• No results found

Estimating crop yield potential at regional to national scales

N/A
N/A
Protected

Academic year: 2021

Share "Estimating crop yield potential at regional to national scales"

Copied!
10
0
0

Loading.... (view fulltext now)

Full text

(1)

ContentslistsavailableatSciVerseScienceDirect

Field

Crops

Research

j o ur n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / f c r

Estimating

crop

yield

potential

at

regional

to

national

scales

Justin

van

Wart

a,∗

, K.

Christian

Kersebaum

b

, Shaobing

Peng

c

, Maribeth

Milner

a

,

Kenneth

G.

Cassman

a

aDepartmentofAgronomyandHorticulture,UniversityofNebraska-Lincoln,202KeimHall,Lincoln,NE68583-0915,USA bLeibniz-CenterofAgriculturalLandscapeResearch(ZALF),EberswalderStraße84D-15374Müncheberg,Germany

cCropPhysiologyandProductionCenter(CPPC),NationalKeyLaboratoryofCropGeneticImprovement,MOAKeyLaboratoryofCropPhysiology,EcologyandCultivation(TheMiddle

ReachesofYangtzeRiver),HuazhongAgriculturalUniversity,Wuhan,Hubei430070,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received18June2012 Receivedinrevisedform 24November2012 Accepted27November2012 Keywords: Yieldpotential Simulationmodel Foodsecurity Yieldgap Rice Maize Wheat

a

b

s

t

r

a

c

t

Worldpopulationwillincrease35%by2050,whichmayrequiredoublingcropyieldsonexistingfarmland tominimizeexpansionofagricultureintoremainingrainforests,wetlands,andgrasslands.Whetherthis ispossibledependsonclosingthegapbetweenyieldpotential(Yp,yieldwithoutpest,disease,nutrient orwaterstresses,orYwunderwater-limitedrainfedconditions)andcurrentaveragefarmyieldsinboth developedanddevelopingcountries.Quantifyingtheyieldgapisthereforeessentialtoinformpolicies andprioritizeresearchtoachievefoodsecuritywithoutenvironmentaldegradation.Previousattempts toestimateYpandYwatagloballevelhavebeentoocoarse,general,andopaque.Ourpurposewasto developaprotocoltoovercometheselimitationsbasedonexamplesforirrigatedriceinChina,irrigated andrainfedmaizeintheUSA,andrainfedwheatinGermany.SensitivityanalysisofsimulatedYporYw foundthatrobustestimatesrequiredspecificinformationoncropmanagement,+15yearsofobserved dailyclimatedatafromweatherstationsinmajorcropproductionzones,andcoverageof40–50%oftotal nationalproductionarea.NationalYpestimateswereweightedbypotentialproductionwithin100-km ofreferenceweatherstations.Thisprotocolisappropriateforcountriesinwhichcropsaremostlygrown inlandscapeswithrelativelyhomogenoustopography,suchasprairies,plains,largevalleys,deltasand lowlands,whichaccountforamajorityofglobalfoodcropproduction.Resultsareconsistentwiththe hypothesisthataveragefarmyieldsplateauwhentheyreach75–85%ofestimatednationalYp,which appearstooccurforriceinChinaandwheatinGermany.Predictionofwhenaveragecropyieldswill plateauinothercountriesisnowpossiblebasedontheestimatedYporYwceilingusingthisprotocol.

©2012ElsevierB.V.

1. Introduction

Worldpopulationisprojectedtoincrease35%by2050,which willrequirea 70–100% risein foodproduction givenprojected trends in diets, consumption, and income (Bruinsma, 2009; Rosegrantetal.,2009;UNFPA,2010).Increasedfoodproductioncan beachievedbyraisingcropyieldsonexistingfarmland,expanding cropproductionarea,orboth.Expansionofcroparea,however, comesat the expense of substantial greenhouse gasemissions (IPCC,2007;Searchingeretal.,2008),whichwouldcontributeto climatechange(KarlandTrenberth,2003).

Theextenttowhichincreasedfoodproductionrequires expan-sionofcultivatedareawillbedeterminedlargelybycropyield potential(Yp),whichisdefinedasthemaximumattainableyield per unit land area that can be achieved by a particular crop

∗ Correspondingauthor.

E-mailaddresses:Justin.vanwart@gmail.com(J.vanWart),ckersebalm@zalf.de

(K.C.Kersebaum),speng@mail.hzau.edu.cn(S.Peng),

Mmilner1@unl.edu(M.Milner),kcassman1@unl.edu(K.G.Cassman).

cultivarinanenvironmenttowhichitisadaptedwhenpestsand diseasesareeffectivelycontrolledandnutrientsarenon-limiting (Evans, 1993). In irrigated systems, Yp is determined by tem-peratureregimeand solarradiationduringthegrowingseason. Water-limitedyieldpotential(hereaftercalledwater-limitedyield; Yw)istherelevantmeasureofmaximumyieldattainableinrainfed systems.DespitetheimportanceofYpandYwtofoodproduction capacity,theyarenotexplicitlyconsideredinstudiesofindirect landusechangeasaffectedbypoliciesaboutbiofuels(Searchinger etal.,2008),conservationofbiodiversity(Phalanetal.,2011),or futurefoodsecurity(Godfrayetal.,2010).Accurateestimatesof YpandYwarealsoneededtointerpretyieldtrendsinregionsand countrieswhereaggregatedataindicateyieldstagnation(Cassman etal.,2003;Lobelletal.,2009).Forexample,riceyieldsappearto haveplateauedinJapanandChina;maizeyieldshavebeen stag-nantinChina,Italy,andFrance;andwheatyieldsarenotincreasing innorthernEuropeandIndia(Brissonetal.,2010;Cassmanetal., 2010).Yieldstagnationinthesemajorgrainproductionareasputs pressureonotherregionstoeitheraccelerateyieldgrowthratesor expandcultivatedareatomakeupthedifferencebetweenglobal supplyanddemand.Hence,understandingthecauseoftheseyield 0378-4290©2012ElsevierB.V.

http://dx.doi.org/10.1016/j.fcr.2012.11.018

Open access under CC BY-NC-ND license.

(2)

plateausiscriticaltodeterminingwhetheritispossibletoresume yieldadvanceorifthefocusshouldbeplacedonacceleratingyields inothergrainproducingregions.

Oneexplanationforyieldplateausisthataveragefarmyields haveapproachedaYporYwceiling.Thatis,plateausoccurbecause itis impossibleforaverageyieldin a regionor nationtoreach Yp orYw for two reasons: (1)100% of farmers cannot achieve the perfectionof crop and soil management required to reach YporYw, and(2) cropresponsetoadditionalinputs exhibitsa diminishingmarginalyieldbenefitasyieldapproachesthe ceil-ing,whichdecreasesthemarginalcost-benefitofadditionalinputs andreducesincentivestoexploitthesmallremaininggapbetween farmyieldlevelsandYporYw.Thisisnottosaythatplateausare duetoreducedefficienciesinresponsetoinputs.Onthecontrary, improvedcultivarswithimprovedresistancetobioticandabiotic stressresistanceachievehigheryieldsthantheoldercultivarsthey replaceatthesamelevelofinputs,whichmeansgreaterinputuse efficiencies.Instead,plateausmayreflectthefactthatasyieldsrise towardtheplateau,marginalreturntoadditionalinputsbecome smallerandthusfarmershavelessmotivationtotryandachieve highest possibleyield. Therefore, averageregionaland national yieldscanbepredictedtoplateauwhentheyreach70–90%ofYp orYw(Cassman,1999;Cassmanetal.,2003;Grassinietal.,2009). BecausethereislittleevidencethattheYpceilinghasincreased duringthepast30yearsinmaizeandrice(Cassman,1999;Duvick andCassman,1999;Pengetal.,1999)orwheat(Grayboschand Peterson,2010),accurateestimatesofceilingyieldlevelsare criti-caltodeterminewhetherplateauingcropyieldsresultfromlackof anexploitablegapbetweenaveragefarmyieldsandYpinirrigated systems,orYwinrainfedsystems.

AtissueiswhetheravailablemethodstoestimateYpandYware goodenoughtohelpinterpretyieldtrendsthatindicateaplateau ortoinformdevelopmentofpoliciesthatseektoreduceGHG emis-sionsfromagriculture,includingdirectandindirecteffectsofland usechange.CropsimulationmodelscanbeusedtoestimateYpand Ywbasedoncurrentmanagement,geneticfeaturesofthecrop, weatherandwatersupply.Butcropmodelsthatperformwellin evaluationofyieldatthefieldorfarmlevelsdonotgenerally per-formwellwhenscaleduptoregionalornationallevels(Witetal., 2005).Inlargepartthisperformanceproblemreflectsdifficultyin scalingweatherdatafrompointestimatesatground-basedstations tolargergeospatialscales.

A common approach for estimating current or future crop yieldsata globallevelutilizesa weather databaseinterpolated to0.5◦×0.5◦ grid,or roughly 3100km2 at theequator(Fischer

etal., 2002;Lobell and Field,2007;Priya and Shibasaki,2001). Thestrengthofthisinterpolatedgridapproachisthatitprovides globalcoverageofterrestrialecosystems.Twoweaknessesof spa-tialinterpolationofdataare:(1)itreducesthedegreeofvariability intemperature,rainfall,andsolarradiationacrossalandscapedue tovariationintopographywithinthegridcell,and(2)the geospa-tialdistributionofcropareawithinagridisnotuniformandis typicallyconcentratedincertainzonesacrossthelandscape.The attenuationofvariabilityintemperature,rainfallandsolar radia-tioncanresultinoverorunder-estimationofyieldsforcropsthat relyonrainfallbyasmuchas10–50%(Baronetal.,2005). Further-more,thequalityofgeospatiallyinterpolatedweatherdataisnot uniformacrosstheglobebecausegeospatialdensityofweather sta-tionsisverylowinsomeregions.Anotherapproachistoassume highestyieldingfieldsforaparticularenvironmentasyield poten-tialyields,buttheseyieldsmaybetheresultofasinglegoodyear anddonotrepresentlong-termaverageyieldpotentialforagiven location(Lickeretal.,2010).Assumingallareasoftheglobecan behandledinthesamewayignorescomplexityinthegeospatial distributionofcultivatedlandduetodifferencesintopographyand weather.Useofactualweatherdataoveranumberofyearsfrom

groundstationsthatarespatiallycongruentwithgeospatial distri-butionofcropproductionavoidssuchweaknessesassociatedwith useofinterpolatedweatherdataor“averaged”cropproduction statisticsinestimatingYporYw.

Anotherissueisthemostappropriate time-stepforweather datausedtosimulatecropyields.Previousglobal,national,and regionalestimatesofYporYwaremostlybasedonweatherdata derivedfrommonthlymeansorsimulatedclimaticyearsbasedon historicalvariances(Andarzianetal.,2008;Deryngetal.,2011; Neumannetal.,2010;Nonhebel,1994;PriyaandShibasaki,2001; vanBusseletal.,2011).However,monthlymeansaretoocoarse andinterpolatingthesemeanstoderivedailyvaluesdoesnot cap-turewithinmonthvariabilityaddingadditionaluncertaintytothe weatherinputdata.AccuratesimulationofYpor Ywrequiresa dailytimesteptofullycapturetheimpactofcurrentcrop manage-mentpractices,oradaptivemanagementinresponsetochanges inclimateaswellasthehistoricalvariabilityofweather within thecourseofthemonth.BothYpandYwarehighlysensitiveto thedateofplantingand cultivarselection intermsofmaturity, which togetherdeterminethetiming ofkeygrowthstages and lengthofcrop-growingseason(Cassmanetal.,2010;Grassinietal., 2009;WangandConnor,1996;Yangetal.,2006).Suchsensitivityis especiallyimportanttoestimateYpandYwbysimulationofcrops grownintemperateagroecologicalzones,suchastheU.S.CornBelt, wherelengthofgrowingseasonisdeterminedbyexpecteddateof firstandlastfrost.Specificationofplantingandmaturitydatesalso areimportantinmultiplecroppingsystemsintropicaland semi-tropicalregionswheretwoorthreecropcyclesoccureachyearon thesamefield.

Inadditiontoweatherdatawithdailytime-step,an appropri-atesimulationmodelis neededtoestimateYpandYw. Models shouldbewelldocumentedandvalidatedagainstyieldsofcrops growninfieldswhere,apartfromweather,yield-limitingfactors havebeeneliminated(Kropffetal.,1993;Lobelletal.,2009;Yang etal.,2006).Whilesomepreviousstudieshaveusedgeneric, non-species-specificrelationshipsbetweenincidentsolarradiationand plant biomassproduction toestimatenet primary productivity (PenningdeVriesetal.,1997;DoorenbosandKassam,1979),such modelsarenotabletosimulatecropphenology,whichiscontrolled byspecies-specifictraitsessentialforaccuratesimulationofcrop maturityandgrainyield.

Basedonreviewoftheliterature,weconcludethatavailable methodsdo notgiverobust,reproducible, andtransparent esti-matesofcropYporYwatregionaltonationalscales.Giventhe needforaccurateestimatesofceilingyieldlevelsforinterpreting currentyieldtrendsandforstudiesoffuturefoodsecurityandland useunderchangingclimate,wesetouttodevelopan appropri-atemethodforestimatingtheseyieldbenchmarksatregionalto nationalscales.Todevelopsuchaprotocolrequiresaddressingthe followingissues:(1)whataretheminimumweatherdata require-mentsforaccuratesimulationofYporYwatagivenlocation,(2) whatlevelofspecificityincropmanagementpracticesisrequired, and(3)howbesttoscaleupestimatesofYpandYwfrom location-specificestimatestoregionalandnationalscales.Thesequestions wereexaminedforrainfedandirrigatedmaizeintheUSA(28Mha and 4Mha harvested area, respectively), irrigated rice in China (30Mha),andrainfedwheatinGermany(3Mha).Ourattemptsto answertothesequestionsledustoproposeaprotocolfor estimat-ingYpandYwatregionaltonationalscales.

2. Materialsandmethods

2.1. Geospatialdistributionofharvestedcroparea

Ageospatialdatabaseofharvestedcroparea(Portmannetal., 2010)wasusedtoidentifyregionswithlargecropproductionarea.

(3)

Fig.1. DistributionofNOAAweatherstationswith20+yearsofweatherdatasince1985.

Thisdatasetcontainstheharvestedareaof26cropsona0.5◦× 0.5◦

globalgrid,andforeachcrop,itdistinguishesirrigatedfromrainfed harvestedcroparea.Toourknowledge,itisthemostdetailedand comprehensivegeospatialdatabaseoncropareadistribution cur-rentlyavailable.Ofparticularnoteisthatthegeospatialdistribution ofcropareawasbasedonnationallyreporteddatacorroboratedby satelliteimagery.

2.2. Selectionofreferenceweatherstationsandqualitycontrol measures

Weatherdatabasesofsufficientgeospatialcoverageand qual-ity are essential in simulating crop yields at larger scales.We usedobservedweatherdatafromselectedstations,referredtoas referenceweatherstations(RWS),foundintheNationalOceanic andAtmosphericAssociation(NOAA),GlobalSummaryoftheDay (GSOD).Thisglobaldatasetincludesdailyvaluesforsurface max-imum and minimum temperature (Tmax, Tmin), precipitation, windspeed, and dewpoint temperature(NationalOceanic and AtmosphericAssociation,2010).Datafromstationsinthisdatabase undergo a number of quality control measures as described at: http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/. Geospatial coverageisquitedenseinNorthAmerica,EuropeandEastAsia, andreasonablywelldistributedinpopulatedareasofsouthand southeastAsia,Africa,andLatinAmerica(Fig.1).Weatherstations aresparse,however,inareaswithlowpopulationdensityorlack ofinfrastructure.

WeatherstationswereonlyconsideredasapotentialRWSif they:(1)hadatleast20yearsofdatasince1980,(2)werelocatedin aprovinceorstatethatcontained>2%oftotalnationalproduction forthecropinquestion,and(3)hadfewerthan10%ofdata-daysand

fewerthan30consecutivedata-daysmissing.UsingthePortmann etal.(2010)geographicdistributionofcroparea,ArcGISwasused toiterativelysumtheharvestedareawithinabufferzoneoffixed radiusaroundeachstation,andstationswithinacountrywerethen ranked.Thestationwithgreatestharvestedareawithinthisbuffer zonewasselectedasareferenceweatherstation(RWS).Allother stationsneartheselectedRWS(withintwicethedistanceofthe bufferzoneradius)weretheneliminatedfromfurther consider-ationtoavoidoverlappingbufferzones,andthestationwiththe largestharvestedcropareaamongremainingstationswasthen selectedasasecondRWS.Theprocesswasrepeateduntil>50%of nationallyharvestedareafellwithin100kmofselectedRWS.In somecasescropproductionareaishighlyconcentratedsuchthat >50%ofnationallyharvestedareacannotbeachievedwithoutsome overlapamongRWS.Inthis case,5kmincrementaloverlapwas alloweduntil>50%ofnationallyharvestedareacouldbeachieved with25stationsorless.Thisselectionprocessavoidedsubjective selectionofRWS,limitedthenumberofstationsrequiredfor esti-mation,minimizedoverlapofbufferzonesusedforweighting,and providedgoodgeospatialcoverageofregionsthatcontributedmost tototal nationalproductionofthecropinquestion.Minimizing thenumberofRWSbecomesimportantbecauseinformationabout cropmanagementpractices withinbufferzonesisalsorequired foraccurateYpand Ywsimulation,anditrequiresconsiderable efforttoobtainthesedata(seeSection2.4below).Abufferzoneof 100kmwasusedforthisstudy.Zonesof50kmand150kmwere alsoconsidered,butdidnotallowfor50%coverageofharvested areabecauseof toomuchoverlap (150km)ornot enougharea covered(50km)(datanotshown).Preliminaryevaluationsof sta-bilityofYpandYwestimatesbasedonnumberofconsecutiveyears ofweatherdataandamountofcropareacoveredbyRWSbuffers

(4)

Table1

Influenceofdateoftransplantingordirectseeding(D.seed)plantingdatesandmaturitydate,orboth(dayofyear=DOY)onsimulatedYp(Mgha−1)usingNOAA-SR2for

selectprovincesandricecroppingsystems.

Province Season BaseYp(Mgha−1) TransplantDOY MaturityDOY TransplantandmaturityDOY

+7 −7 +7 −7 −7,+7 +7,−7 Sichuan Single 9.2 −4% 3% 7% −10% 10% −13% Anhui Early 3.3 −11% 11% 15% −15% 18% −23% Anhui Middle 8.6 −5% 3% 13% −14% 16% −18% Anhui D.Seed 6.1 −15% 12% −6% −8% 22% −24% Anhui Late 4.4 −10% 0% 4% −10% 13% −18%

indicatedthat20yearsand40–50%areacoveragewassufficient

toobtainstableestimates.Thiswasconfirmedbymorethorough

analysisasprovidedinthispaper.

UsingthisRWSselectionproceduremadeitpossibletoobtain

>50% coverage of total national harvested area for irrigated

rice in China (∼29Mha total harvested area, five-year average,

2004–2008)andirrigatedmaizeintheUSA(∼3Mhatotalharvested

area,2004–2008)withoutneedforoverlapamongRWS(Table2).

In contrast, rainfed maize production in the USA (∼28Mha, 2004–2008)ishighlyconcentratedinthecentralandeasternCorn Belt,asareweatherstationdata,suchthatupto25kmoverlapwas requiredbetweensomeoftheRWStocover14Mha(50%)of har-vestedareabasedonthePortmannetal.(2010)geospatialdata. Becauseofrelativelysmalllandareaandrelativelylargenumber ofweatherstationswithgoodqualityweatherdatainGermany, only6RWSwererequiredtocover>50%oftotalharvestedareaof rainfedwheat(∼3Mha).

WeatherdataforeachselectedRWSweresubjectedtoquality control(QC)measurestofillinmissingdataandidentifyandcorrect erroneousvaluesthatoccurduetotechnicalproblemscommonin weatherdataacquisition.Aspatialregressiontest(SRT)(Hubbard etal.,2005)wasusedtocheckandcorrectweatherdataatagiven RWSagainstdatafromnearbystationsbasedonthestrengthof cor-relationbetweennearbyandreferencestationdata.Developedfor useintheMidwestUSA,thisQCmethodwasfoundtooutperform otherQCapproachesinawidevarietyofclimate-zones(Hubbard etal.,2007;Youetal.,2008).Atleast2neareststationswereused withtheSRTtoidentifyandcorrectmissingandsuspiciousvalues forTmin,Tmax,dewpointtemperature,windspeed,and precipita-tion.Typicallyabout0.5%ofobservationswerecorrected,roughly 2daysperyear.FollowingHubbardetal.(2005),adailyvaluewas flaggedassuspiciousifitwasgreaterthan3standarddeviations (5for precipitation)fromtheSRTvalue,which is a regression-estimatedvaluebasedon15daysbeforeandafterthedailyvalue inquestion.Inrarecaseswhereasingledailyrecordwasmissing fromtheRWSandnearbystations(<0.01%ofallvalues),the aver-ageoftheprecedingandsucceedingdaywassubstitutedforthe missingvalue.

Evapotranspiration,relativehumidity,incidentsolarradiation, and vaporpressureare notmeasuredor reportedin theNOAA weatherdata,buttheyarerequiredbyoneormoreofthecrop simulationmodelsusedinthisstudy.Hence,evapotranspiration andrelativehumiditywereestimatedfollowingAllenetal.(1998). VaporpressurewasestimatedusingtheWobusmethod(Gerald

andWheatley,1984).Incidentsolarradiationwasobtainedinone oftwoways:(1)derived fromthesquarerootofthedifference betweendailyminimumandmaximum temperaturemultiplied byextraterrestrialsolarradiationandaconstant(Hargreavesand Samani,1982)or(2) obtainedfromNASAagroclimatologysolar radiationdata,whichareavailableona1◦by1◦globalgrid.These datawereobtainedfromtheNASALangleyResearchCenterPOWER ProjectfundedthroughtheNASAEarthScienceDirectorateApplied ScienceProgram.WethereforehadtwosourcesofNOAAweather dataforcropsimulation,bothusingactualdatafortemperatureand rainfallbutwithdifferentsourcesofdataforsolarradiation:either derived (Hargreaves andSamani, 1982),hereaftercalled NOAA-SR1,orbasedonsolarradiationfromtheNASA-POWERdatabase, hereaftercalledNOAA-SR2.

2.3. Soilproperties

Soiltextureandbulkdensityhavealargeinfluenceonwater holdingcapacity andarerequired forsimulation ofYw (Saxton etal.,1986).ForeachRWS,thedominantagriculturalsoilwithinthe 100kmbufferzonewasidentified.ForU.S.maizeproduction,soil texturewasidentifiedforthemostabundantsoiltypeassociated withthedensestmaizeproductionareawithineachRWSselected asaRWSforirrigatedorrainfedproduction.Thiswasachievedby evaluatingsoiltypesandareadistributionintheSSURGOdatabase (SoilSurveyStaff,2010)inrelationtothegeospatialdistribution of2009maizearea(NASS,2010a)withineach100kmRWSbuffer zone.Whenthereweretwoormoresoilsofsimilarextentand congruencewithmaizearea,thesoilwithhighestlandcapability class(KlingebielandMontgomery,1961)wasselectedasthemost representativesoilformaizeproductionintheRWSbufferzone.In GermanysoilswithineachRWSwereidentifiedusingadigitalsoil map(1:1.000.000)usingsoilprofiledescriptionsfordominantsoil typesfromHartwichetal.(1995).Forirrigatedrice,soilwater hold-ingcapacityisnotasensitivevariableforsimulationofYpbecause itisassumedthatfarmerscanapplyirrigationwheneverrainfall fallsbelowcropwaterrequirements.Therefore,simulationsofrice YpinChinadidnotrequirespecificationofsoilproperties. 2.4. Cropmanagement

Forthecropsandcountriesexaminedhere,farmershaveready accesstolatesttechnologiesand informationregardingplanting dates,seedingratesortransplantingpatterns,andcultivars.Indeed,

Table2

NationalestimatedYpandreported5-yearaverage(2004–2008)yields(takenfromIRRIforChina,FAOforGermanyandNASSfortheUS).

Country-crop Years Water

regime

Harvestedareain100km bufferzones(Mha)

Harvestedareaa

(Mha)

Coverage Ya(Mgha−1) Yp(Mgha−1) Ya/Yp(%)

China-rice 86–08 IR 15.0 29.12 51% 6.4 7.8 82%

US-maize 86–08 RF 14.0 27.7 50% 9.7 13.2 73%

US-maize 86–08 IR 1.9 3.5 54% 11.7 15.1 77%

German-wheat 86–08 RF 1.6 3.1 52% 7.6 9.5 80%

(5)

therearefewbarrierstoaltermanagementofthesepracticesif suchchangeswouldresultinhigheryieldsandprofit.Forthis rea-son,managementspecificationsforallsimulationswerebasedon currentaveragefarmerpracticesineachlocationwhereYporYw wassimulated.

Managementpracticesandtheextentofharvestedareaforrice systemsinChinawereobtainedfromagronomistsineachofthe majorrice-producingprovincesacrossChina.Dominantrice crop-pingsystemsrangedfromthree,two, oronericecropperyear onthesamepieceoflanddependingonwhethertheclimatewas warmenoughforyear-roundcropproduction.Morethan40 differ-entrice-basedcroppingsystemswereidentifiedin17provinces. Foreachricecrop,ineachofthedifferentcroppingsystems,crop managementdataincludedplantpopulationfordirect-seededrice orhillspacingintransplantedrice,dateofsowingortransplanting andtransplantseedlingage,dateoffloweringandmaturity,andthe mostwidelyusedcultivar.Emergencewasassumedtooccur7days afterdirectseeding.Cropphenology(seeding,flowering,and matu-ritydates)andtransplantingdatesreportedforeachricecropping systemwithinaprovincewereusedtoestimategenotype-specific coefficientsrequiredforsimulationofYpwithinRWSbufferzones locatedinthatprovinceusingcompanionsoftwareoftherice sim-ulationmodel(ORYZA2000).

Data for average U.S. maize sowing date by county were obtainedfromtheUSDA’sRiskManagementAgency(RMA),which requiresfarmersenrolledinUSDAinsuranceprogramstoreport theirplantingdatesbyfield.ForeachcountyinwhichaRWSwas located,theplantingdatewasconsideredtobethedateonwhich 50%ofthemaizeareawasplanted(meanvaluefor2003–2008). Seedingrateand growingdegreedaysrequired toreach matu-rityforthemostcommonhybridsusedwereobtainedfromfield researchers,seedcompanyagronomists,andfarmersfamiliarwith cropmanagementpracticesinbufferzoneareasaroundeachRWS. Iflong-termaverageyieldssimulatedbythemaizecropmodel(see Section2.5below)usingthereportedhybridmaturity(quantified bycumulativerelativematuritydays,calledCRM)hada>20%risk offrostoccurringbeforeendofgrainfilling,CRMwasadjustedafew daysearlieruntilriskoffrostwas<20%.Hybridmaturity,quantified incumulativerelativematuritydays(CRM),wasadjusteddown.

PhenologicaldataforwheatinGermany(sowing,emergence, spike emergence, physiological maturity) were obtained from observationsoftheGermanWeatherService(DWD,www.dwd.de). Data of regional wheatarea, yields, and the mostwidely used cultivars indifferent regions wereobtainedfrom theliterature (SelingandLindhauer,2005;Selingetal.,2009), while informa-tiononmostwidelyusedseedingratewereobtainedfromwheat breedersandagronomists.Genotype-specificparametersforthe cultivarsusedwereobtainedfromtheGENCALCprogram,which iterativelychangesgenotypiccoefficientsuntilsimulationresults matchreporteddatesofphenologicalstages(Huntetal.,1993). 2.5. Cropsimulation

Crop Yp and Yw were simulated from 1990–2008 using ORYZA2000for ricein China(Boumanet al.,2001),1990–2008 usingHybridMaizeformaizeintheUS(Yangetal.,2004),andfrom 1983–1992using CERES-Wheat for wheat in Germany (Ritchie etal.,1985).Eachofthesemodelsrequiresdailyvaluesof maxi-mumandminimumtemperatureandsolarradiationtosimulate Yp,andalsorainfallforsimulationofYw.Grainyieldoutputsfrom themodelsarereportedatstandardmoisturecontentsof14,15.5, and13.5kgH2Okg−1grainforrice,maizeandwheat,respectively.

Eachofthesemodelshavebeenwelldocumentedandvalidatedin fieldexperimentswithoptimalmanagementtoallowexpressionof YporYwacrossawiderangeofenvironments(Bolingetal.,2010; BoumanandvanLaar,2006;Fengetal.,2007;Ghaffarietal.,2001;

Grassinietal.,2009;Liuetal.,2008;Singhetal.,2008;Timsina and Humphreys, 2006; Yang et al., 2006, 2004). ORYZA2000 requiresfourgenotype-specificcoefficientstodetermine pheno-logical development and final maturity, and it simulates daily canopyCO2 assimilationand total respiration.Dailynetcarbon

assimilationisestimatedbydifferenceandassimilateisallocated toroots,stems,leavesandgraindependingonstageof develop-ment(Boumanetal.,2001).HybridMaize issimilarinstructure toORYZA2000,butonlyrequiresasinglegenotype-specificinput parameter:growingdegreedaysuntilthecropreaches physiolog-icalmaturity(Yangetal.,2004).Mostofthemajorseedcompanies provide information on growing degree days to physiological maturity for theircommercial hybrids. Unlike ORYZA2000 and HybridMaize,whichsimulategrossphotosynthesisandrespiration separately,CERES-Wheatusestemperature-adjustedradiationuse efficiencytoconvertphotosyntheticallyactiveintercepted radia-tionintodrymatter(Jonesetal.,2003;Ritchieetal.,1985,1988). CERES-Wheatrequires6genotype-specificcoefficientstosimulate phenologicaldevelopmentinresponsetotemperature, photope-riod,andvernalizationrequirements.

2.6. EstimatingYporYwatregionalandnationalscales Regionalornationalestimatedyieldpotential(YP

R)isa

produc-tionweightedaveragedefinedas: YP R =



PP i



Hi

foralliintheregionandforPP

i =YiP×Hi (1)

wherePP

i isthepotentialproduction,Hiistheharvestedareawithin

100km,andYP

i istheestimatedYporYwofRWSi.AnestimateofYp

orYwwithinaRWS100kmbufferzoneisderivedfromsimulations basedontheweatherdatafromtheRWSandcropmanagement practicesintheregionasdescribedabove.Forregionswheremore thanonecropisgrowneachyearonthesamepieceofland,suchas themultiplericecroppingsystemsinChina,YP

i isdefinedastotal

potentialproductionofeachcroppingsystem(early-season, late-season,etc.)dividedbythetotalareaplantedtoallricecropping systemssimulatedatthatRWS.Thesenational,long-term aver-ageYpandYwestimateswerecomparedagainstreported5-year averagenationalyields(Ya).TheseYadataarerepresentativeat thenationalscale,notataregionalscale.Whilethismethodof up-scalingworkswellforcountriesinwhichcropsaregrowninlarge, mostlyhomogenoustopographies,asisthecaseforthecropsand countriesexaminedinthispaper,modificationofup-scalingwill berequired,suchasuseofsmallerbufferzonesandagro-climatic zones,incountrieswherecropsaregrowninregionswithgreater heterogeneityintopography.

2.7. EvaluationofrequirementsforrobustYpandYwestimation SimulationsofYw forrainfedU.S.maize andGermanwheat were evaluated using three sources of weather data: NOAA-SR1andNOAA-SR2aspreviouslydescribed,andabenchmarkdata sourcethatprovidesdailymeasurementofallparametersrequired for cropsimulation. For maize, the benchmarkdatabases were obtainedfromtheHigh PlainsRegional ClimateCenter(HPRCC, 2011),whichisanetworkofweatherstationsinthewesternCorn Belt. For wheat,benchmark data were obtainedfrom the Ger-man WeatherService (DWD,2009).For irrigated rice in China, thebenchmarkweatherdatacamefromtheChinaMeteorological Association(CMA,2009).Ineachcountry,foursiteswereselected atwhichtherewerebothabenchmarkandNOAAweatherstation withat least10 years of weather data (1990–2008 for US and China,1983–1992forGermany).SitesincludedCedarRapids,IA, Lincoln,NE, McCook,NE and GrandIsland, NE in theUSA,Bad

(6)

Hersfeld,Braunschweig,Düsseldorf,andGeisenheiminGermany, andChengdu,Chongqing,Nanning,andGushiinChina.

Toexplorehow manyyears ofweather dataarerequiredto obtainarobustestimateoflong-termaverageYporYw,we sim-ulatedYwat23sitesacrosstheU.S.CornBelt from1986–2009 andthencalculatedtheaverageYwforeachandevery consecu-tiveintervalof2,3,4...and23yearswithinthesedatasets.This gaveus21observationsof2-yearaverages,20observationsof 3-yearaverages,etc.ateachsite.Themeanandstandarddeviationof allobservationsforeachintervalwerethencomputedandusedto calculatethecoefficientofvariation(CV).

ToevaluatesensitivityofYpandYwtospecificationof manage-mentpractices,simulationswereperformedusingreportedand modifiedmanagementpracticesandcropphenologyforselected sites.For selected simulationsof riceYp in China(inHoushan, AnhuiandChengdu,Sichuan),transplantingdate(orseedingdate fordirectlyseededsystems),maturitydate(representingan ear-lierorlatermaturingcultivar),andacombinationofthetwowere adjustedby ±7dayscompared toreportedvalues. Forselected rainfedUSmaizesimulations(GrandIsland,NE,CedarRapids,IA andGrissom,IN),plantingdatewasadjustedby±7and±14days, cumulativerelativematuritydayswereadjustedby±4days, seed-ingratewasadjustedby±12,000seedsha−1andacombinationof theseadjustmentswerecomparedwithsimulationsmadeusing thereportedmanagement.Thesesiteswereselectedforthis sensi-tivityanalysisbecausetheyrepresentawiderangeofricecropping systemsforirrigatedriceinChina,andforlargedifferencesin rain-fallacrosstheU.S.CornBelt.

TheinfluenceofharvestedareacoveredbyRWSbufferzones contributing to national estimates of Yp or Yw was examined throughcalculationsofYwforUS,YpforChina,andYwforGermany byincrementallyaddingastationtothenationalestimate, follow-ingthepreviouslydescribedprotocolforselectingstations,until 50%ormoreofnationallyreportedharvestedareawascoveredby 100kmbuffers.Atissuewashowmuchareacoveragewasneeded toachieveastableestimateofYporYw.

3. Results

3.1. Evaluationofweatherdatarequirements

ForYporYwsimulatedusingbenchmarkweatherdata,NOAA temperature and rainfall coupled with derived solar radiation (NOAA-SR1)largelyoverestimatedYpandYwcomparedtoNOAA datawithNASAobservedsolarradiation(NOAA-SR2)(Fig.2).The overestimationwasgreatestforirrigatedriceinChina(+41%), mod-erateforrainfedwheatinGermany(+12%),andrelativelysmallfor U.S.rainfedmaize(+4%).WithinChina,overestimationwasgreatest inSichuan,amountainousprovincewherericeisgrowninirrigated valleysasopposedtootherprovinceswheretopographyismostly flat.TopographyinmaizeandwheatproducingareasoftheUSA andGermanyisalsomostlyflat.IntheUS CornBelt,estimated solarradiationcloselyapproximatedobservedsolarradiation, per-hapsbecausethisareaissimilartotheoneinwhichtheestimation procedurewascalibrated(Hargreaves,1994).

AnnualestimatesofYporYwwereaveragedfrom1986–2009 (from 2 to 23-year averages) and the CV of these long-term, consecutive-yearaverageestimatescompared.Long-termaverage estimateswereconsideredrobustiftheyachievedaCVlessthan 0.05.ForrainfedmaizeintheU.S.CornBelt,thenumberof consec-utiveyearsofweatherdatarequiredtoobtainaYwestimatewitha CVof0.05wasassociatedwithmeanannualrainfallacrossa tran-sectofRWSintheU.S.CornBelt(Fig.3).Atlocationswhereannual rainfallwas>900mm(>−90◦longitude),only2–8years

consecu-tiveweatherdatawereneededwhereas11–15yearswererequired

Fig.2. ComparisonofYpsimulatedwithtwosourcesofNOAAweatherdata,either usingderivedsolarradiation(NOAASR1)orobservedsolarradiationfromthe NASA-POWERdatabase(NOAA-SR2)versusabenchmarkfromweatherstationsatwhich allrequiredweatherdataweredirectlymeasured.Valuesshownrepresent19-year meansforeachoffoursitesforriceandmaizeand10-yearmeansforeachoffour sitesinGermany.

atsiteswithannualrainfall<700mm(<−96◦longitude).Ina

sim-ilarexercisefor10RWSand32systemsofirrigatedriceinChina, aCVof0.05wasachievedwithin12consecutiveyearsforallsites analyzed.

3.2. SensitivityofYptochangesincropmanagement

Relativelysmallchangesincropmanagementspecificationsas inputtoyieldsimulationshadrelativelylargeeffectsonYpofrice (Table1).The impactof managementwasgreatestin crop sys-temspracticedinAnhui wherefarmersgrowatleasttwocrops annuallyonthesamepieceofland.Forexample,delayoradvance oftransplantingdatebysevendaysresultedinYpestimatesthat were−15to+12%greaterthanreportedtransplantingdates. Sim-ilarly,increasingordecreasingcropmaturitybysevendaysledto arangeof−15to+15%insimulatedYp.Andiffarmerscombined bothdelayedoradvancedtransplantingwithricecultivarswitha longerorshortermaturity,therangeinsimulatedYpvariedbyas

Fig.3.YearsofconsecutiveweatherdatarequiredtoobtainsimulatedYwformaize intheU.S.CornBeltwithaCVof0.05.TheeasternmostlocationisYoungstown,OH whilethewesternmostisGrandIsland,NE.Averageannualrainfallfortwolocations atextremesoftheregressionlineareprovidedasreferencepointsfortheinsert, whichshowstheeast–westpatternoftheannualrainfallgradient.

(7)

muchas46%(directseeded;D.Seed)comparedtocurrentpractices. InSichuanwithonlyonericecropperyear,Ypwassomewhatless sensitivetoeffectsofchangesinmanagementwitharangeof25% inYpduetocombinedeffectsoftransplantingdateandcultivar maturity.LikeSichuan,onlyonemaizecropisplantedeachyearin theU.S.CornBelt.Changingrelativematurityby±4days(roughly equivalentto52growingdegreedays,Celsius),resultedinmore than1tha−1differenceinYw.Andalthoughtheimpactof increas-ingrelativematurityby+4daystoachievealongergrowingseason hadapositiveeffectonsimulatedYw,itincreasedtheriskoffrost occurrencebeforegrainfillingends,whichincreasedvariabilityin Yw(datanotshown).

3.3. Geospatialcoveragenecessaryforaccuratecharacterization ofnationalYpandYw

Nationalestimates of Yw for both U.S. maize and wheat in Germanywererobustwithonlyasmallportionofnational pro-ductionareacoverage.Forexample,averagesimulatedYwofU.S. rainfedmaizerangedfrom13.4to14.3tha−1astheproportionof totalrainfedmaize areacoveredbyRWSbufferzonesincreased fromabout10%to40%.Incontrast,estimatednationalYpof irri-gatedriceinChinavariedfrom12tha−1toabout8.0tha−1asthe proportionofcoveredareaincreasedfrom5%to40%oftotalrice area(Fig.4).Thisisduetothreefactors:(i)selectionprotocolfor choosingRWS,(ii)spatialdistributionofriceyieldsinChina,and (iii)widediversityofricecroppingsystemsfoundinChina,where 2oreven3ricecropsareplantedeachseason,makingwindows foroptimalsowingandharvestingrelativelynarrow.Accordingto theprotocol,thefirstRWSselectedarethoseinareaswithgreatest riceproductionareadensitywithinthe100kmbufferzonesaround candidateweatherstations.InChina,theseareasalsohavethe high-estyieldpotential,meaningthataslower-yieldingproductionareas areaddedtotheweightednationalaverage,theestimatednational Ypdeclines.Itthereforerequiredatleast40%coverageofharvested cropareatoattainconsistentnationalyieldestimatesforirrigated riceinChinaduetothelargediversityofcroppingsystems.In con-trast,stableestimatesofYporYwwereobtainedwithrelatively lowcoverageofharvestedcropareafor USmaizeandwheatin Germanywheretopography, climate,and croppingsystems are relativelyhomogeneous.Inallthreecountries,coverageof40%of harvestedareawithin100kmofRWSprovidedrobustestimatesof YporYwandestimateswerenotimprovedbyaddingadditional RWStoincreasecoverageofharvestedarea.

3.4. NationalYpandYwestimates

NationalYpestimatesforirrigatedriceinChinaandmaizeinthe USA,andrainfedYwforU.SmaizeandrainfedwheatinGermany aregiveninTable2.EachestimateisbasedonselectedRWSthat includeatleast50%oftotalproductionareaforeachcrop,which required22RWSandnearly100simulationsforYpofriceinChina (includingthedifferentrice croppingsystems),24 RWSand an equivalentnumberofsimulationsforYwofUSrainfedmaize,4 RWSandsimulationsforYpofU.S.irrigatedmaize,and6RWSand simulationsforYwofrainfedwheatinGermany.InChina, multi-plecroppingsystemsandthelocationofsomeRWSbufferzones acrossneighboringprovincesrequiredalargenumberof simula-tionsbasedonthericecroppingsystemsineachprovince.

AveragefarmyieldsofriceinChinaandwheatinGermanywere 82and80%ofestimatednationalYpandYw,respectively.In con-trast,current averageYw ofrainfedU.S maizewasonly73% of estimatedYw,whichindicatesalargerexploitableyieldgapthan forriceinChinaorwheatinGermany.Likewise,rainfedUSmaize hasalargeryieldgapthanirrigatedmaize.

Fig.4. VariationinestimatednationalYporYwmaizeintheUS,riceinChinaand wheatinGermanyasinfluencedbythenumberofreferenceweatherstations(solid blackcircles)andassociatedproportionofharvestedtotalcropareausedtosimulate YporYw(openblackcircles).RangeofsimulatedYporYwatallreferenceweather stations(RWS)areshownbytheopenredcircles.ThenumberofRWSatwhich50% coverageofnationalharvestedareaoccursisshownbytheblackdottedline.

4. Discussion

Quantitative analyses of food security and environmental changeareoftenperformedtohelpguideformulationofregional andnationalpolicies.Accuracy,reproducibility,andtransparency areessentialattributesofsuchstudiesinordertoallowchallenge byothersandtoinstillconfidenceintheresults.Theseattributes aredifficulttoachieveinestimationsofYpandYwdueto limita-tionsonqualityofweatherdataatappropriategeospatialdensities thatarecongruentwithdistributionofharvestedcroparea,scarcity ofgeospatiallyexplicitinformationoncropmanagementpractices andsoils,andlackofappropriatecropmodels.Resultsfromthe currentstudy,however,indicateitispossibletoattainrobustand transparentestimatesofnationalYporYwifcarefulattentionis given tothemore sensitivecomponentsofYp and Yw estima-tion.Themethodologyexploredwithinthispaperismostsuitable forcountriesinwhichcropsaremostlygrowninprairies,plains, largevalleys,deltas,andlowlandswheretopographyisrelatively homogenous.Itisnoteworthythatalargemajorityofglobalfood cropproductionofthemajorcerealcropsoccursincountrieswhere

(8)

thesecropsaregrownonprairies,plains,largevalleys,deltas,and lowlands.Moreover,theapproachusedherewouldbeapplicable tocountriesinwhichcropsaregrowninmorecomplex topogra-phiesalthoughprotocolsmayrequiremodification.Forexample, bufferzonesof50km,100kmand150kmwereconsideredinthe currentstudy(datanotshown).While50kmzoneswereunableto capturemorethan40%ofharvestedareawithoutalargenumber ofRWS,especiallyintheUSandChina,150kmzonescausedtoo muchoverlapamongcandidateweatherstations.Forthesereasons the100kmbufferzoneswerechosenforthisanalysis.Incountries wherecropsaregrownin moreheterogeneouslandscapesthan thoseexaminedinthispaper,smallerbufferzonesmayprovemore appropriateanditmaybenecessarytoup-scaleestimatesofYpor YwfromRWStonationallevelsusingextrapolationbasedon agro-climaticzones.Inadditiontosmallerbufferzones,beneficialfuture workwouldalsoexaminevariabilityinsoilwaterholding capac-ityanditseffectonsimulationandupscalingresults.Forthetwo countrieswhereYwwassimulated,terrainisrelativelyflatandsoil typesonwhichthemajorityofthecropisgrownarerelatively uni-formandsoonlyasingle,dominantsoiltypewasusedasinputinto modelsimulations.

EstimatesofYpandYwaresignificantlyaffectedbyseveralkey factors.Theseincludeweatherdataqualityandestimation proce-dures,specificationofplantingdateandcultivarorhybridmaturity, thenumberofyearssimulatedtoestimatelong-termaverageYp orYw,andgeospatialweightingprocedurestoarriveataggregated estimatesatprovincialornationalscales.Eachofthesefactorsaffect estimatesofYporYwtoagreaterorlesserdegreedependingon thespecificcroppingsystems,location,anddistributionofavailable dataforthecropandcountryunderinvestigation.Forexamplein U.S.rainfedmaize,variabilityinestimatesofYwdependedon rain-fallwithhighrainfallareas(>850mmyear−1)requiringonly5–7 yearsofweatherdatatoachieveaCV<0.05whilemorethan10 yearswererequiredtoachieveasimilarlowCVforestimatesof Ywinlow rainfallareas(<700mmyear−1).Thusitseemslikely thatduration ofweather datarequiredforrobustsimulation of long-termYwincreasesasrainfalldecreasesorrainfallvariability increases.ForirrigatedriceinChina,however,nocleartrendwith rainfallwasobservedbecauseirrigationeliminatesyield-reducing impactofdryyears.

Thesourceofsolarradiationdatawasalsoasensitivefactor insimulationofYporYw. Forirrigatedricein China,estimates ofsolarradiation performedpoorlyin simulatingYpin regions wheretopographywasmountainous.Althoughtheweather sta-tionsthemselvesarelocatedonflatterrain,temperatureinthese areasmaybemoreaffectedbymountainousclimate(thinnerair, rainshadowaffects,andtrappedair)ratherthanbycloudcoverand solarradiation,whichmakesderivationsofsolarradiationbased ondiurnaltemperaturerangeapoorproxyforincidentradiation (ThorntonandRunning,1999;Winslowetal.,2001).The overes-timationinnon-mountainousregionsmayresultfromparticulate airpollution,whichreducesincidentsolarradiationandincreases nighttimetemperatureandissubsequentlyhighinthe industri-alizedcentralandeasternChinawhereamajorityofriceisgrown (Menonetal.,2002).Incontrast,estimationofsolarradiationbased onthedifferenceinTminandTmaxappearstobemuchmore accu-rateforsimulationofcropYpandYwintheMidwestUSAbecause thealgorithmforthederivationwasbasedonresearchconducted inthisregion(Hargreaves,1994),andbecausethereisrelatively littleairpollution.Butgiventhelackofaccuracyinmodeledsolar radiationinareaswithvariabletopographyorwithparticulateair pollution,astandardmethodforestimatingYporYwwould prefer-ablyrelyonobservedorsatellitederivedsolarradiation(Baietal., 2010;Whiteetal.,2011).

Resultsfromthisstudyemphasizetheimportanceofspecifying currentcropmanagementpracticestoobtainrelevantestimatesof

YporYwatregionalornationalscales.Whilesomemayarguethe valueofsimulatingmaximumpossibleYporYwwithoutregardto currentmanagement practicesandcroppingsystems,such esti-mates do not account for the biophysical and socio-economic constraintsunderwhichfarmersmustoperate.Indeed,historically and globally farmers areefficientin allocatingtheirland, labor andcapitaltooptimizeprofitandreducerisk(HerdtandMandac, 1981;Hopper,1965;Sheriff,2005).Forthethreecountriesinwhich yieldgapwasevaluatedinthecurrentstudy,cropyieldsare rela-tivelyhighandfarmershaveaccesstorecommendationsaboutbest managementpractices.Therearetypicallynobarrierstofarmer adoptionofearlierorlatersowing,useoflongerorshortermaturity cultivars,differentseedingratesortransplantingpatternsif farm-ersbelievedthatsuchchangesmadeasignificantdifferenceinyield andprofit.Andinmultiplecroppingsystemsfarmersarenot seek-ingtooptimizeproductionofasinglecropbutratherofanentire systemthatincludesseveralcrops,suchasthecaseofirrigatedrice systemsinmuchofChina.Therefore,farmersarelikelytousethe mostappropriatecombinationofsowingdateandcropmaturity fortheircroppingsystemconsideringrisksand costsassociated withotheroptions.Andwhilethere mightbesmallyieldgains fromchangingplantpopulationsfromcurrentpractices,thereis nopublishedevidencedefining“optimal”populationsacrossthe widerangeofenvironmentsevaluatedinthisstudy.

Theimpactofusingappropriatespecificationofcrop manage-ment canbeseenin both localand regionalornational scales. Forexample,achangeofonly7daysinplantingdateforirrigated riceinChinaaffectedsimulatedYpbyasmuchasa1Mgha−1or more.GiventheharvestedareaofirrigatedriceinAnhuiProvince, adifferenceof1Mgha−1 represents2.7millionmetrictonstotal production,whichisequivalentto550,000haofhighqualityfarm landatcurrentaverageyieldlevelsortheannualrice consump-tionofover25millionpeopleatcurrentriceconsumptionlevels inChina(ZhaiandYang,2006).Giventhis sensitivitytosowing date,estimatesofYporYwbasedonmeanmonthlyweatherdata, orweatherdataderivedfrommonthlymeans, canleadtolarge biastowardover-orunderestimationdependingonthedifference betweenactualaveragesowingdateandtheassumed(orinferred) sowingdateatthebeginning,mid-monthorendofthemonth,to accommodateuseofmonthlymeanweatherdata.

Temperatureandcumulativeinterceptedsolarradiationduring the growing season have a large influence on Yp. Total inter-ceptedradiationis sensitivetoboth intensityofsolarradiation (MJ m−2d−1)and lengthofgrowing season.Lengthof growing seasonisgovernedbytemperatureregimeandcropmanagement withregardtoplantingdateandmaturityofthemostwidelyused cropcultivars.Densityofplantsperunitlandareaalsoinfluences amountofinterceptedsolarradiation.Therefore,estimationofYp andYwrelevanttodominantcroppingsystemsinaregionrequires specificationofplantingdate,cropcultivarmaturity,andplant den-sitytypicallyusedbyfarmersinthatregion.

Becauseofthedetailedinformationrequiredtoaccurately sim-ulatecropyieldineachregion,itisexpedienttolimitthenumber ofRWSrequiredforrobustandreproducibleestimatesofYpor Ywatanationalscale.Atthesametime,ifadequateareaisnot represented,YporYwestimatesmaynotprovideaccurate repre-sentationatanationalscale.Thisisespeciallytrueinmorecomplex croppingsystemssuchasforriceinChinawheretheinitialRWS selectedinChinawasfromaprovincewhereonlyasingle, high-yieldingricecropwasgrown,whichisnottypicalofthemajorityof riceproductioninthatcountry.Subsequentstationswerelocatedin provincesthatproducemorethanonecropperyearandforwhich theYpofeachofthesemultiplecropsismuchlower.Thenational YpestimateforChina,aswellaseveryothercropandcountry ana-lyzed,variedlittleafter40–50%ofharvestedareawaswithinthe bufferzonesofselectedRWS.Whilesizeofbufferzonesmayneed

(9)

tovarydependingonsizeofcountryforwhichnationalYporYw estimatesaredesired,achieving50%coverageofharvestedarea islikelytoproviderobustestimatesofcropproductionpotential basedonresultsfromthecurrentstudy,whichincludedcontrasting cropswitha widerangeofwaterregimesandcroppingsystem complexity.

AveragefarmyieldsofriceinChinaandwheatinGermanywere 82and80%ofestimatednationalYpandYw,respectively.In con-trast,current averageYw ofrainfedU.S maizewasonly73% of estimatedYw,whichindicatesalargerexploitableyieldgapthan forriceinChinaorwheatinGermany.BothChinaandGermany haveseenverylittleornogrowthinyieldsofriceandwheat, respec-tively,forthepastdecade,especiallycomparedtopreviousdecades (FAO,2010),despitecontinuedprogressinagriculturaltechnology andatrendtowardhigherprices.Similarly,yieldofirrigatedU.S. maizehasnotincreasedinthepastdecadeandinthisstudy cur-rentaverageyieldsareestimatedtobe77%ofYp.Theseestimates ofyieldgapforriceinChina,wheatinGermany,andirrigatedmaize intheUSAareconsistentwiththehypothesisthataveragenational yieldsbegintoplateauwhenaveragefarmyieldsreach75to85% ofYporYw(Cassmanetal.,2003;Lobelletal.,2009).Thisyield levelhasbeenproposedasthepracticallimitfornationalaverage farmyieldsbecauseitisneitherlogisticallyfeasiblenorprofitable for100%offarmerstoachieveyieldsequivalenttomaximum bio-physicalpotentialyields.Therefore,analysisoffutureglobalfood securityshouldrestrictcropproductionpotentialtosomefraction ofYpandYwtoavoid overestimatingnationaland globalfood productionpotential.

5. Conclusions

Resultsfromthisstudysuggestimprovedprotocolstoobtain robust,transparent,andreproducibleestimatesofYpandYwat local,regional,andnationalscalesforcountriesinwhichcropsare producedinareaswithrelativelyhomogeneoustopographies.Such aprotocolwouldhavethefollowingcomponents:

(1)userealweatherdatawithdailytimestepandavoidmonthly means,ordataderivedfrommonthlymeans,andderivedsolar radiation;

(2)15yearsofweatherdataforrainfedagriculture,while5years maybesufficientforestimatesofYpforfullyirrigated produc-tionsystems;

(3)50% coverageof harvested areausing a proceduretoselect regionswithgreatestcropproductiondensity;

(4)specificationofcurrentaveragesowingdate,cultivarorhybrid maturity,andplantpopulationthatgivesmaximumyieldwith thissowing dateandcultivar/hybridmaturity.Withoutwell documentedevidenceofwhatthisoptimalplantpopulation is,estimatesofYpandYwshouldbebasedoncurrent aver-ageplantpopulationusedbyfarmersinthetargetlocationand croppingsystem;

(5)anappropriateweightingproceduretoestimateYporYwat regionalornationallevelsfrompointestimatesatselected ref-erenceweatherstations(suchasup-scalingbasedonharvested areawithinbufferzonesaroundsimulationsites);and (6)anappropriatecropmodelthathasbeenvalidatedagainstfield

datainwhichcropshavebeengrowntoproduceyieldsthat approachYpandYw.

Acknowledgments

Completingtheworkreportedinthispaperwouldnothavebeen possiblewithoutinputfrom:JansBobertattheLeibnizCenterfor AgriculturalLandscapeResearchforprovidinguswithappropriate

genotypecoefficientsforWheatinGermany;theCentral Agrom-eteorologicalResearchStationoftheGermanWeatherServicein BraunschweigforprovidingdataforweatherstationsinGermany; RebeccaDavisattheUSDARMA forprovidingUSmaize county levelplantingdatedata;JinshunBaiandChinaAgricultural Uni-versitygenerouslyprovideduswithobservedsolardatacollected atspecificlocationsbytheChinaMeteorologicalAdministration; PatricioGrassiniandMartinvanIttersumfortheirsuggestionsfor themanuscript;andtheChineseagronomistswhoprovidedcrop managementdataforirrigatedriceinChina.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.fcr.2012.11.018.

References

Allen,R.G., Pereira,L.S., Raes, D.,Smith, M.,1998. CropEvapotranspiration– GuidelinesforComputingCropWaterRequirements.FoodandAgriculture Orga-nizationoftheUnitedNations,Rome,Reportnr56.

Andarzian,B.,Bakhshandeh,A.M.,Bannayan,M.,Emam,Y.,Fathi,G.,Alami,S.,2008. WheatPot:asimplemodelforspringwheatYpusingmonthlyweatherdata. Biosyst.Eng.99,487–495.

Bai,J.,Chen,X.,Dobermann,A.,Yang,H.,Cassman,K.G.,Zhang,F.,2010.Evaluation ofNASAsatellite-andmodel-derivedweatherdataforsimulationofmaizeyield potentialinChina.Agron.J.102,9–16.

Baron,C.,Balme,B.S.,Sarr,M.,Traoré,B.,Lebel,S.B.,Janicot,T.,Dingkuhn,S.M., 2005.FromGCMgridcelltoagriculturalplot:scaleissuesaffectingmodelling ofclimateimpact.Philos.Trans.R.Soc.B360,2095–2108.

Boling,A.A.,Pascual,Z.P.,Eusebio,W.H.,Gregorio,G.B.,Bouman,B.A.M.,Tuong,T.P., Redona,E.D.,2010.Progressandchallengesinidentifyingadaptivemanagement strategiesinriceproductionfortheprevailingclimate.PhilippineJ.CropSci.35, 28.

Bouman,B.A.M.,vanLaar,H.H.,2006.Descriptionandevaluationofthericegrowth modelORYZA2000undernitrogen-limitedconditions.Agric.Syst.87,249–273. Bouman,B.A.M.,Kropfff,M.J.,Tuong,T.P.,Wopereis,M.C.S.,TenBerge,H.F.M.,van Laar,H.H.,2001.Oryza2000:ModelingLowlandRice.InternationalRiceResearch Institute,LosBa ˜nos,Philippines.

Brisson,N.,Gate,P.,Gouache,D.,Charmet,G.,Oury,F.X.,Huard,F.,2010.Whyare wheatyieldsstagnatinginEurope?AcomprehensivedataanalysisforFrance. FieldCropsRes.119,201–212.

Bruinsma,J.2009.Theresourceoutlookto2050:byhowmuchdoland,waterand cropyieldsneedtoincreaseby2050?FAOexpertmeetingonhowtofeedthe worldin2050;2009/06.

Cassman,K.G.,1999.Ecologicalintensificationofcerealproductionsystems:Yp,soil quality,andprecisionagriculture.In:ProceedingsoftheNationalAcademyof Sciences(USA),pp.5952–5959.

Cassman,K.G.,Grassini,P.,vanWart,J.,2010.Cropyieldpotential,yieldtrendsand globalfoodsecurityinachangingclimate.In:Rosenzweig,C.,Hillel,D.(Eds.), HandbookofClimateChangeandAgroecosystems.ImperialCollegePress, Lon-don,p.37.

Cassman,K.G.,Dobermann,A.D.,Walters,D.,Yang,H.,2003.Meetingcerealdemand whileprotectingnaturalresourcesandimprovingenvironmentalquality.Ann. Rev.Environ.Res.28,315–358.

CMA,2009.Tmin,TmaxandIncidentSolarRadiation(1990–2008).China Meteoro-logicalAssociation,Beijing,China.

Deryng,D.,Sacks,W.J.,Barford,C.C.,Ramankutty,N.,2011.Simulatingtheeffects ofclimateandagriculturalmanagementpracticesonglobalcropyield.Global Biog.Cyc.25,18.

Doorenbos,J.,Kassam,A.H.,1979.YieldResponsetoWater.FoodandAgriculture OrganizationoftheUnitedNations,Rome,Italy,Reportnr33.

Duvick,D.N.,Cassman,K.G.,1999.Post-green-revolutiontrendsinYpoftemperate maizeinthenorth-centralUnitedStates.CropSci.39,1622–1630.

DWD,2009.Tmax,Tmin,IncidentSolarRadiation,RelativeHumidity, Precipita-tionandWindspeed(1983–1992).DeutscherWetterdienst,OffenbachamMain, Germany.

Evans,L.T.,1993.CropEvolution,AdaptationandYield.CambridgeUniversityPress, Cambridge.

FAO.2010.FAOSTAT.http://faostat.fao.org/default.aspx

Feng,L.P.,Bouman,B.A.M.,Tuong,T.P.,Cabangon,R.J.,Li,Y.L.,Lu,G.A.,Feng,Y.H., 2007.ExploringoptionstogrowriceusinglesswaterinnorthernChinausing amodellingapproach.I.Fieldexperimentsandmodelevaluation.Agric.Water Manage.88,1–13.

Fischer,G.,vanVelthuizen,H.,Shah,M.,Nachtergaele,F.O.,2002.Global Agroecolog-icalAssessmentforAgricultureinthe21stCentury:MethodologyandResults. FAOandIIASA,Laxenburg,Austria,ReportnrRR-02-02.

Gerald,C.F.,Wheatley,P.O.,1984.AppliedNumericalAnalysis.Addison-WesleyPub. Co,Reading,Mass.

(10)

Ghaffari,A.,Cook,H.F.,Lee,H.C.,2001.Simulatingwinterwheatyieldsunder tem-perateconditions:exploringdifferentmanagementscenarios.Eur.J.Agron.15, 231–240.

Godfray,H.C.J.,Beddington,J.R.,Crute,I.R.,Haddad,L.,Lawrence,D.,Muir,J.F.,Pretty, J.,Robinson,S.,Thomas,S.M.,Toulmin,C.,2010.Foodsecurity:thechallengeof feeding9billionpeople.Science327,812-818.

Grassini,P.,Yang,H.S.,Cassman,K.G.,2009.LimitstomaizeproductivityinWestern Corn-Belt:asimulationanalysisforfullyirrigatedandrainfedconditions.Agric. For.Meteorol.149,1254–1265.

Graybosch,R.A.,Peterson,C.J.,2010.Geneticimprovementinwinterwheatyields intheGreatPlainsofNorthAmerica,1959–2008.CropSci.50,1882–1890. Hargreaves,G.H.1994.Simplifiedcoefficientsforestimatingmonthlysolarradiation

inNorthAmericaandEurope.Logan,Utah:UtahStateUniversity.Reportnr DepartmentalPaper,DepartmentofBiologyandIrrigationEngineering. Hargreaves,G.H.,Samani,Z.A.,1982.Estimatingpotentialevapotranspiration.J.Irrig.

Drain.Eng.108,223–230.

Hartwich, R.,Behrens, J., Eckelmann,W., Haase, G.,Richter, A., Roeschmann, G.,Schmidt,R.,1995.BodenübersichtskartederBundesrepublikDeutschland 1:1.000.000.In:Erläuterungsheft,,KartemitErläuterungen,Textlegendeund Leitprofilen.FederalInstituteforGeosciencesandNaturalResources,Hannover, Germany.

Herdt,R.W.,Mandac,A.M.,1981.Moderntechnologyandeconomic-efficiencyof Philippinericefarmers.Econ.Dev.CulturalChange29,375–399.

Hopper,W.D.,1965.AllocationefficiencyinatraditionalIndianagriculture.J.Farm Econ.47,611–624.

HPRCC. 2011 HPRCC classic online services weather data retrieval system. <http://hprcc1.unl.edu/cgi-hpcc/home.cgi>(accessed2010August).

Hubbard,K.G.,Guttman,n.B.,You,J.,Chen,Z.,2007.AnimprovedQCprocessfor temperatureinthedailycooperativeweatherobservations.J.Atmos.Ocean. Technol.24,206–213.

Hubbard,K.G.,Goddard,S.,Sorensen,W.D.,Wells,N.,Osugi,T.T.,2005.Performance ofqualityassuranceproceduresforanappliedclimateinformationsystem.J. Atmos.Ocean.Technol.22,105–112.

Hunt,L.A.,Pararajasingham,S.,Jones,J.W.,Hoogenboom,G.,Imamura,D.T.,Ogoshi, R.M.,1993.GENCALC-softwaretofacilitatetheuseofcropmodelsforanalyzing fieldexperiments.Agron.J.85,1090–1094.

IPCC,2007.ClimateChange2007.CambridgeUniversityPress,NewYork. Jones,J.W.,Hoogenboom,G.,Porter,C.H.,Boote,K.J.,Batchelor,W.D.,Hunt,L.A.,

Wilkens,P.W.,Singh,U.,Gijsman,A.J.,Ritchie,J.T.,2003.TheDSSATcropping systemmodel.Eur.J.Agron.18,235–265.

Karl, T.R.,Trenberth, K.E., 2003. Modern global climate change. Science 302, 1719–1723.

Klingebiel,A.A.,Montgomery,P.H.,1961.Land-capabilityclassification.In: Agricul-turalHandbook.USDA,SoilConservationService,Washington,D.C,210p. Kropff,M.J.,Cassman,K.G.,vanLaar,H.H.,Peng,S.,1993.Nitrogenandyieldpotential

ofirrigatedrice.PlantSoil155–156,391–394.

Licker, R., Johnston, M., Foley, J.A., Barford, C., Kucharik, C.J., Monfreda, C., Ramankutty,N.,2010.Mindthegap:howdoclimateandagricultural manage-mentexplainthe‘yieldgap’ofcroplandsaroundtheworld.GlobalEcol.Biogeogr. 19,769–782.

Liu,Y.,Li,S.Q.,Chen,X.P.,Bai,J.S.,2008.AdaptabilityofHybrid-Maizemodeland potentialproductivityestimationofspringmaizeondryhighlandloessplateau. Trans.Chin.Soc.Agric.Eng.24,302–308.

Lobell,D.B.,Field,C.B.,2007.Globalscaleclimate-cropyieldrelationshipsandthe impactsofrecentwarming.Environ.Res.Lett.2,1–7.

Lobell,D.B.,Cassman,K.G.,Field,C.B.,2009.Cropyieldgaps:theirimportance, mag-nitudesandcauses.Annu.Rev.Environ.Resour.34,4.

Menon,S.,Hansen,J.,Nazarenko,L.,Luo,Y.,2002.Climateeffectsofblackcarbon aerosolsinChinaandIndia.Science297,2250–2253.

National Agricultural Statistical Service (NASS). 2010a. US irrigated and rainfed maize yield, harvested area and production 2004–2008. NASS Marketing and Information Services Office, Washington D.C. <http://http://www.nass.usda.gov/>(accessed2010August).

NationalAgriculturalStatisticsService(NASS).2010b.2009 USCroplandData Layer. NASS Marketing and Information Services Office, WashingtonD.C. <http://www.nass.usda.gov/research/Cropland/SARS1a.htm> (accessed 2010 August).

NationalOceanicandAtmosphericAssociation.2010.Globalsurfacesummaryof thedaydataset.<ftp://ftp.ncdc.noaa.gov/pub/data/gsod/>.

Neumann,K.,Verberg,P.H.,Stehfest,E.,Muller,C.,2010.Theyieldgapofglobalgrain production:aspatialanalysis.Agric.Syst.103,316–326.

Nonhebel,S.,1994.Theeffectsofuseofaverageinsteadofdailyweatherdatain cropgrowthsimulation-models.Agric.Syst.44,377–396.

Peng,S.,Cassman,K.G.,Virmani,S.S.,Sheehy,J.,Khush,G.S.,1999.Yieldpotential trendsoftropicalricesincethereleaseofIR8andthechallengeofincreasing riceyieldpotential.CropSci.39,1552–1559.

PenningdeVries,W.T.,Rabbinge,R.,Groot,J.J.R.,1997.Potentialandattainablefood productionandfoodsecurityindifferentregions.Philos.Trans.R.Soc.B360, 2067–2083.

Phalan,B.,Balmford,A.,Green,R.E.,Scharlemann,J.P.W.,2011.Minimizingtheharm tobiodiversityofproducingmorefoodglobally.FoodPolicy36,S62–S71. Portmann,F.T.,Siebert,S.,Döll,P.,2010.MIRCA2000–globalmonthlyirrigatedand

rainfedcropareasaroundtheyear2000:anewhigh-resolutiondatasetfor agriculturalandhydrologicalmodeling.GlobalBiog.Cyc.24,GB1011. Priya,S.,Shibasaki,R.,2001.NationalspatialcropyieldsimulationusingGIS-based

cropproductionmodel.Ecol.Model.135,113–129.

Ritchie,J.T.,Godwin,D.C.,Otter-Nacke,S.,1988.CERES-Wheat.UniversityofTexas Press,Austin,TX.

Ritchie,J.T.,Godwin,D.C.,Otter-Nacke,S.,1985.CERES-Wheat:AUserOriented WheatYieldModel:PreliminaryDocumentation.MichiganStateUniversity,MI, ReportnrAGRISTARSPublicationNo.YM-U3-04442-JSC-18892.

Rosegrant,M.W.,Ringler,C.,Zhu,T.J.,2009.Waterforagriculture:maintainingfood securityundergrowingscarcity.Ann.Rev.Env.Resour.34,205–222. Saxton,K.E.,Rawls,W.J.,Romberger,J.S.,Papendick,R.I.,1986.Estimating

general-izedsoil–watercharacteristicsfromtexture.SoilSci.Soc.Am.J.50,1031–1036. Searchinger,T.,Heimlich,R.,Houghton,R.A.,Dong,F.,Elobeid,A.,Fabiosa,J.,Tokgoz, S.,Hayes,D.,Yu,T.H.,2008.UseofU.S.croplandsforbiofuelsincreases green-housegasesthroughemissionsfromland-usechange.Science319,1238–1240. Seling,S.,Lindhauer,M.G.,2005.DieQualitätderdeutschenWeizenernte2005. PartI:quantitativesundqualitativesErgebnisinBundundLändern.Mühle+ Mischfutter146,663–671.

Seling,S.,Schwake-Anduschus,C.,Lindhauer,M.G.,2009.DieQualitätderdeutschen Weizenernte2009.PartI:quantitativesundqualitativesErgebnisinBundund Ländern.Mühle+Mischfutter146,672–681.

Sheriff,G.,2005.Efficientwaste?Whyfarmersover-applynutrientsandthe impli-cationsforpolicydesign.Rev.Agric.Econ.27,542–557.

Singh,A.K.,Tripathy,R.,Chopra,U.K.,2008.EvaluationofCERES-WheatandCropSyst modelsforwater–nitrogeninteractionsinwheatcrop.Agric.WaterManage.95, 776–786.

SoilSurveyStaff.2010.Soilsurveygeographic(SSURGO)databaseforthecornbelt. NaturalResourcesConservationService.UnitedStatesDepartmentof Agricul-tureAvailablefrom:Availableonlineathttp://soildatamart.nrcs.usda.gov

Thornton,P.E.,Running,S.W.,1999.Animprovedalgorithmforestimating inci-dentdailysolarradiationfrommeasurementsoftemperature,humidity,and precipitation.Agric.For.Meteorol.93,211–228.

Timsina,J.,Humphreys,E.,2006.PerformanceofCERES-riceandCERES-wheat mod-elsinrice-wheatsystems:areview.Agric.Syst.90,5–31.

UNFPA.2010.Stateofworldpopulation2010-fromconflictandcrisistorenewal: generations of change. United Nations Population Fund Available from:

http://www.unfpa.org/swp/2010/web/en/pdf/ENSOWP10.pdf

vanBussel,L.G.J.,Muller,C.,vanKeulen,H.,Ewert,F.,Leffelaar,P.A.,2011.Theeffect oftemporalaggregationofweatherinputdataoncropgrowthmodels’results. Agric.For.Meteorol.151,607–619.

Wang,Y.P.,Connor,D.J.,1996.Simulationofoptimaldevelopmentforspringwheat attwolocationsinsouthernAustraliaunderpresentandchangedclimate con-ditions.Agric.For.Meteorol.79,9–28.

White,J.W.,Hoogenboom,G.,Wilkens,P.W.,StackhouseJr.,P.W.,Hoell,J.M.,2011. Evaluationofsatellite-based,modeled-deriveddailysolarradiationdataforthe continentalUnitedStates.Agron.J.103,1242–1251.

Winslow,J.C.,Hunt,J.,Piper,S.C.,2001.Agloballyapplicablemodelofdailysolar irradianceestimatedfromairtemperatureandprecipitationdata.Ecol.Model. 143,227–243.

Wit,A.J.W.,Boogaard,H.L.,Diepen,C.A.,2005.Spatialresolutionofprecipitationand radiation:theeffectonregionalcropyieldforecasts.Agric.For.Meteorol.135, 156–168.

Yang,H.,Dobermann,A.,Cassman,K.G.,Walters,D.T.,2006.Features,applications, andlimitationsofthehybrid-maizesimulationmodel.Agron.J.98,737–748. Yang,H.S.,Doberman,A.,Lindquist,J.L.,Walters,D.T.,Arkebauer,T.J.,Cassman,K.G.,

2004.Hybrid-maize-amaizesimulationmodelthatcombinestwocrop model-ingapproaches.FieldCropsRes.87,131–154.

You,J.,Hubbard,K.G.,Goddard,S.,2008.Comparisonofmethodsforspatially esti-matingstationtemperaturesinaqualitycontrolsystem.Int.J.Climatol.28, 777–787.

Zhai,F.Y.,Yang,X.G.,2006.ReportontheSituationofNutritionandHealthofChinese residents:II.TheStatusofDietandNutrientUptakein2002.People’sMedical PublishingHouse,Beijing.

References

Related documents

The main aim of intergovernmental relations is to facilitate the performance of the local government in the area of service delivery; hence, the research methodology is chosen

Methyl coumalate reacts with enol ethers to form stable adducts which can be converted into isophthalates in good to excellent yields.. Alkyl vinyl ethers a fford higher yields

• Licensed Professional Engineer State of Iowa-emphasis Alarm Systems (attach copy of License) • NICET Level III or higher Fire Alarm Systems (attach copy of NICET certificate). •

For each individual farm elementary model a simple rule replaces the objective function with that, between gross margin maximization and min-max regret, performing better in terms

This paper proposes a computational form-finding method for integrating parametric origami design and acoustic engineering to find the best geometric form of a concert hall..

By accurately assessing the risk of individual cardholders, credit card issuers are able to offer better rates to more creditworthy customers and are also able to offer credit cards

With so much at stake for Maine people, Maine businesses, and the health care interests examined in this report, it is important that the money-in- politics story behind Maine’s

One may consent to the disclosure of information in which there is a reasonable expectation of privacy for one purpose, without abandoning, waiving or lessening one’s