prey system; cross-diffusion; global solution

1 Introduction

In this paper, we consider the global existence of non-negative classical solutions to the following diffusion predator-prey system with Holling type II functional response:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

ut=(du+αu) +αu( –Ku) –+βmuvamu, x,t> ,

vt=(dv+αuv+αv) –rv++cβmuvamu, x,t> ,

∂ηu(x,t) =∂ηv(x,t) = , x,t> ,

u(x, ) =u(x)≥,v(x, ) =v(x)≥, x,

(.)

whereis a bounded region inRn(n) with a smooth boundary;ηis the outward

normal on,∂η=/∂η;u(x) andv(x) are non-negative smooth functions and are not

identically zero;uandvdenote the population densities of predator and prey, respectively;

α,β,r,a,K,mandcare positive constants, andm∈(, ];d andd are the diffusion

rates of the two species;αij(i,j= , ) are given non-negative constants,αandαare

self-diffusion rates;αis the cross-diffusion rate. It means that the diffusion is from one

species of high-density areas to the other species of low-density areas. See [, ] for more details on the ecological backgrounds of this system.

Obviously, the non-negative equilibrium solutions of system (.) are (K, ) and (u*,v*) =

(m(cβrar),αcKmKm(c(βcβarar)–)αcr). For the reaction-diffusion problem of system (.),i.e.,αii=  (i=

, ), the global attraction, persistence and stability of non-negative equilibrium solutions are studied in []. The main result can be summarized as follows:

(2)

() IfK(cβrar)<mK(cβrar)+Ka and>ar, a unique positive constant solution (u*,v*)is globally asymptotically stable;

() IfK(cβrar)<m<K(cβrar)+Ka(ccββar) and>ar, a positive constant solution(u*,v*)is

locally asymptotically stable.

In view of the study of dynamic behavior of a predator-prey reaction-diffusion system with Holling type II functional response, a natural problem is what the global behavior for a predator-prey cross-diffusion system (.) is. To the best of our knowledge, the existing results are very few. In this paper, we consider the space dimension to be less than six, and initial functionu(x) andv(x) under some smooth conditions, using the energy estimate,

Sobolev embedding theorem and bootstrap arguments, we consider the global existence of non-negative classical solutions for system (.).

We denoteQT=×(,T).uWq,(QT) means thatu,uxi,uxixj (i,j= , . . . ,n) andut are inLq(Q

T).uLp,q(Q T)= [

T

(

|u(x,t)|pdx)

q

pdt]q.u

V(QT)=sup≤tTu(·,t)L()+

∇uL(Q

T).

2 Auxiliary results

Lemma . Let(u,v)be the solution of(.).There exists a positive constant M(≥)such

that

≤uM, ≤v, ∀t≥. (.)

Proof Firstly, the existence of local solutions for system (.) is given in [–]. Roughly speaking, ifu,v∈Wp(),p> , there exists the maximumT≤+∞such that system

(.) admits a unique non-negative solution

u,vC[,T),Wp()∩C∞(,T),C∞(). (.)

If

sup u(·,t)w

p(),v(·,t)wp():  <t<T

<∞,

thenT= +∞.

ChooseM=max{K,uL∞()}. By use of the maximum principle, the non-negative

solution of system (.) can be derived from the maximum principle,i.e.,u,v≥ for all

t≥. This completes the proof of Lemma ..

Lemma . Let X= (d+αu)u,uL∞(QT)for the solution to the following equation:

ut=

(d+αu)u

+αu

 – u K

βmuv

 +amu, (x,t)∈×(,T),

∂ηu= , (x,t)∈×(,T),

u(x, ) =u(x)≥, x,

where d,αare positive constants and≤uL(QT).Then there exists a positive

con-stant C(T),depending onuW()anduL∞(),such that

XW,

(3)

Furthermore,

XV(QT), ∇uL

(n+)

n (Q

T). (.)

Proof FromX= (d+αu)u, it is easy to find that

Xt= (d+ αu)X+C–Cv, (.)

where C=dαu+ (ααdKα)u– αKαu andC= +βamumu (d+ αu).C andC are

bounded in QT from (.). Multiplying (.) by –X and integrating by parts over Qt

yields

 

X(x,t)dx– 

X(x, )dx+d

Qt

|X|dxdt

QT

|C+Cv||X|dxdt. (.)

Using the Hölder inequality and Young inequality to estimate the right-hand side of (.), we have

C+CvL(Q

T)XL(QT)≤m

 +vL(Q

T)

XL(Q

T)

m( +M)

d

+d

X

L(Q

T) (.)

with somem> . Substituting (.) into (.), we obtain

sup ≤tT

∇X(x,t)

dx+d

Qt

|X|dxdtm,

where m depends onuW

() anduL∞(). So, we know∇XV(QT). SinceX

L(Q

T), it follows from the elliptic regularity estimate [, Lemma .] that

QT |Xxixj|

dxdtm

, i,j= , . . . ,n.

From (.), we haveXtL(QT). Hence,XW,

 (QT)≤C(T). Moreover, (.) can be

ob-tained by use of the Sobolev embedding theorem.

Lemma . Assume that wWP,(QT)∩C,(¯×[,T))is a bounded function satisfying

wta(x,t,w)w+f(x,t) in QT

with the boundary condition wv≤on∂QT,where fL

P(Q

T).Then∇W is in Lp(QT).

The proof of the above lemma can be found in [, Proposition .].

(4)

Lemma . Let p> ,p˜=  +n(pp+).If

sup ≤tT

w

L

p

p+()+∇wL(Q

T)<∞,

and there exist positive constantsβ∈(, )and CTsuch that

|w(·,t)|

βdxC

T(∀t≤T),

there exists a positive constant M,independent of w but possibly depending on n,,p,β and CT,such that

wLp˜(Q

T)≤M

 + sup

≤tT

w(t)

L

p p+()

p n(p+)˜p

w

˜

p

L(Q

T)

.

Finally, one proposes some standard embedding results which are important to obtain theL∞andC+α,+α(Q

T) normal estimates of the solution for (.).

Lemma . There exists a constant C(T)such that∇uL(QT)≤C(T).

Proof Letδ=α/d,X= ( +δu)u. By Lemma .,u is bounded. Therefore,X is also

bounded. By Lemma ., we haveXW,(QT). Moreover,Xsatisfies

Xtd( + δu)X+αu( + δu)

=

d

+ δdXX+αu( + δu).

By Lemma . withp= ,a(x,t,ξ) =d+ δdξ,f(x,t) =αu(x,t)( + δu(x,t)), we obtain

the desired result.

Lemma . Let Rn be a fixed bounded domain and∂C. Then for all u

Wq,(QT)with q≥,one has

() ∇uLp(Q

T)≤CuWq,(QT),∀≤p

(n+)q

n+–q,q<n+ ;

() ∇uLp(QT)≤CuWq,(QT),∀≤p≤ ∞,q=n+ ;

() ∇u

,α(QT)≤CuW

,

q (QT),∀ –

n+

qα≤,q>n+ ,

where C is a positive constant dependent on q,n,,T.

3 The existence of classical solutions

The main result about the global existence of non-negative classical solutions for the cross-diffusion system (.) is given as follows.

Theorem . Assume that u> and v> satisfy homogeneous Neumann boundary

conditions and belong to C+α(¯)for someα(, ).Then system(.)has a unique

non-negative solution(u,v)∈C+α,+α(¯ ×[,))if the space dimension is n.

Proof Whenn= , the proof is similar to the methods of [–]. So, we just give the proof of Theorem . forn= , , , . The proof is divided into three parts.

(5)

Firstly, integrating the first equation of (.) over, we have

d dt

udx=

u

ααu

K

βmv

 +amu

dx

αudxα K

udx

α

udxα K||

udx

.

Thus, for allt≥, we can obtain

udxM,

whereM=max{K||,udx}.

Furthermore,

uL(Q

T)≤

T

MdtM. (.)

Secondly, linear combination of the second and first equations of (.) and integrating overyields

d dt

(cu+v) dx=c

αudx K

udxr

vdx

c(r+α)

udx K||

udx

r

(cu+v) dx

c(r+α)Mr

(cu+v) dx.

So, we get

(cu+v) dx≤max

c(r+α)M

r ,

cu(x) +v(x)

dx

M, ∀t≥. (.)

Further,

vL(Q

T)≤

T

MdtM. (.)

Then multiplying both sides of the second equation of system (.) byvand integrating over, we obtain

  d dt

vdx= –

vdv+αuv+αv

dxr

vdx+cmβ

uv

 +amudx

≤–d

|∇v|dxα 

v∇v∇udx– α

v|∇v|dx+

a

vdx.

Integrating the above expression in [, ] yields

v(x,t) dx

v(x) dx+ 

Qt

(d+αu+ αv)|∇v|dxdt+r

Qt vdxdt

≤–α

Qt

u·v· ∇vdxdt+ a

Qt

(6)

Estimating the first term on the right-hand side of (.),

Qt

∇u·v· ∇vdxdt=

Qt

∇u·v· ∇v·vdxdt

ε

Qt

v|∇u|dxdt+

ε

Qt

v· |∇v|dxdt

ε

Qt

vdxdt+

ε

Qt

|∇u|dxdt

+ 

ε

Qt

v· |∇v|dxdt. (.)

Substituting (.) into (.) yields

v(x,t) dx

v(x) dx+ 

(d+αu+ αv)|∇v|dxdt+r

Qt vdxdt

αε+

a Qt

vdxdt+α ε

Qt

|∇u|dxdt+α

ε

Qt

v|∇v|dxdt. (.)

Selectε>ααand denoteC= α–αε. Notice the positive equilibrium point of (.)

exists under condition>ar, then

v(x,t) dx+ d

Qt

|∇v|dxdt+ α u∞

Qt

|∇v|dxdt+C

Qt

v|∇v|dxdt

v(x) dx+

αε–r+

a Qt

vdxdt+α ε

Qt

|∇u|dxdt. (.)

By Lemma .,∇uL(QT)≤C(T). Integrating the above inequality and using the

Gronwall inequality, we get

sup <t<T

vdxC(T).

Hence, there exists a positive constantMsuch that vdxM. Furthermore, we have

vL(Q

T)≤

T

MdtM. (.)

Secondly, multiplying both sides of the second equation of system (.) byqvq–(q> )

and integrating over, we have

d dt

vqdx≤–(q– )dq

vqdxq(q– )α

(q+ )

vq+ dx

q(q– )α

vq–∇u· ∇vdx+q

vq

r+ cβmu  +amu

(7)

Integrating the above equation over [,t] (tT), it is clear that

vq(x,t) dx+(q– )dq

Qt

vqdxdt+q(q– )α

(q+ )

Qt

vq+ dxdt

vq(x) dxq(q– )α

Qt

vq–∇u· ∇vdxdt+cβq a

Qt

vqdxdt. (.)

By Lemma ., it can be found that∇uL(nn+)(QT). According to the Hölder inequality and Young inequality, we get

q(q– )α

Qt

vq–∇u· ∇vdxdt

≤q(q– )α

q+ 

Q

t

vq– ∇v

q+

 · ∇udxdt

≤q(q– )α

q+  ∇uL(nn+)(QT)v q–

Ln+(Q

T)∇

vq+

L(Q

T)

C∇

vq+

L(Q

T)v q–

Ln+(Q

T)

Cε

 ∇

vq+ 

L(Q

T)+ C

εv q–

 

Ln+(Q

T). (.)

Choose an appropriate numberεsatisfyingCε

 ≤

q(q–)α

(q+) . Substituting (.) into (.)

and takingv¯=vq+ , we have

¯ v

q

q+(x,t) dx+

Qt

|∇¯v|dxdt

vqdx+

C

ε¯v

(q–)

q+

L

(q–)(n+)

q+ (Q

T) +cβq

a ¯v

q q+

L

q q+(Q

T)

C

 +¯v

(q–)

q+

L

(q–)(n+)

q+ (Q

T) +¯v

q q+

L

q q+(Q

T)

. (.)

Let

E≡ sup <t<T

¯ v

q

q+(x,t) dx+

QT

|∇¯v|dxdt.

From (.), we know

EC

 +¯v

(q–)

q+

L

(q–)(n+)

q+ (Q

T) +¯v

q q+

L

q q+(Q

T)

.

Whenq<nn(n–+), it is easy to find that

q

q+<  <q˜and

(q–)(n+)

q+ <q˜=  + q n(q+). So,

EC

 +¯v

(q–)

q+

Lq˜(Q T)+¯v

q q+

L˜q(Q T)

(8)

Setβ=q+ ∈(, ). It follows from theL()-estimate forvthat

¯vLβ()=

¯v(·,t)β

dxβ =v  β

L()M

β

 , ∀t≤T.

By Lemma . and (.), we know

EC

 +

M+M sup <t<T

v¯(·,t)

q n(q+)˜q

L

q q+()

∇¯vq˜

L(Q

T)

(q–)

q+

+

M+M sup <t<T

v¯(·,t)

q n(q+)q˜

L

q q+()

∇¯vq˜

L(Q

T)

q q+

C

 +sup <t<T

¯v(·,t)

q q+

L

q q+()

(q–)

n(q+)q˜

∇¯vL(Q

T)

(q–) (q+)q˜

+

sup <t<T

v¯(·,t)

q q+

L

q q+()

(q–)

n(q+)˜q ∇¯v

L(Q

T)

q

(q+)q˜

C

 +E

(q–)

n(q+)q˜E

(q–) (q+)q˜ +E

q n(q+)q˜E

q

(q+)˜q. (.)

Obviously, n((qq+)–)q˜ +((qq+)–)q˜ ∈(, ) and n(q+)q q˜ +(q+)qq˜ ∈(, ). It is easy to know thatEis bounded by use of reduction to absurdity. Sinceq<nn(n+)–,

(q+)q˜

 ∈(, (n+)

n– ). So,¯vLq˜(Q T) is bounded,i.e.,vL(q+) q˜(QT). Denote(q+)q˜

 still asq. So,

vLq(QT), ∀q

,(n+ ) n– 

. (.)

Finally, whenn= , , , , (n– )q<n+ nwithq= . Forn, takingq=  in (.), it

follows from (.) that there exists a positive constantMsuch that

vV(QT)≤M. (.)

By embedding theorem, we get

v

L(nn+)(QT)≤ M.

(ii)L∞-estimate forv.

The second equation of system (.) can be written as the following divergence form:

∂v ∂t=

n

i,j=

∂xi

aij(x,t)

∂v ∂xj

+ n i= ∂xi

ai(x,t)v

+v

r+ cβmu  +amu

, (.)

whereaij(x,t) = (d+αu+ αv)δij,ai(x,t) =αuxjandδijis the Kronecker sign. In order to apply the maximum principle [] to (.), we need to prove the following conditions:

() vV(QT)is bounded; () ni,j=aij(x,t)ξiξjν

(9)

() ni=a

i(x,t),v(–r+ cβmu

+amu)Lp,r(QT)≤μ, whereν,μare positive constants and

r+

n

p=  –χ,  <χ< ,p

n ( –χ), +∞

,r

  –χ, +∞

,n≥. (.)

Next, we will show that the above conditions () to () are satisfied for (.). Whenn≤, it is easy to find that the condition () is satisfied by use of (.). Sinceni,j=aij(x,t)ξiξj

d|ξ|for allξ ∈Rn, the condition () is verified. In view of the condition (), we take

appropriateqandr. Rewrite the first equation of system (.) as

ut=∇ ·

(d+ αu)∇u

+αu

 – u K

βmuv

 +amu. (.)

Whenn= , , , , n+ <(nn–+), it is clear thatd+ αuhas an upper bound overQTby

Lemma .. Set

q

n+ 

 ,

(n+ ) n– 

.

From (.), we haveαu( –Ku) –+βmuvamuLq(QT). Therefore, all conditions of the Hölder

continuity theorem [, Theorem .] hold for (.). Hence,

u,β(Q

T), β∈(, ). (.)

We will discuss (.) which is the corresponding form of (.). It follows from (.) and (.) thatC–CvLq(QT),∀q∈(n+ ,(nn–+)). From (.), we obtaind+αu

,β(Q

T). Thus, according to the parabolic regularity result of [, pp.-,

Theo-rem .], we can conclude that

XWq,(QT), ∀q

n+ 

 ,

(n+ ) n– 

, (.)

which implies that∇X∈L

(n+)q n+–q(Q

T) by Lemma ..

SinceX= (d+ αu)u, we have∇u= (d+ αu)–∇X,i.e.,∇u∈L

(n+)q n+–q(Q

T). It means

that |∇u|,|∇v|L((nn+)+–qq)(Q

T). So, ni=ai(x,t)∈L

(n+)q

(n+–q)(Q

T). From (.) and (.),

v(–r++amumu)∈Lq(Q T).

Then the condition () and (.) are satisfied by choosingp=r=((nn+)+–pp). According to the maximum principle [, p., Theorem .], we can conclude thatvL∞(QT). From

(.), there exists a positive constantMsuch that

uL∞(QT),vL∞(QT)≤M, ∀T> . (.)

Therefore, the global solution to the problem (.) exists. (iii) The existence of classical solutions.

Under the conditions of Theorem ., we consider above global solutions (u,v) to be classical. By (.) and Lemma ., we know∇X∈,α(Q

T),∀α∈(, ). It follows from

Lemma . in [] thatXC+α,+α(Q

T). SinceX= (d+αu)u, we haveu=

d√d+αX

(10)

So,

uC+α,+α(Q

T), ∀α∈(, ). (.)

Rewrite the second equation of system (.) as

vt=∇ ·

(d+αu+ αv)∇v+α∇uv

+v

r+ cβmu

 +amu

.

Therefore, we can conclude that v(–r+ +amumu)∈L∞(QT), u, v, ∇u and ∇v are all

bounded. By the Schauder estimate [], there existsα*∈(, ) such that

v*,α

*  (Q

T). (.)

Furthermore, by the Schauder estimate, we obtain

uC+σ,+σ(Q

T), σ=min α,α*

. (.)

Next, the regularity ofvwill be discussed. Setv¯= (d+αu+αv)v. So,v¯satisfies

¯

vt= (d+αu+ αv)v¯+f(x,t), (.)

wheref(x,t) = (d+αu+ αv)v(–r++amumu) +αutv. According to (.) to (.), we

haved+αu+ αv,f(x,t)∈, σ

(QT). Applying the Schauder estimate to (.), we

know

¯

vC+σ,+σ

(Q

T).

Fromv=–(d+αu)+

(d+αu)+α¯v

α , we can see

vC+σ,+σ(Q

T), σ=min α,α*

. (.)

Combining (.) and (.), we get

u,vC+σ,+σ(Q

T).

Therefore, the result of Theorem . can be obtained forα<α*, namelyσ=α. When

α>α*, namelyσ<α, we haveC+σ,+σ

(Q

T),

α

(Q

T). (.) and (.) are obtained

by repeating the above bootstrap argument and the Schauder estimate. This completes

the proof of Theorem ..

Competing interests

The author declares that he has no competing interests.

Authors’ contributions

(11)

Acknowledgements

The author thanks the anonymous referee for a careful review and constructive comments. This work was supported by the Qinghai Provincial Natural Science Foundation (2011-Z-915).

Received: 6 April 2012 Accepted: 25 September 2012 Published: 9 October 2012 References

1. Cao, H, Fu, S: Global existence and convergence of solutions to a cross-diffusion cubic predator-prey system with stage structure for the prey. Bound. Value Probl. (2010). doi:10.1155/2010/285961

2. Dubey, B, Das, B, Hussain, J: A predator-prey interaction model with self and cross-diffusion. Ecol. Model.141, 67-76 (2001)

3. Ko, W, Ryu, K: Qualitative analysis of a predator-prey model with Holling type II. Functional response incorporating a prey refuge. J. Differ. Equ.231(2), 534-550 (2006)

4. Amann, H: Dynamic theory of quasilinear parabolic equations - I. Abstract evolution equations. Nonlinear Anal.12, 859-919 (1988)

5. Amann, H: Dynamic theory of quasilinear parabolic equations - II. Reaction-diffusion. Differ. Integral Equ.3, 13-75 (1990)

6. Amann, H: Dynamic theory of quasilinear parabolic equations - III. Global existence. Math. Z.202, 219-250 (1989) 7. Lou, Y, Ni, Y, Wu, Y: On the global existence of a cross-diffusion system. Discrete Contin. Dyn. Syst.4, 193-203 (1998) 8. Tuoc, PV: On global existence of solutions to a cross-diffusion system. IMA Preprint Series 2149

9. Choi, YS, Lui, R, Yamada, Y: Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion. Discrete Contin. Dyn. Syst.10(3), 719-730 (2004)

10. Shim, S: Uniform boundedness and convergence of solutions to cross-diffusion systems. J. Differ. Equ.185, 281-305 (2002)

11. Shim, S: Uniform boundedness and convergence of solutions to the systems with cross-diffusion dominated by self-diffusion. Nonlinear Anal., Real World Appl.4, 65-86 (2003)

12. Shim, S: Uniform boundedness and convergence of solutions to the systems with a single nonzero cross-diffusion. J. Math. Anal. Appl.279, 1-21 (2003)

13. Ladyzenskaja, OA, Solonnikov, VA, Uralceva, NN: Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs, vol. 23. Am. Math. Soc., Providence (1968)

doi:10.1186/1687-2770-2012-111

References

Related documents

In this section, we first prove the global existence and uniform boundedness of solutions, then discuss the stability of unique positive equilibrium solution for the weakly

Wang and Pan Advances in Difference Equations 2012, 2012 96 http //www advancesindifferenceequations com/content/2012/1/96 R ES EA RCH Open Access Qualitative analysis of a

Jiang and Wang Advances in Difference Equations 2013, 2013 249 http //www advancesindifferenceequations com/content/2013/1/249 R ES EA RCH Open Access Qualitative analysis of a

Uniform ultimate boundedness of solutions of predator prey system with Michaelis Menten functional response on time scales Yu et al Advances in Difference Equations (2016) 2016 319 DOI

Ju et al Advances in Difference Equations 2014, 2014 280 http //www advancesindifferenceequations com/content/2014/1/280 R ES EARCH Open Access An impulsive prey predator system with

A delayed Holling type III functional response predator prey system with impulsive perturbation on the prey Li and Liu Advances in Difference Equations (2016) 2016 42 DOI 10 1186/s13662

Aziz-Alaoui and Daper [9] has proposed a modified Leslie-Gower(L-G) model in presence of Holling type-II FR. Hereafter many researchers have studied this modified L -G model

(2011) Existence and Global Attractivity of a Positive Periodic Solution to a Lotka-Volterra Model with Mutual Interference and Holling III Type Functional Response.