• No results found

Chloro­[1 (di­methyl­amino­ethyl)­indenyl](tri­phenyl­phosphine)­nickel(II)

N/A
N/A
Protected

Academic year: 2020

Share "Chloro­[1 (di­methyl­amino­ethyl)­indenyl](tri­phenyl­phosphine)­nickel(II)"

Copied!
13
0
0

Loading.... (view fulltext now)

Full text

(1)

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Chloro[1-(dimethylaminoethyl)indenyl](triphenyl-phosphine)nickel(II)

Laurent F. Groux* and Davit Zargarian

DeÂpartement de Chimie, Universite de MontreÂal, CP 6128, Succ. Centre-ville, MontreÂal, QueÂbec, Canada H3C 3J7

Correspondence e-mail: laurent.groux@umontreal.ca

Key indicators

Single-crystal X-ray study

T= 223 K

Mean(C±C) = 0.005 AÊ Disorder in main residue

Rfactor = 0.060

wRfactor = 0.168

Data-to-parameter ratio = 14.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2001 International Union of Crystallography

The title compound, [5:0±Ind(CH

2)2NMe2](PPh3)NiCl or

[NiCl(C13H16N)(C18H15P)], is a precatalyst for the

polymer-ization of ole®ns. The present structure differs from a previously published polymorph of the same compound in the conformation of the amino tether (disordered over two positions with occupation factors 0.54/0.46) and in the cell parameters.

Comment

A recent review presents the many advantages and possibi-lities offered by transition-metal complexes of Cp-type ligands bearing a coordinating tether (MuÈlleret al., 2000). Our interest in the structural features and catalytic activities of the nickel indenyl complexes IndNi(PR3)X(Fontaineet al., 1998; Dubois

et al., 2001) prompted us to explore the chemistry of analogous compounds bearing aminoalkyl side chains tethered to the indenyl ligand (Groux et al., 2000). The combination of the title compound, [5:0±Ind(CH

2)2NMe2](PPh3)NiCl, (I), and

activators such as AgBF4 and MAO (methylaluminoxane)

catalyses the oligomerization of styrene and the polymeriza-tion of norbornene and ethylene (Groux & Zargarian, 2001; further publication in preparation).

The solid-state structure of (I) was determined from a single-crystal X-ray diffraction study carried out on crystals grown from a solution in Et2O/hexanes at room temperature,

and this structure analysis has already been published (Groux

et al., 2000). A new batch of crystals was obtained from a solution in CH2Cl2/hexanes at 253 K, and this paper reports a

new solid-state structure of the same product (a different polymorph), differing only in the conformation of the disor-dered amino tether. No signi®cant change in the main geometrical parameters is noted. Both crystal structures belong to space groupP1; the cell parameters for the ®rst form were: a = 9.215 (2), b = 10.228 (4), c = 16.250 (6) AÊ; = 76.60 (3),= 87.94 (2),= 65.43 (2);V= 1351.8 (8) AÊ3.

(2)

Experimental

The synthesis of (I) has been published elsewhere (Groux et al., 2000). Single crystals suitable for X-ray diffraction study were obtained from a solution of (I) in CH2Cl2/hexanes at 253 K. Crystal data

[NiCl(C13H16N)(C18H15P)]

Mr= 542.70 Triclinic,P1 a= 9.0763 (2) AÊ b= 12.8096 (3) AÊ c= 13.0012 (3) AÊ = 83.522 (2)

= 75.195 (2)

= 69.2873 (14) V= 1366.51 (5) AÊ3

Z= 2

Dx= 1.319 Mg mÿ3

Cu Kradiation Cell parameters from 1005

re¯ections = 3.5±72.0

= 2.61 mmÿ1

T= 223 (2) K Block, dark red 0.650.650.34 mm

Data collection

Bruker AXS SMART 2K/Platform diffractometer

!scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin= 0.222,Tmax= 0.411

16367 measured re¯ections

5153 independent re¯ections 4940 re¯ections withI> 2(I) Rint= 0.084

max= 72.7

h=ÿ11!11 k=ÿ15!15 l=ÿ14!15

Re®nement

Re®nement onF2

R[F2> 2(F2)] = 0.060

wR(F2) = 0.168

S= 1.07 5153 re¯ections 366 parameters

H-atom parameters constrained

w= 1/[2(Fo2) + (0.1192P)2

+ 0.404P]

whereP= (Fo2+ 2Fc2)/3

(/)max= 0.001

max= 0.69 e AÊÿ3

min=ÿ0.49 e AÊÿ3

Extinction correction:SHELXL97 Extinction coef®cient: 0.0016 (5)

Table 1

Selected geometric parameters (AÊ,).

NiÐC3 2.025 (3)

NiÐC2 2.071 (2)

NiÐC1 2.147 (2)

NiÐCl 2.1803 (7)

NiÐP 2.1817 (6)

NiÐC3A 2.314 (3)

NiÐC7A 2.349 (2)

C1ÐC2 1.399 (4)

C1ÐC7A 1.462 (3)

C1ÐC8a 1.497 (10)

C2ÐC3 1.417 (4)

C3ÐC3A 1.453 (5)

C3AÐC7A 1.422 (4)

N1aÐC9a 1.416 (11)

N1aÐC10a 1.451 (10)

N1aÐC11a 1.460 (10)

C8aÐC9a 1.541 (10)

C3ÐNiÐC1 66.10 (10)

C3ÐNiÐCl 161.82 (8)

C1ÐNiÐCl 95.94 (7)

C3ÐNiÐP 101.65 (8)

C1ÐNiÐP 165.22 (7)

ClÐNiÐP 96.53 (3)

H atoms were constrained with a riding model (SHELXL97 defaults);Uiso(H) was set at 1.5 (methyl) or 1.2 (others) timesUeqof the parent atom. Occupancy factors for the disordered amino tether were initially re®ned with ®xed displacement parameters, then were ®xed while displacement parameters were re®ned; restraints were applied to interatomic distances within the disordered group.

Data collection:SMART(Bruker, 1999); cell re®nement:SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication:SHELXL97.

Financial support from the Natural Sciences and Engi-neering Research Council of Canada and from the Fonds FCAR du MinisteÁre de l'EÂducation du QueÂbec is gratefully acknowledged.

References

Bruker (1997). SHELXTL. Release 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999).SMARTandSAINT. Versions 5.059 and 6.06. Bruker AXS Inc., Madison, Wisconsin, USA.

Dubois, M.-A., Wang, R., Zargarian, D., Tian, J., Vollmerhaus, R., Li, Z. & Collins, S. (2001).Organometallics,20, 663±666.

Fontaine, F.-G., Kadkhodazadeh, T. & Zargarian, D. (1998).Chem. Commun. pp. 1253±1254.

Groux, L. F., BeÂlanger-GarieÂpy, F., Zargarian, D. & Vollmerhaus, R. (2000). Organometallics,19, 1507±1513.

Groux, L. F. & Zargarian, D. (2001).Organometallics,20, 3811±3817. MuÈller, C., Vos, D. & Jutzi, P. (2000).J. Organomet. Chem.600, 127±143. Sheldrick, G. M. (1996).SADABS. Bruker AXS Inc., Madison, Wisconsin,

USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany.

Figure 1

(3)

supporting information

Acta Cryst. (2001). E57, m547–m548 [doi:10.1107/S1600536801017925]

Chloro[1-(dimethylaminoethyl)indenyl](triphenylphosphine)nickel(II)

Laurent F. Groux and Davit Zargarian

S1. Comment

A recent review presents the many advantages and possibilities offered by transition-metal complexes of Cp-type ligands

bearing a coordinating tether (Müller et al., 2000). Our interest in the structural features and catalytic activities of the

nickel indenyl complexes IndNi(PR3)X (Fontaine et al., 1998; Dubois et al., 2001) prompted us to explore the chemistry

of analogous compounds bearing aminoalkyl side chains tethered to the indenyl ligand (Groux et al., 2000). The

combination of the title compound, [η5:η0-Ind(CH

2)2NMe2](PPh3)NiCl, (I), and activators such as AgBF4 and MAO

(methylaluminoxane) catalyses the oligomerization of styrene and the polymerization of norbornene and ethylene (Groux

& Zargarian, 2001; further publication in preparation).

The solid-state structure of (I) was determined from a single-crystal X-ray diffraction study carried out on crystals

grown from a solution in Et2O/hexanes at room temperature, and this structure analysis has already been published

(Groux et al., 2000). A new batch of crystals was obtained from a solution in CH2Cl2/hexanes at 253 K, and this paper

reports a new solid-state structure of the same product (a different polymorph), differing only in the conformation of the

disordered amino tether. No significant change in the main geometrical parameters is noted. Both crystal structures

belong to space group P1; the cell parameters for the first form were: a = 9.215 (2), b = 10.228 (4), c = 16.250 (6) Å; α =

76.60 (3), β = 87.94 (2), γ = 65.43 (2)°; V = 1351.8 (8) Å3.

S2. Experimental

The synthesis of (I) has been published elsewhere (Groux et al., 2000). Single crystals suitable for X-ray diffraction study

were obtained from a solution of (I) in CH2Cl2/hexanes at 253 K.

S3. Refinement

H atoms were constrained with a riding model (SHELXL97 defaults); Uiso(H) was set at 1.5 (methyl) or 1.2 (others) times

Ueq of the parent atom. Occupancy factors for the disordered amino tether were initially refined with fixed displacement parameters, then were fixed while displacement parameters were refined; restraints were applied to interatomic distances

(4)
[image:4.610.123.490.74.478.2]

Figure 1

The molecular structure with ellipsoids at the 30% probability level. Disorder is not shown.

Chloro(dimethylamino-1-ethylindenyl)(triphenylphosphine)nickel(II)

Crystal data

[NiCl(C13H16N)(C18H15P)] Mr = 542.70

Triclinic, P1 a = 9.0763 (2) Å b = 12.8096 (3) Å c = 13.0012 (3) Å α = 83.522 (2)° β = 75.195 (2)° γ = 69.2873 (14)° V = 1366.51 (5) Å3

Z = 2

F(000) = 568.0 Dx = 1.319 Mg m−3

Cu radiation, λ = 1.54178 Å Cell parameters from 1005 reflections θ = 3.5–72.0°

(5)

Data collection

Bruker AXS SMART 2K/Platform diffractometer

Radiation source: normal-focus xray tube Graphite monochromator

Detector resolution: 5.5 pixels mm-1 ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) Tmin = 0.222, Tmax = 0.411

16367 measured reflections 5153 independent reflections 4940 reflections with I > 2σ(I) Rint = 0.084

θmax = 72.7°, θmin = 3.5° h = −11→11

k = −15→15 l = −14→15

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.060 wR(F2) = 0.168 S = 1.06 5153 reflections 366 parameters 9 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained w = 1/[σ2(F

o2) + (0.1192P)2 + 0.404P] where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001 Δρmax = 0.69 e Å−3 Δρmin = −0.49 e Å−3

Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 Extinction coefficient: 0.0016 (5)

Special details

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a glass fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 2 K Charged-Coupled Device (CCD) Area Detector using the program SMART and normal focus sealed tube source graphite monochromated Cu—Kα radiation. The crystal-to-detector distance was 4.908 cm, and the data collection was carried out in 512 x 512 pixel mode, utilizing 4 x 4 pixel binning. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 9.0 degree scan in 30 frames over four different parts of the reciprocal space (120 frames total). One complete sphere of data was collected, to better than 0.8 Å resolution. Upon completion of the data collection, the first 101 frames were recollected in order to improve the decay correction analysis.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)

Ni 0.22031 (4) 0.64414 (3) 0.29066 (3) 0.03511 (17)

Cl 0.04567 (8) 0.70578 (5) 0.43905 (5) 0.0496 (2)

P 0.13087 (6) 0.79216 (4) 0.19304 (4) 0.03057 (18)

C1 0.3225 (3) 0.47700 (18) 0.3491 (2) 0.0408 (5)

C2 0.4408 (3) 0.5179 (2) 0.2855 (2) 0.0473 (6)

(6)

C3 0.4069 (4) 0.5448 (2) 0.1834 (2) 0.0531 (7)

H3 0.4562 0.5848 0.1288 0.064*

C3A 0.2830 (4) 0.50005 (19) 0.1771 (2) 0.0523 (7)

C4 0.2113 (6) 0.4929 (2) 0.0952 (3) 0.0799 (13)

H4 0.2449 0.5196 0.0259 0.096*

C5 0.0914 (7) 0.4463 (3) 0.1184 (4) 0.0986 (18)

H5 0.0476 0.4372 0.0633 0.118*

C6 0.0333 (6) 0.4122 (3) 0.2207 (4) 0.0873 (14)

H6 −0.0525 0.3840 0.2343 0.105*

C7 0.0994 (4) 0.4191 (2) 0.3035 (3) 0.0608 (8)

H7 0.0589 0.3964 0.3731 0.073*

C7A 0.2272 (3) 0.46035 (18) 0.2812 (2) 0.0454 (6)

C21 0.2225 (3) 0.77885 (17) 0.05072 (18) 0.0339 (4)

C22 0.3858 (3) 0.76734 (19) 0.0155 (2) 0.0401 (5)

H22 0.4444 0.7697 0.0647 0.048*

C23 0.4627 (3) 0.7526 (2) −0.0908 (2) 0.0463 (6)

H23 0.5727 0.7455 −0.1134 0.056*

C24 0.3775 (4) 0.7482 (2) −0.1648 (2) 0.0505 (6)

H24 0.4295 0.7372 −0.2371 0.061*

C25 0.2149 (4) 0.7602 (2) −0.1296 (2) 0.0503 (6)

H25 0.1564 0.7579 −0.1789 0.060*

C26 0.1375 (3) 0.77555 (19) −0.0236 (2) 0.0411 (5)

H26 0.0270 0.7838 −0.0013 0.049*

C31 −0.0842 (2) 0.82462 (18) 0.20099 (18) 0.0348 (4)

C32 −0.1442 (3) 0.7369 (2) 0.2138 (2) 0.0453 (6)

H32 −0.0755 0.6635 0.2223 0.054*

C33 −0.3038 (3) 0.7569 (2) 0.2140 (2) 0.0521 (6)

H33 −0.3430 0.6970 0.2209 0.062*

C34 −0.4062 (3) 0.8649 (3) 0.2041 (3) 0.0553 (7)

H34 −0.5154 0.8787 0.2051 0.066*

C35 −0.3488 (3) 0.9520 (2) 0.1928 (3) 0.0619 (8)

H35 −0.4191 1.0255 0.1866 0.074*

C36 −0.1873 (3) 0.9326 (2) 0.1905 (3) 0.0501 (6)

H36 −0.1482 0.9927 0.1819 0.060*

C41 0.1485 (2) 0.92225 (17) 0.22430 (19) 0.0340 (5)

C42 0.1784 (3) 1.0002 (2) 0.1450 (2) 0.0431 (5)

H42 0.1880 0.9873 0.0734 0.052*

C43 0.1937 (4) 1.0967 (2) 0.1726 (3) 0.0544 (7)

H43 0.2149 1.1489 0.1191 0.065*

C44 0.1785 (4) 1.1170 (2) 0.2767 (3) 0.0585 (8)

H44 0.1898 1.1826 0.2942 0.070*

C45 0.1468 (4) 1.0418 (2) 0.3552 (3) 0.0580 (7)

H45 0.1343 1.0567 0.4267 0.070*

C46 0.1330 (3) 0.9434 (2) 0.3297 (2) 0.0457 (5)

H46 0.1133 0.8914 0.3837 0.055*

N1_a 0.5097 (11) 0.2517 (8) 0.4309 (12) 0.050 (6) 0.54

C8_a 0.3051 (15) 0.4416 (9) 0.4640 (8) 0.062 (6) 0.54

(7)

H8B_a 0.2784 0.5070 0.5066 0.075* 0.54

C9_a 0.4588 (7) 0.3513 (4) 0.4875 (4) 0.0500 (11) 0.54

H9A_a 0.5470 0.3822 0.4701 0.060* 0.54

H9B_a 0.4389 0.3330 0.5639 0.060* 0.54

C10_a 0.4028 (8) 0.1864 (5) 0.4645 (6) 0.0659 (15) 0.54

H10A_a 0.4040 0.1593 0.5372 0.099* 0.54

H10B_a 0.4395 0.1235 0.4182 0.099* 0.54

H10C_a 0.2935 0.2327 0.4607 0.099* 0.54

C11_a 0.6752 (8) 0.1809 (7) 0.4329 (7) 0.080 (2) 0.54

H11A_a 0.6817 0.1579 0.5058 0.120* 0.54

H11B_a 0.7482 0.2224 0.4035 0.120* 0.54

H11C_a 0.7057 0.1155 0.3909 0.120* 0.54

C18_b 0.3063 (17) 0.4404 (8) 0.4649 (6) 0.043 (5) 0.46

H18A_b 0.1939 0.4757 0.5035 0.051* 0.46

H18B_b 0.3749 0.4671 0.4949 0.051* 0.46

C19_b 0.3534 (8) 0.3141 (5) 0.4828 (5) 0.0532 (14) 0.46

H19A_b 0.3455 0.2973 0.5591 0.064* 0.46

H19B_b 0.2744 0.2895 0.4623 0.064* 0.46

N10_b 0.5121 (13) 0.2506 (9) 0.4259 (14) 0.046 (7) 0.46

C110_b 0.6372 (10) 0.2709 (8) 0.4646 (8) 0.081 (2) 0.46

H10D_b 0.6037 0.2781 0.5413 0.121* 0.46

H10E_b 0.6529 0.3393 0.4319 0.121* 0.46

H10F_b 0.7380 0.2090 0.4462 0.121* 0.46

C111_b 0.5371 (15) 0.1316 (6) 0.4428 (8) 0.088 (3) 0.46

H11D_b 0.5203 0.1135 0.5184 0.132* 0.46

H11E_b 0.6468 0.0889 0.4072 0.132* 0.46

H11F_b 0.4609 0.1132 0.4140 0.132* 0.46

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Ni 0.0312 (3) 0.0276 (2) 0.0440 (3) −0.00530 (17) −0.01116 (18) −0.00065 (16)

Cl 0.0473 (4) 0.0405 (3) 0.0519 (4) −0.0104 (3) −0.0012 (3) −0.0040 (2)

P 0.0234 (3) 0.0253 (3) 0.0436 (3) −0.0063 (2) −0.0109 (2) −0.0020 (2)

C1 0.0413 (12) 0.0266 (10) 0.0504 (14) −0.0016 (9) −0.0181 (10) −0.0001 (9)

C2 0.0344 (11) 0.0354 (12) 0.0638 (16) −0.0006 (9) −0.0137 (11) −0.0001 (10)

C3 0.0513 (15) 0.0323 (12) 0.0523 (15) 0.0049 (10) −0.0004 (11) 0.0021 (10)

C3A 0.0670 (17) 0.0268 (11) 0.0524 (15) 0.0038 (11) −0.0221 (13) −0.0041 (9)

C4 0.125 (3) 0.0361 (14) 0.064 (2) 0.0120 (18) −0.051 (2) −0.0061 (12)

C5 0.154 (4) 0.0375 (15) 0.133 (4) −0.010 (2) −0.112 (4) −0.0071 (18)

C6 0.113 (3) 0.0391 (15) 0.142 (4) −0.0259 (17) −0.091 (3) 0.0120 (18)

C7 0.0679 (18) 0.0320 (12) 0.092 (2) −0.0164 (12) −0.0400 (17) 0.0083 (12)

C7A 0.0540 (14) 0.0247 (10) 0.0566 (15) −0.0039 (10) −0.0243 (12) −0.0022 (9)

C21 0.0301 (10) 0.0268 (9) 0.0433 (12) −0.0076 (8) −0.0093 (9) −0.0004 (8)

C22 0.0329 (11) 0.0343 (11) 0.0507 (13) −0.0080 (9) −0.0104 (9) −0.0011 (9)

C23 0.0386 (12) 0.0328 (11) 0.0580 (15) −0.0071 (9) −0.0027 (10) 0.0006 (10)

C24 0.0591 (16) 0.0349 (12) 0.0462 (14) −0.0072 (11) −0.0041 (12) −0.0037 (10)

(8)

C26 0.0370 (11) 0.0374 (11) 0.0495 (14) −0.0092 (9) −0.0149 (10) −0.0038 (9)

C31 0.0250 (9) 0.0336 (10) 0.0462 (12) −0.0084 (8) −0.0102 (8) −0.0032 (8)

C32 0.0387 (12) 0.0364 (12) 0.0669 (16) −0.0155 (10) −0.0199 (11) 0.0018 (10)

C33 0.0431 (13) 0.0561 (15) 0.0700 (18) −0.0285 (12) −0.0209 (12) 0.0031 (12)

C34 0.0293 (11) 0.0659 (17) 0.0763 (19) −0.0172 (11) −0.0207 (12) −0.0008 (14)

C35 0.0307 (13) 0.0453 (14) 0.107 (3) −0.0025 (11) −0.0262 (14) −0.0009 (14)

C36 0.0314 (12) 0.0351 (12) 0.086 (2) −0.0104 (9) −0.0207 (12) 0.0017 (11)

C41 0.0214 (9) 0.0258 (9) 0.0557 (13) −0.0053 (7) −0.0130 (8) −0.0046 (8)

C42 0.0395 (12) 0.0338 (11) 0.0604 (15) −0.0118 (9) −0.0219 (11) 0.0035 (10)

C43 0.0539 (15) 0.0320 (12) 0.088 (2) −0.0181 (11) −0.0347 (14) 0.0093 (12)

C44 0.0565 (16) 0.0303 (12) 0.101 (2) −0.0134 (11) −0.0381 (16) −0.0083 (12)

C45 0.0622 (17) 0.0472 (15) 0.0708 (19) −0.0169 (13) −0.0215 (14) −0.0175 (13)

C46 0.0434 (13) 0.0381 (12) 0.0572 (15) −0.0139 (10) −0.0111 (11) −0.0082 (10)

N1_a 0.056 (10) 0.046 (9) 0.051 (8) −0.014 (7) −0.031 (6) 0.012 (5)

C8_a 0.046 (7) 0.040 (8) 0.083 (11) 0.008 (5) −0.013 (6) −0.010 (6)

C9_a 0.060 (3) 0.048 (3) 0.052 (3) −0.019 (2) −0.029 (2) 0.004 (2)

C10_a 0.068 (4) 0.055 (3) 0.079 (4) −0.021 (3) −0.018 (3) −0.013 (3)

C11_a 0.054 (4) 0.079 (5) 0.096 (5) 0.004 (3) −0.037 (3) 0.001 (4)

C18_b 0.071 (11) 0.036 (8) 0.025 (6) −0.019 (7) −0.023 (6) 0.008 (5)

C19_b 0.051 (3) 0.050 (3) 0.056 (3) −0.013 (3) −0.021 (3) 0.019 (3)

N10_b 0.042 (10) 0.042 (10) 0.048 (9) −0.001 (7) −0.014 (6) −0.011 (7)

C110_b 0.051 (4) 0.082 (6) 0.111 (7) −0.015 (4) −0.042 (4) 0.015 (5)

C111_b 0.124 (8) 0.041 (4) 0.100 (7) −0.008 (4) −0.058 (6) 0.006 (4)

Geometric parameters (Å, º)

Ni—C3 2.025 (3) C34—C35 1.368 (4)

Ni—C2 2.071 (2) C34—H34 0.940

Ni—C1 2.147 (2) C35—C36 1.391 (4)

Ni—Cl 2.1803 (7) C35—H35 0.940

Ni—P 2.1817 (6) C36—H36 0.940

Ni—C3A 2.314 (3) C41—C46 1.389 (4)

Ni—C7A 2.349 (2) C41—C42 1.396 (3)

P—C31 1.824 (2) C42—C43 1.387 (3)

P—C21 1.824 (2) C42—H42 0.940

P—C41 1.828 (2) C43—C44 1.370 (5)

C1—C2 1.399 (4) C43—H43 0.940

C1—C7A 1.462 (3) C44—C45 1.370 (5)

C1—C8_a 1.497 (10) C44—H44 0.940

C1—C18_b 1.512 (7) C45—C46 1.394 (4)

C2—C3 1.417 (4) C45—H45 0.940

C2—H2 0.940 C46—H46 0.940

C3—C3A 1.453 (5) N1_a—C9_a 1.416 (11)

C3—H3 0.940 N1_a—C10_a 1.451 (10)

C3A—C4 1.409 (4) N1_a—C11_a 1.460 (10)

C3A—C7A 1.422 (4) C8_a—C9_a 1.541 (10)

C4—C5 1.372 (7) C8_a—H8A_a 0.980

(9)

C5—C6 1.382 (8) C9_a—H9A_a 0.980

C5—H5 0.940 C9_a—H9B_a 0.980

C6—C7 1.383 (5) C10_a—H10A_a 0.970

C6—H6 0.940 C10_a—H10B_a 0.970

C7—C7A 1.392 (4) C10_a—H10C_a 0.970

C7—H7 0.940 C11_a—H11A_a 0.970

C21—C22 1.394 (3) C11_a—H11B_a 0.970

C21—C26 1.394 (3) C11_a—H11C_a 0.970

C22—C23 1.379 (4) C18_b—C19_b 1.527 (10)

C22—H22 0.940 C18_b—H18A_b 0.980

C23—C24 1.396 (4) C18_b—H18B_b 0.980

C23—H23 0.940 C19_b—N10_b 1.431 (11)

C24—C25 1.386 (4) C19_b—H19A_b 0.980

C24—H24 0.940 C19_b—H19B_b 0.980

C25—C26 1.378 (4) N10_b—C111_b 1.459 (11)

C25—H25 0.940 N10_b—C110_b 1.464 (13)

C26—H26 0.940 C110_b—H10D_b 0.970

C31—C36 1.384 (3) C110_b—H10E_b 0.970

C31—C32 1.390 (3) C110_b—H10F_b 0.970

C32—C33 1.378 (4) C111_b—H11D_b 0.970

C32—H32 0.940 C111_b—H11E_b 0.970

C33—C34 1.381 (4) C111_b—H11F_b 0.970

C33—H33 0.940

C3—Ni—C2 40.45 (11) C36—C31—C32 119.2 (2)

C3—Ni—C1 66.10 (10) C36—C31—P 122.28 (17)

C2—Ni—C1 38.68 (10) C32—C31—P 118.43 (17)

C3—Ni—Cl 161.82 (8) C33—C32—C31 120.5 (2)

C2—Ni—Cl 122.96 (8) C33—C32—H32 119.77

C1—Ni—Cl 95.94 (7) C31—C32—H32 119.77

C3—Ni—P 101.65 (8) C32—C33—C34 120.0 (2)

C2—Ni—P 135.39 (8) C32—C33—H33 120.02

C1—Ni—P 165.22 (7) C34—C33—H33 120.02

Cl—Ni—P 96.53 (3) C35—C34—C33 120.0 (2)

C3—Ni—C3A 38.42 (13) C35—C34—H34 119.99

C2—Ni—C3A 63.88 (11) C33—C34—H34 119.99

C1—Ni—C3A 62.66 (9) C34—C35—C36 120.5 (3)

Cl—Ni—C3A 136.65 (9) C34—C35—H35 119.75

P—Ni—C3A 102.66 (7) C36—C35—H35 119.75

C3—Ni—C7A 63.15 (11) C31—C36—C35 119.8 (2)

C2—Ni—C7A 62.92 (10) C31—C36—H36 120.10

C1—Ni—C7A 37.60 (9) C35—C36—H36 120.10

Cl—Ni—C7A 104.72 (7) C46—C41—C42 119.3 (2)

P—Ni—C7A 130.43 (7) C46—C41—P 118.95 (18)

C3A—Ni—C7A 35.50 (10) C42—C41—P 121.73 (18)

C31—P—C21 103.73 (10) C43—C42—C41 119.6 (3)

C31—P—C41 105.02 (10) C43—C42—H42 120.22

(10)

C31—P—Ni 110.41 (7) C44—C43—C42 120.9 (3)

C21—P—Ni 115.27 (7) C44—C43—H43 119.57

C41—P—Ni 117.71 (7) C42—C43—H43 119.57

C2—C1—C7A 108.3 (2) C45—C44—C43 120.0 (2)

C2—C1—C8_a 127.4 (6) C45—C44—H44 119.99

C7A—C1—C8_a 123.9 (6) C43—C44—H44 119.99

C2—C1—C18_b 127.1 (6) C44—C45—C46 120.4 (3)

C7A—C1—C18_b 124.1 (6) C44—C45—H45 119.82

C2—C1—Ni 67.73 (13) C46—C45—H45 119.82

C7A—C1—Ni 78.73 (13) C41—C46—C45 119.9 (3)

C8_a—C1—Ni 125.2 (4) C41—C46—H46 120.06

C18_b—C1—Ni 125.7 (4) C45—C46—H46 120.06

C1—C2—C3 108.0 (2) C9_a—N1_a—C10_a 114.1 (8)

C1—C2—Ni 73.59 (14) C9_a—N1_a—C11_a 112.7 (9)

C3—C2—Ni 68.04 (14) C10_a—N1_a—C11_a 109.5 (8)

C1—C2—H2 126.00 C1—C8_a—C9_a 113.3 (7)

C3—C2—H2 126.00 C1—C8_a—H8A_a 108.9

Ni—C2—H2 123.94 C9_a—C8_a—H8A_a 108.9

C2—C3—C3A 108.5 (2) C1—C8_a—H8B_a 108.9

C2—C3—Ni 71.51 (15) C9_a—C8_a—H8B_a 108.9

C3A—C3—Ni 81.58 (17) H8A_a—C8_a—H8B_a 107.7

C2—C3—H3 125.77 N1_a—C9_a—C8_a 114.4 (8)

C3A—C3—H3 125.77 N1_a—C9_a—H9A_a 108.7

Ni—C3—H3 113.36 C8_a—C9_a—H9A_a 108.7

C4—C3A—C7A 119.0 (3) N1_a—C9_a—H9B_a 108.7

C4—C3A—C3 134.2 (3) C8_a—C9_a—H9B_a 108.7

C7A—C3A—C3 106.7 (2) H9A_a—C9_a—H9B_a 107.6

C4—C3A—Ni 130.24 (19) N1_a—C10_a—H10A_a 109.5

C7A—C3A—Ni 73.62 (14) N1_a—C10_a—H10B_a 109.5

C3—C3A—Ni 60.00 (14) H10A_a—C10_a—H10B_a 109.5

C5—C4—C3A 118.6 (4) N1_a—C10_a—H10C_a 109.5

C5—C4—H4 120.7 H10A_a—C10_a—H10C_a 109.5

C3A—C4—H4 120.7 H10B_a—C10_a—H10C_a 109.5

C4—C5—C6 121.9 (3) N1_a—C11_a—H11A_a 109.5

C4—C5—H5 119.1 N1_a—C11_a—H11B_a 109.5

C6—C5—H5 119.1 H11A_a—C11_a—H11B_a 109.5

C5—C6—C7 121.1 (4) N1_a—C11_a—H11C_a 109.5

C5—C6—H6 119.5 H11A_a—C11_a—H11C_a 109.5

C7—C6—H6 119.5 H11B_a—C11_a—H11C_a 109.5

C6—C7—C7A 118.3 (4) C1—C18_b—C19_b 113.7 (7)

C6—C7—H7 120.8 C1—C18_b—H18A_b 108.8

C7A—C7—H7 120.84 C19_b—C18_b—H18A_b 108.8

C7—C7A—C3A 120.9 (3) C1—C18_b—H18B_b 108.8

C7—C7A—C1 131.7 (3) C19_b—C18_b—H18B_b 108.8

C3A—C7A—C1 107.4 (2) H18A_b—C18_b—H18B_b 107.7

C7—C7A—Ni 129.10 (19) N10_b—C19_b—C18_b 115.2 (8)

C3A—C7A—Ni 70.88 (14) N10_b—C19_b—H19A_b 108.5

(11)

C22—C21—C26 118.7 (2) N10_b—C19_b—H19B_b 108.5

C22—C21—P 118.54 (18) C18_b—C19_b—H19B_b 108.5

C26—C21—P 122.70 (18) H19A_b—C19_b—H19B_b 107.5

C23—C22—C21 120.9 (2) C19_b—N10_b—C111_b 109.9 (10)

C23—C22—H22 119.54 C19_b—N10_b—C110_b 111.3 (10)

C21—C22—H22 119.54 C111_b—N10_b—C110_b 106.6 (11)

C22—C23—C24 120.2 (2) N10_b—C110_b—H10D_b 109.5

C22—C23—H23 119.91 N10_b—C110_b—H10E_b 109.5

C24—C23—H23 119.91 H10D_b—C110_b—H10E_b 109.5

C25—C24—C23 118.8 (3) N10_b—C110_b—H10F_b 109.5

C25—C24—H24 120.60 H10D_b—C110_b—H10F_b 109.5

C23—C24—H24 120.60 H10E_b—C110_b—H10F_b 109.5

C26—C25—C24 121.2 (3) N10_b—C111_b—H11D_b 109.5

C26—C25—H25 119.41 N10_b—C111_b—H11E_b 109.5

C24—C25—H25 119.41 H11D_b—C111_b—H11E_b 109.5

C25—C26—C21 120.2 (2) N10_b—C111_b—H11F_b 109.5

C25—C26—H26 119.90 H11D_b—C111_b—H11F_b 109.5

C21—C26—H26 119.90 H11E_b—C111_b—H11F_b 109.5

C3—Ni—P—C31 124.71 (13) C5—C6—C7—C7A −0.5 (5)

C2—Ni—P—C31 150.88 (14) C6—C7—C7A—C3A 3.3 (4)

C1—Ni—P—C31 91.9 (3) C6—C7—C7A—C1 −179.4 (3)

Cl—Ni—P—C31 −55.50 (8) C6—C7—C7A—Ni 93.0 (4)

C3A—Ni—P—C31 85.38 (12) C4—C3A—C7A—C7 −2.6 (4)

C7A—Ni—P—C31 60.19 (13) C3—C3A—C7A—C7 175.6 (2)

C3—Ni—P—C21 7.60 (13) Ni—C3A—C7A—C7 124.8 (2)

C2—Ni—P—C21 33.77 (14) C4—C3A—C7A—C1 179.5 (2)

C1—Ni—P—C21 −25.2 (3) C3—C3A—C7A—C1 −2.3 (3)

Cl—Ni—P—C21 −172.61 (8) Ni—C3A—C7A—C1 −53.09 (16)

C3A—Ni—P—C21 −31.72 (12) C4—C3A—C7A—Ni −127.4 (2)

C7A—Ni—P—C21 −56.92 (13) C3—C3A—C7A—Ni 50.77 (16)

C3—Ni—P—C41 −114.78 (13) C2—C1—C7A—C7 178.1 (3)

C2—Ni—P—C41 −88.61 (14) C8_a—C1—C7A—C7 5.0 (6)

C1—Ni—P—C41 −147.6 (3) C18_b—C1—C7A—C7 5.6 (6)

Cl—Ni—P—C41 65.01 (8) Ni—C1—C7A—C7 −120.1 (3)

C3A—Ni—P—C41 −154.10 (12) C2—C1—C7A—C3A −4.3 (3)

C7A—Ni—P—C41 −179.30 (12) C8_a—C1—C7A—C3A −177.4 (5)

C3—Ni—C1—C2 38.89 (18) C18_b—C1—C7A—C3A −176.9 (5)

Cl—Ni—C1—C2 −138.18 (15) Ni—C1—C7A—C3A 57.45 (17)

P—Ni—C1—C2 74.4 (3) C2—C1—C7A—Ni −61.77 (15)

C3A—Ni—C1—C2 81.53 (18) C8_a—C1—C7A—Ni 125.1 (5)

C7A—Ni—C1—C2 115.3 (2) C18_b—C1—C7A—Ni 125.7 (6)

C3—Ni—C1—C7A −76.46 (18) C3—Ni—C7A—C7 −151.4 (3)

C2—Ni—C1—C7A −115.3 (2) C2—Ni—C7A—C7 163.0 (3)

Cl—Ni—C1—C7A 106.47 (15) C1—Ni—C7A—C7 123.6 (3)

P—Ni—C1—C7A −41.0 (4) Cl—Ni—C7A—C7 43.1 (3)

C3A—Ni—C1—C7A −33.81 (16) P—Ni—C7A—C7 −69.1 (3)

(12)

C2—Ni—C1—C8_a 120.9 (8) C3—Ni—C7A—C3A −36.63 (18)

Cl—Ni—C1—C8_a −17.3 (7) C2—Ni—C7A—C3A −82.27 (18)

P—Ni—C1—C8_a −164.7 (7) C1—Ni—C7A—C3A −121.6 (2)

C3A—Ni—C1—C8_a −157.6 (8) Cl—Ni—C7A—C3A 157.90 (15)

C7A—Ni—C1—C8_a −123.7 (8) P—Ni—C7A—C3A 45.67 (19)

C3—Ni—C1—C18_b 159.5 (7) C3—Ni—C7A—C1 85.01 (18)

C2—Ni—C1—C18_b 120.6 (7) C2—Ni—C7A—C1 39.37 (16)

Cl—Ni—C1—C18_b −17.6 (7) Cl—Ni—C7A—C1 −80.46 (15)

P—Ni—C1—C18_b −165.0 (7) P—Ni—C7A—C1 167.31 (12)

C3A—Ni—C1—C18_b −157.9 (7) C3A—Ni—C7A—C1 121.6 (2)

C7A—Ni—C1—C18_b −124.1 (7) C31—P—C21—C22 172.27 (17)

C7A—C1—C2—C3 9.4 (3) C41—P—C21—C22 62.89 (19)

C8_a—C1—C2—C3 −177.8 (5) Ni—P—C21—C22 −66.91 (18)

C18_b—C1—C2—C3 −178.3 (6) C31—P—C21—C26 −10.2 (2)

Ni—C1—C2—C3 −59.63 (16) C41—P—C21—C26 −119.57 (19)

C7A—C1—C2—Ni 69.01 (16) Ni—P—C21—C26 110.63 (18)

C8_a—C1—C2—Ni −118.2 (5) C26—C21—C22—C23 −0.2 (3)

C18_b—C1—C2—Ni −118.7 (6) P—C21—C22—C23 177.43 (17)

C3—Ni—C2—C1 −117.8 (2) C21—C22—C23—C24 −0.4 (4)

Cl—Ni—C2—C1 52.23 (18) C22—C23—C24—C25 0.8 (4)

P—Ni—C2—C1 −159.52 (12) C23—C24—C25—C26 −0.4 (4)

C3A—Ni—C2—C1 −78.12 (17) C24—C25—C26—C21 −0.2 (4)

C7A—Ni—C2—C1 −38.26 (15) C22—C21—C26—C25 0.5 (3)

C1—Ni—C2—C3 117.8 (2) P—C21—C26—C25 −176.99 (18)

Cl—Ni—C2—C3 170.00 (15) C21—P—C31—C36 −85.9 (2)

P—Ni—C2—C3 −41.7 (2) C41—P—C31—C36 22.2 (2)

C3A—Ni—C2—C3 39.66 (17) Ni—P—C31—C36 150.1 (2)

C7A—Ni—C2—C3 79.51 (18) C21—P—C31—C32 91.5 (2)

C1—C2—C3—C3A −10.9 (3) C41—P—C31—C32 −160.4 (2)

Ni—C2—C3—C3A −74.07 (18) Ni—P—C31—C32 −32.6 (2)

C1—C2—C3—Ni 63.18 (17) C36—C31—C32—C33 1.2 (4)

C1—Ni—C3—C2 −37.22 (15) P—C31—C32—C33 −176.2 (2)

Cl—Ni—C3—C2 −27.8 (4) C31—C32—C33—C34 −1.6 (4)

P—Ni—C3—C2 151.48 (15) C32—C33—C34—C35 0.7 (5)

C3A—Ni—C3—C2 −112.8 (2) C33—C34—C35—C36 0.5 (5)

C7A—Ni—C3—C2 −78.89 (16) C32—C31—C36—C35 0.0 (4)

C2—Ni—C3—C3A 112.8 (2) P—C31—C36—C35 177.3 (3)

C1—Ni—C3—C3A 75.55 (15) C34—C35—C36—C31 −0.8 (5)

Cl—Ni—C3—C3A 84.9 (4) C31—P—C41—C46 89.50 (19)

P—Ni—C3—C3A −95.75 (14) C21—P—C41—C46 −162.09 (18)

C7A—Ni—C3—C3A 33.88 (14) Ni—P—C41—C46 −33.8 (2)

C2—C3—C3A—C4 −174.2 (3) C31—P—C41—C42 −91.06 (19)

Ni—C3—C3A—C4 118.6 (3) C21—P—C41—C42 17.3 (2)

C2—C3—C3A—C7A 8.1 (3) Ni—P—C41—C42 145.65 (16)

Ni—C3—C3A—C7A −59.11 (18) C46—C41—C42—C43 0.6 (3)

C2—C3—C3A—Ni 67.21 (17) P—C41—C42—C43 −178.79 (19)

C3—Ni—C3A—C4 −124.5 (4) C41—C42—C43—C44 −0.6 (4)

(13)

C1—Ni—C3A—C4 150.2 (4) C43—C44—C45—C46 1.2 (5)

Cl—Ni—C3A—C4 82.4 (4) C42—C41—C46—C45 0.2 (4)

P—Ni—C3A—C4 −31.6 (4) P—C41—C46—C45 179.7 (2)

C7A—Ni—C3A—C4 114.4 (4) C44—C45—C46—C41 −1.2 (4)

C3—Ni—C3A—C7A 121.1 (2) C2—C1—C8_a—C9_a −55.5 (11)

C2—Ni—C3A—C7A 79.29 (17) C7A—C1—C8_a—C9_a 116.3 (9)

C1—Ni—C3A—C7A 35.78 (15) C18_b—C1—C8_a—C9_a 5 (100)

Cl—Ni—C3A—C7A −32.0 (2) Ni—C1—C8_a—C9_a −143.0 (6)

P—Ni—C3A—C7A −146.08 (14) C10_a—N1_a—C9_a—C8_a −69.4 (12)

C2—Ni—C3A—C3 −41.77 (16) C11_a—N1_a—C9_a—C8_a 164.9 (9)

C1—Ni—C3A—C3 −85.28 (17) C1—C8_a—C9_a—N1_a −59.0 (13)

Cl—Ni—C3A—C3 −153.08 (14) C2—C1—C18_b—C19_b −107.2 (8)

P—Ni—C3A—C3 92.85 (15) C7A—C1—C18_b—C19_b 64.0 (10)

C7A—Ni—C3A—C3 −121.1 (2) C8_a—C1—C18_b—C19_b 133 (100)

C7A—C3A—C4—C5 −0.9 (4) Ni—C1—C18_b—C19_b 165.2 (5)

C3—C3A—C4—C5 −178.4 (3) C1—C18_b—C19_b—N10_b 55.0 (13)

Ni—C3A—C4—C5 −93.6 (4) C18_b—C19_b—N10_b—C111_b −175.4 (9)

C3A—C4—C5—C6 3.7 (5) C18_b—C19_b—N10_b—C110_b 66.9 (13)

Figure

Figure 1

References

Related documents

Flores-Lagunes and Schnier, (2012) combine the GMM approach in Pinkse and Slade, (1998) and Kelejian and Prucha, (1998) and suggest a GMM method for a sample selection model that has

Since features related to the source-side lan- guage model were chosen in each direction, using the source-side language model is useful for de- coding paraphrase lattices.. We

We tackle the previously unaddressed problem of unsupervised determination of the optimal morphological segmentation for statistical machine translation (SMT) and propose a

tic dominance and develop the theory of multivariate SD for the preferences of risk averters.. and risk seekers

Bouncing back from extreme weather events: Some preliminary findings on resilience barriers facing small and medium-sized enterprises.. Halkos, George and

For an indicative case of a Chenery-Moses model with 5 activities per region, when plotting the number of regions versus the number of trading relationships per trader.. and the

More notably, though, Figure 4 shows that the system using the grounded language model performed better than the system using the hand generated closed captioning

The main objective of this book is to persuade his fellow heterodox economists and the future generation of heterodox economists that it is possible to reproduce heterodox economics,