The chloroform solvated uranyl complex of p tert butyl­hexa­homo­tri­oxa­calix[3]arene with the chiral counter ion (S) (–) N,α di­methyl­benzyl­ammonium

13 

(1)metal-organic papers The chloroform-solvated uranyl complex of p-tertbutylhexahomotrioxacalix[3]arene with the chiral counter-ion (S)-(–)-N,a-dimethylbenzylammonium. Acta Crystallographica Section E. Structure Reports Online ISSN 1600-5368. Bernardo Mascia and Pierre Thue´ryb* a. Dipartimento di Chimica and IMC-CNR Sezione Meccanismi di Reazione, Universita` ‘La Sapienza’, Box 34, Roma 62, Piazzale Aldo Moro 5, 00185 Roma, Italy, and bCEA/Saclay, DSM/DRECAM/SCM (CNRS URA 331), Baˆtiment 125, 91191 Gif-sur-Yvette, France Correspondence e-mail: thuery@drecam.cea.fr. Key indicators Single-crystal X-ray study T = 100 K ˚ Mean (C–C) = 0.007 A R factor = 0.033 wR factor = 0.065 Data-to-parameter ratio = 16.1. In the title compound, (S)-()-N,-dimethylbenzylammonium dioxo[7,15,23-tri-tert-butyl-3,11,19-trioxatetracyclo[19.3.1.15,9.113,17]heptacosa-1(25),5,7,9(27),13,15,17(26),21,23-nonaene-25,26,27-triolato]uranate(VI) chloroform solvate, (C9H14N)[UO2(C36H45O6)]CHCl3, the uranyl ion is bound to the three phenoxide groups and two of the ether groups of the deprotonated p-tert-butylhexahomotrioxacalix[3]arene molecule in a cone conformation, giving a mono-anionic complex. The chiral counter-ion, (S)-()-N,dimethylbenzylammonium, is included in the cavity and involved in both a hydrogen bond with the uranyl oxo group directed inwards and an N—H   interaction with one of the aromatic rings.. Received 3 October 2005 Accepted 5 October 2005 Online 15 October 2005. Comment. For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.. Complexation of the uranyl ion with p-tert-butylhexahomotrioxacalix[3]arene (Masci, 2001; Shokova & Kovalev, 2004) in the presence of triethylamine or DABCO (1,4-diazabicyclo[2.2.2]octane) has been reported previously to give the first example of trigonal coordination geometry for this ion (Thue´ry et al., 1999; Thue´ry, Nierlich, Harrowfield & Ogden, 2001) [another example of such a geometry, with amide ligands, was described later (Burns et al., 2000)]. This ligand comprises two sets of potential donor atoms, phenoxides and ethers, which are alternately located in two nearly parallel planes. We have shown that the slight conformational changes that occur when the nature of the ammonium counter-ion is changed lead to tetragonal or pentagonal bipyramidal coordination geometries, the extra donor groups being one or two ether O atoms, respectively (Masci et al., 2002a,b). The amines used in this work were either primary (butylamine), secondary (dibutylamine, 4-methylpiperidine) or tertiary (tripropylamine, [2.2.2]cryptand). We report here the structure of the complex, (I), obtained with the chiral secondary amine (S)()-N,-dimethylbenzylamine. Complexation of a chiral ammonium ion in a capsule built from a derivative of hexahomotrioxacalix[3]arene has previously been reported (Ikeda et al., 2001).. # 2005 International Union of Crystallography Printed in Great Britain – all rights reserved. m2278. Masci and Thue´ry. . (C9H14N)[UO2(C36H45O6)]CHCl3. doi:10.1107/S1600536805031867. Acta Cryst. (2005). E61, m2278–m2280.

(2) metal-organic papers. Figure 1 A view of (I), with a partial atom-numbering scheme. The H atoms not involved in intermolecular interactions have been omitted. The hydrogen bonds and N—H   interaction are shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.. The asymmetric unit in (I) (Fig. 1) contains one complex anion, one protonated (S)-()-N,-dimethylbenzylammonium counter-ion and one chloroform molecule. As in the previous uranyl complexes with this macrocycle, the uranyl ion is located at the centre of the homooxacalixarene in the cone conformation. It is bound to the three phenoxide atoms ˚, O1, O3 and O5 with a mean U—O bond length of 2.228 (6) A as usual with this macrocycle, and to ether atoms O2 and O4, ˚ , the third ether with a mean U—O bond length of 2.81 (3) A ˚ . The atom, O6, being non-bonding, at a distance of 3.688 (5) A molecule thus possesses a pseudo-symmetry plane containing the uranyl ion, phenoxide atom O3 and ether atom O6. The U—Oether bond lengths are in good agreement with the value ˚ found in the analogous complex with the 4of 2.818 (6) A methylpiperidinium cation, in which two ether groups are coordinated. The U—Oether bond lengths in this family of compounds are larger than those observed in the dinuclear uranyl complex of p-methyloctahomotetraoxacalix[4]arene ˚ ] (Thue´ry, Nierlich, Vicens & Masci, [mean value 2.67 (2) A 2001) or in the six-coordinated uranyl complexes with crown˚ ] (Thue´ry et al., 1995). The U atom envirethers [2.50–2.58 A onment in (I) is thus a very distorted pentagonal bipyramid, with atoms O2 and O4 displaced by as much as 1.114 (6) and ˚ , respectively, from the plane defined by the three 1.240 (6) A phenoxide O atoms, the U atom being displaced by ˚ from the same plane, on the same side as the ether 0.175 (2) A ligands. The Oether—U—Ooxo angles are thus far from 90 , with extreme values of 70.76 (16) and 111.05 (16) for O4. The Ophenoxide—U—Ophenoxide angles are larger by about 25 when the O atoms are separated by a coordinated ether bridge. The three phenol rings make dihedral angles of 50.43 (15), 59.66 (10) and 52.38 (16) with the phenoxide plane, these values being characteristic of a rather deep cavity, as in the previous compounds. The C—O—C—C torsion angles defined by the ether bridges are all anti, in the range 152.9 (6)– 168.5 (6) , typical of nearly planar bridges. However, as previously observed (Masci et al., 2002a), the coordinating Acta Cryst. (2005). E61, m2278–m2280. ether O atoms are more displaced than the non-coordinating one with respect to the mean plane defined by the four adjoining C atoms, with values of 0.425 (5), 0.369 (5) and ˚ for O2, O4 and O6, respectively, so that the former 0.230 (5) A come closer to the central metal ion, O6 being by contrast pushed away from it. The (S)-()-N,-dimethylbenzylammonium counter-ion is included in the complex cavity and involved in a strong hydrogen bond, with the uranyl oxo atom O8 directed inwards (Table 2), which was also observed with some, but not all, of the ammonium ions investigated previously (in some cases, the hydrogen bonds involve ether or phenoxide groups and/or are mediated by a solvent molecule, whereas, with mono- or dihydro[2.2.2]cryptand, no hydrogen bond is present). The second H atom linked to N1 is likely involved in an N—H   interaction with the aromatic ring corresponding to phenoxide atom O1 (Table 2). The chloroform solvent molecule is located out of the cavity and is likely involved in a bifurcated hydrogen bond with oxo atom O7 and phenoxide atom O5 (Table 2). No other significant C—H   or – interaction is present in the packing.. Experimental p-tert-Butylhexahomotrioxacalix[3]arene was prepared as described in the literature (Dhawan & Gutsche, 1983). For the synthesis of (I), a solution of UO2(NO3)26H2O (15 mg, 0.030 mmol) in MeOH (3 ml) was added dropwise to a stirred and heated mixture of p-tert-butylhexahomotrioxacalix[3]arene (17 mg, 0.029 mmol) and (S)-(–)-N,dimethylbenzylamine (50 mg, 0.37 mmol) in MeOH (5 ml) and CHCl3 (4 ml). The orange solution was further stirred and heated for 10 min, and dark-orange crystals formed in a few days from the partly evaporated solution. Crystal data (C9H14N)[UO2(C36H45O6)]CHCl3 Mr = 1099.33 Orthorhombic, P21 21 21 ˚ a = 9.6605 (3) A ˚ b = 21.2825 (10) A ˚ c = 22.8491 (11) A ˚3 V = 4697.8 (3) A Z=4 Dx = 1.554 Mg m3. Mo K radiation Cell parameters from 82013 reflections  = 2.6–25.7  = 3.68 mm1 T = 100 (2) K Platelet, translucent dark orange 0.14  0.12  0.04 mm. Data collection Nonius KappaCCD area-detector diffractometer ’ and ! scans Absorption correction: part of the refinement model (F) (DELABS in PLATON; Spek, 2003) Tmin = 0.527, Tmax = 0.863. 82013 measured reflections 8750 independent reflections 8052 reflections with I > 2(I) Rint = 0.062 max = 25.7 h = 11 ! 11 k = 25 ! 25 l = 25 ! 27. Refinement Refinement on F 2 R[F 2 > 2(F 2)] = 0.033 wR(F 2) = 0.065 S = 1.02 8750 reflections 543 parameters H-atom parameters constrained. Masci and Thue´ry. . w = 1/[ 2(Fo2) + (0.0114P)2 + 4.555P] where P = (Fo2 + 2Fc2)/3 (/)max = 0.003 ˚ 3 max = 0.80 e A ˚ 3 min = 0.83 e A Absolute structure: Flack (1983), 4337 Friedel pairs Flack parameter: 0.010 (5). (C9H14N)[UO2(C36H45O6)]CHCl3. m2279.

(3) metal-organic papers Table 1 ˚ ,  ). Selected geometric parameters (A U—O1 U—O2 U—O3 U—O4. 2.224 2.778 2.237 2.833. O1—U—O2 O2—U—O3 O1—U—O3 O3—U—O4 O4—U—O5 O3—U—O5 O5—U—O1 O7—U—O8 O1—U—O7. 68.60 67.48 128.72 66.46 68.89 126.69 102.69 175.44 86.83. (3) (4) (4) (3). U—O5 U—O7 U—O8. (12) (12) (14) (12) (11) (13) (13) (16) (14). 2.224 (4) 1.791 (3) 1.795 (3). O1—U—O8 O2—U—O7 O2—U—O8 O3—U—O7 O3—U—O8 O4—U—O7 O4—U—O8 O5—U—O7 O5—U—O8. 90.60 109.17 73.29 83.68 100.86 111.00 70.82 86.40 90.48. (13) (14) (13) (15) (14) (13) (13) (15) (14). Table 2 ˚ ,  ). Hydrogen-bond geometry (A D—H  A. D—H. H  A. D  A. D—H  A. N1—H1A  O8 N1—H1B  Cg C46—H46  O5 C46—H46  O7. 0.90 0.90 0.98 0.98. 1.91 2.68 2.31 2.36. 2.781 3.460 3.132 3.208. 161 146 141 145. (6) (4) (7) (8). The H atoms bound to N1 were found in a difference Fourier map and treated as riding atoms with an isotropic displacement parameter equal to 1.2Ueq(N1). All other H atoms were introduced at calculated positions as riding atoms, with C—H bond lengths of 0.93 (CHarom), ˚ (CH3), and isotropic displacement 0.98 (CH), 0.97 (CH2) or 0.96 A parameters equal to 1.2Ueq (CH and CH2) or 1.5Ueq (CH3) of the parent atom. Data collection: COLLECT (Hooft, 1998); cell refinement: HKL2000 (Otwinowski & Minor, 1997); data reduction: HKL2000;. m2280. Masci and Thue´ry. . (C9H14N)[UO2(C36H45O6)]CHCl3. program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL (Bruker, 1999); PLATON (Spek, 2003).. References Bruker (1999). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA. Burns, C. J., Clark, D. L., Donohoe, R. J., Duval, P. B., Scott, B. L. & Tait, C. D. (2000). Inorg. Chem. 39, 5464–5468. Dhawan, B. & Gutsche, C. D. (1983). J. Org. Chem. 48, 1536–1539. Flack, H. D. (1983). Acta Cryst. A39, 876–881. Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Ikeda, A., Udzu, H., Zhong, Z., Shinkai, S., Sakamoto, S. & Yamaguchi, K. (2001). J. Am. Chem. Soc. 123, 3872–3877. Masci, B. (2001). Calixarenes 2001, edited by Z. Asfari, V. Bo¨hmer, J. M. Harrowfield & J. Vicens, pp. 235–249. Dordrecht: Kluwer Academic Publishers. Masci, B., Nierlich, M. & Thue´ry, P. (2002a). New J. Chem. 26, 120–128. Masci, B., Nierlich, M. & Thue´ry, P. (2002b). New J. Chem. 26, 766–774. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany. Shokova, E. A. & Kovalev, V. V. (2004). Russ. J. Org. Chem. 40, 607–643, 1547– 1571. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Thue´ry, P., Keller, N., Lance, M., Vigner, J. D. & Nierlich, M. (1995). New J. Chem. 19, 619–625. Thue´ry, P., Nierlich, M., Harrowfield, J. & Ogden, M. (2001). Calixarenes 2001, edited by Z. Asfari, V. Bo¨hmer, J. M. Harrowfield & J. Vicens, pp. 561–582. Dordrecht: Kluwer Academic Publishers. Thue´ry, P., Nierlich, M., Masci, B., Asfari, Z. & Vicens, J. (1999). J. Chem. Soc. Dalton Trans. pp. 3151–3152. Thue´ry, P., Nierlich, M., Vicens, J. & Masci, B. (2001). J. Chem. Soc. Dalton Trans. pp. 867–874.. Acta Cryst. (2005). E61, m2278–m2280.

(4) supporting information. supporting information Acta Cryst. (2005). E61, m2278–m2280. [https://doi.org/10.1107/S1600536805031867]. The chloroform-solvated uranyl complex of p-tert-butylhexahomotrioxacalix[3]arene with the chiral counter-ion (S)-(–)-N,α-dimethylbenzylammonium Bernardo Masci and Pierre Thuéry (S)-(-)-N,α-dimethylbenzylammonium dioxo[7,15,23-tri-tert-butyl-3,11,19-trioxatetracyclo[19.3.1.15,9.113,17] heptacosa-1(25),5,7,9(27),13,15,17 (26),21,23-nonaene-25,26,27-triolato]uranium trichloromethane solvate Crystal data (C9H14N)[UO2(C36H45O6)]·CHCl3 Mr = 1099.33 Orthorhombic, P212121 Hall symbol: P 2ac 2ab a = 9.6605 (3) Å b = 21.2825 (10) Å c = 22.8491 (11) Å V = 4697.8 (3) Å3 Z=4. F(000) = 2200 Dx = 1.554 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 82013 reflections θ = 2.6–25.7° µ = 3.68 mm−1 T = 100 K Platelet, translucent dark orange 0.14 × 0.12 × 0.04 mm. Data collection Nonius KappaCCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator two φ and one ω scans with 2° steps Absorption correction: part of the refinement model (ΔF) (DELABS in PLATON; Spek, 2003) Tmin = 0.527, Tmax = 0.863. 82013 measured reflections 8750 independent reflections 8052 reflections with I > 2σ(I) Rint = 0.062 θmax = 25.7°, θmin = 2.6° h = −11→11 k = −25→25 l = −25→27. Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.033 wR(F2) = 0.065 S = 1.02 8750 reflections 543 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map. Acta Cryst. (2005). E61, m2278–m2280. Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0114P)2 + 4.555P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.003 Δρmax = 0.80 e Å−3 Δρmin = −0.83 e Å−3 Absolute structure: Flack (1983), 3779 Friedel pairs Absolute structure parameter: −0.010 (5). sup-1.

(5) supporting information Special details Experimental. crystal-to-detector distance 30 mm Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2). U O1 O2 O3 O4 O5 O6 O7 O8 C1 C2 C3 C4 H4 C5 C6 H6 C7 C8 H8A H8B H8C C9 H9A H9B H9C C10 H10A H10B H10C C11 H11A H11B C12. x. y. z. Uiso*/Ueq. 0.270765 (17) 0.3555 (3) 0.3296 (4) 0.1384 (4) 0.2648 (4) 0.2990 (4) 0.5806 (4) 0.1103 (3) 0.4380 (3) 0.5930 (4) 0.4776 (6) 0.4931 (5) 0.6212 (5) 0.6296 0.7372 (6) 0.7209 (6) 0.7967 0.8767 (6) 0.8606 (6) 0.8196 0.9499 0.8022 0.9360 (7) 1.0244 0.9467 0.8737 0.9856 (5) 0.9561 0.9963 1.0726 0.3696 (6) 0.3935 0.2936 0.2606 (5). 0.586874 (8) 0.49034 (15) 0.56025 (16) 0.64170 (17) 0.71740 (15) 0.60517 (16) 0.53292 (17) 0.55040 (16) 0.61994 (15) 0.4623 (2) 0.4769 (2) 0.4786 (2) 0.4651 (2) 0.4664 0.4495 (2) 0.4490 (2) 0.4396 0.4370 (2) 0.3909 (3) 0.3526 0.3820 0.4092 0.4990 (3) 0.4911 0.5286 0.5158 0.4103 (3) 0.3698 0.4382 0.4061 0.4964 (2) 0.4944 0.4676 0.5949 (2). 0.744028 (8) 0.73374 (17) 0.62763 (17) 0.68204 (17) 0.76827 (15) 0.83913 (15) 0.82365 (17) 0.76366 (17) 0.72896 (15) 0.7440 (3) 0.7099 (2) 0.6488 (2) 0.6235 (3) 0.5830 0.6571 (2) 0.7174 (2) 0.7409 0.6275 (3) 0.5763 (3) 0.5902 0.5599 0.5469 0.6032 (4) 0.5855 0.6345 0.5744 0.6698 (2) 0.6835 0.7025 0.6498 0.6118 (3) 0.5706 0.6190 0.5811 (2). 0.02301 (5) 0.0270 (9) 0.0279 (8) 0.0269 (8) 0.0292 (8) 0.0268 (8) 0.0309 (9) 0.0280 (9) 0.0227 (8) 0.0240 (11) 0.0258 (12) 0.0256 (12) 0.0260 (12) 0.031* 0.0254 (11) 0.0269 (11) 0.032* 0.0296 (13) 0.0362 (14) 0.054* 0.054* 0.054* 0.052 (2) 0.079* 0.079* 0.079* 0.0353 (13) 0.053* 0.053* 0.053* 0.0308 (13) 0.037* 0.037* 0.0285 (11). Acta Cryst. (2005). E61, m2278–m2280. sup-2.

(6) supporting information H12A H12B C13 C14 C15 C16 H16 C17 C18 H18 C19 C20 H20A H20B H20C C21 H21A H21B H21C C22 H22A H22B H22C C23 H23A H23B C24 H24A H24B C25 C26 C27 C28 H28 C29 C30 H30 C31 C32 H32A H32B H32C C33 H33A H33B H33C C34 H34A. 0.1650 0.3065 0.2663 (5) 0.2077 (5) 0.2317 (6) 0.3008 (5) 0.3155 0.3490 (5) 0.3331 (5) 0.3685 0.4236 (6) 0.5631 (6) 0.6054 0.6224 0.5490 0.4494 (6) 0.4860 0.3637 0.5144 0.3327 (7) 0.3141 0.2471 0.3804 0.1897 (5) 0.2128 0.0908 0.2588 (6) 0.1748 0.2591 0.3835 (5) 0.3977 (5) 0.5194 (6) 0.6215 (6) 0.7002 0.6104 (5) 0.4899 (5) 0.4797 0.7293 (6) 0.7572 (7) 0.6772 0.8351 0.7768 0.6949 (6) 0.6111 0.6831 0.7694 0.8622 (6) 0.9376. Acta Cryst. (2005). E61, m2278–m2280. 0.5814 0.5872 0.6636 (2) 0.6831 (2) 0.7447 (2) 0.7864 (2) 0.8272 0.7696 (3) 0.7068 (2) 0.6937 0.8185 (3) 0.8360 (3) 0.8688 0.7998 0.8503 0.7927 (3) 0.8255 0.7779 0.7586 0.8777 (3) 0.8940 0.8671 0.9089 0.7600 (2) 0.8032 0.7544 0.7353 (3) 0.7192 0.7807 0.7079 (3) 0.6421 (2) 0.6165 (3) 0.6565 (3) 0.6390 0.7220 (3) 0.7458 (3) 0.7892 0.7638 (2) 0.7514 (3) 0.7628 0.7759 0.7076 0.8347 (3) 0.8441 0.8445 0.8593 0.7499 (3) 0.7744. 0.5777 0.5440 0.5958 (2) 0.6488 (2) 0.6683 (2) 0.6322 (2) 0.6453 0.5771 (2) 0.5606 (2) 0.5247 0.5385 (2) 0.5657 (3) 0.5431 0.5660 0.6051 0.4759 (3) 0.4516 0.4597 0.4777 0.5334 (3) 0.5718 0.5146 0.5107 0.7301 (2) 0.7393 0.7349 0.8295 (2) 0.8473 0.8332 0.8591 (2) 0.8618 (2) 0.8859 (2) 0.9075 (2) 0.9243 0.9049 (2) 0.8802 (2) 0.8777 0.9267 (2) 0.9916 (3) 1.0141 1.0041 0.9972 0.9200 (3) 0.9408 0.8793 0.9357 0.8909 (3) 0.9061. 0.034* 0.034* 0.0224 (10) 0.0238 (11) 0.0261 (12) 0.0275 (12) 0.033* 0.0252 (12) 0.0220 (11) 0.026* 0.0291 (13) 0.0422 (16) 0.063* 0.063* 0.063* 0.0330 (13) 0.049* 0.049* 0.049* 0.0409 (15) 0.061* 0.061* 0.061* 0.0282 (12) 0.034* 0.034* 0.0299 (13) 0.036* 0.036* 0.0255 (12) 0.0233 (11) 0.0244 (12) 0.0281 (13) 0.034* 0.0253 (12) 0.0298 (13) 0.036* 0.0317 (12) 0.0462 (16) 0.069* 0.069* 0.069* 0.0368 (14) 0.055* 0.055* 0.055* 0.0406 (16) 0.061*. sup-3.

(7) supporting information H34B H34C C35 H35A H35B C36 H36A H36B N1 H1A H1B C37 H37 C38 H38A H38B H38C C39 H39A H39B H39C C40 C41 H41 C42 H42 C43 H43 C44 H44 C45 H45 C46 H46 Cl1 Cl2 Cl3. 0.8471 0.8843 0.5409 (6) 0.6133 0.4564 0.5785 (6) 0.4921 0.6544 0.7241 (5) 0.6360 0.7342 0.7489 (6) 0.8420 0.6448 (6) 0.5525 0.6567 0.6600 0.8171 (6) 0.9108 0.8098 0.7911 0.7427 (5) 0.8540 (5) 0.9307 0.8499 (6) 0.9226 0.7383 (6) 0.7370 0.6294 (6) 0.5536 0.6304 (5) 0.5560 0.0711 (7) 0.1105 −0.0905 (3) 0.0520 (4) 0.1795 (2). 0.7608 0.7061 0.5474 (3) 0.5348 0.5255 0.4670 (3) 0.4482 0.4455 0.6128 (2) 0.6173 0.5730 0.6569 (2) 0.6487 0.6425 (3) 0.6480 0.5999 0.6705 0.6226 (3) 0.6262 0.5875 0.6604 0.7246 (2) 0.7639 (3) 0.7480 0.8275 (3) 0.8540 0.8509 (2) 0.8926 0.8116 (2) 0.8274 0.7491 (3) 0.7233 0.5242 (3) 0.5454 0.49365 (17) 0.57911 (13) 0.46306 (10). 0.8506 0.8938 0.8833 (3) 0.9103 0.8936 0.8099 (2) 0.8226 0.8291 0.7176 (2) 0.7297 0.7048 0.6669 (2) 0.6516 0.6182 (3) 0.6328 0.6053 0.5859 0.7681 (3) 0.7545 0.7943 0.7882 0.6861 (2) 0.6729 (2) 0.6532 0.6892 (3) 0.6791 0.7204 (2) 0.7325 0.7334 (3) 0.7537 0.7170 (3) 0.7265 0.9009 (3) 0.8666 0.88148 (16) 0.95616 (12) 0.92023 (10). 0.061* 0.061* 0.0305 (13) 0.037* 0.037* 0.0287 (13) 0.034* 0.034* 0.0305 (10) 0.037* 0.037* 0.0296 (12) 0.035* 0.0344 (15) 0.041* 0.041* 0.041* 0.0407 (16) 0.061* 0.061* 0.061* 0.0234 (11) 0.0269 (12) 0.032* 0.0360 (14) 0.043* 0.0342 (13) 0.041* 0.0336 (14) 0.040* 0.0291 (13) 0.035* 0.0426 (16) 0.051* 0.1219 (14) 0.1363 (14) 0.0676 (6). Atomic displacement parameters (Å2). U O1 O2 O3 O4 O5 O6. U11. U22. U33. U12. U13. U23. 0.02195 (8) 0.0275 (19) 0.033 (2) 0.026 (2) 0.032 (2) 0.028 (2) 0.045 (2). 0.02348 (8) 0.0228 (18) 0.0210 (18) 0.027 (2) 0.0325 (18) 0.031 (2) 0.025 (2). 0.02359 (9) 0.031 (2) 0.029 (2) 0.028 (2) 0.0235 (19) 0.0218 (19) 0.023 (2). −0.00157 (7) 0.0011 (14) 0.0054 (15) 0.0000 (16) 0.0079 (16) −0.0028 (15) −0.0010 (17). 0.00174 (7) 0.0068 (16) −0.0062 (16) −0.0003 (15) −0.0027 (17) 0.0012 (15) 0.0054 (17). 0.00063 (9) 0.0008 (16) −0.0030 (16) 0.0031 (16) −0.0015 (14) 0.0015 (14) −0.0015 (16). Acta Cryst. (2005). E61, m2278–m2280. sup-4.

(8) supporting information O7 O8 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 C35 C36 N1 C37 C38 C39 C40 C41 C42 C43 C44 C45. 0.0274 (18) 0.0220 (18) 0.026 (2) 0.030 (3) 0.029 (3) 0.032 (3) 0.027 (3) 0.025 (3) 0.029 (3) 0.033 (3) 0.034 (4) 0.033 (3) 0.033 (3) 0.032 (3) 0.021 (3) 0.020 (3) 0.026 (3) 0.033 (3) 0.021 (3) 0.020 (3) 0.031 (3) 0.044 (4) 0.035 (3) 0.062 (4) 0.025 (3) 0.036 (4) 0.027 (3) 0.028 (3) 0.028 (3) 0.034 (3) 0.026 (3) 0.033 (3) 0.031 (3) 0.054 (4) 0.038 (4) 0.030 (3) 0.037 (3) 0.034 (3) 0.026 (2) 0.026 (3) 0.037 (4) 0.029 (3) 0.022 (3) 0.029 (3) 0.036 (4) 0.042 (4) 0.035 (3) 0.024 (3). 0.0277 (19) 0.0200 (17) 0.019 (2) 0.017 (3) 0.022 (3) 0.019 (3) 0.014 (2) 0.015 (2) 0.015 (3) 0.043 (4) 0.050 (4) 0.033 (3) 0.022 (3) 0.027 (3) 0.022 (2) 0.025 (3) 0.028 (3) 0.022 (3) 0.031 (3) 0.027 (3) 0.029 (3) 0.047 (4) 0.032 (3) 0.030 (3) 0.032 (3) 0.031 (3) 0.031 (3) 0.027 (3) 0.028 (3) 0.030 (3) 0.031 (3) 0.029 (3) 0.030 (3) 0.044 (4) 0.034 (3) 0.037 (4) 0.022 (3) 0.024 (3) 0.023 (2) 0.027 (3) 0.036 (4) 0.047 (4) 0.025 (3) 0.025 (3) 0.028 (3) 0.021 (3) 0.031 (3) 0.026 (3). Acta Cryst. (2005). E61, m2278–m2280. 0.029 (2) 0.026 (2) 0.027 (3) 0.031 (3) 0.026 (3) 0.028 (3) 0.035 (3) 0.041 (3) 0.046 (4) 0.032 (4) 0.073 (6) 0.040 (3) 0.038 (4) 0.026 (3) 0.024 (3) 0.026 (3) 0.024 (3) 0.027 (3) 0.023 (3) 0.019 (3) 0.027 (3) 0.035 (4) 0.032 (4) 0.030 (4) 0.028 (3) 0.022 (3) 0.019 (3) 0.015 (3) 0.017 (3) 0.021 (3) 0.018 (3) 0.027 (3) 0.034 (3) 0.040 (3) 0.039 (4) 0.055 (5) 0.032 (4) 0.027 (3) 0.043 (3) 0.035 (3) 0.031 (4) 0.046 (4) 0.023 (3) 0.027 (3) 0.043 (4) 0.039 (3) 0.034 (4) 0.037 (4). 0.0009 (14) 0.0025 (14) −0.0002 (17) 0.000 (2) 0.001 (2) 0.000 (2) −0.001 (2) 0.003 (2) −0.004 (2) 0.007 (3) −0.003 (3) 0.006 (3) −0.001 (2) −0.001 (3) −0.002 (2) 0.000 (2) 0.002 (3) 0.001 (2) −0.001 (2) 0.002 (2) −0.004 (2) −0.017 (3) −0.004 (3) 0.002 (3) 0.008 (2) 0.003 (3) 0.006 (2) −0.002 (2) −0.004 (2) −0.004 (2) −0.004 (2) 0.003 (2) −0.005 (3) −0.015 (3) −0.004 (3) −0.005 (3) −0.003 (2) 0.001 (2) 0.001 (2) 0.002 (2) −0.009 (3) 0.002 (3) 0.002 (2) 0.005 (2) −0.007 (3) 0.005 (3) 0.011 (2) 0.001 (2). 0.0009 (16) −0.0017 (14) 0.004 (2) 0.007 (2) −0.002 (2) 0.003 (2) 0.002 (2) 0.001 (2) 0.002 (2) −0.001 (2) 0.015 (4) −0.003 (2) 0.002 (2) −0.003 (2) −0.007 (2) −0.004 (2) 0.000 (2) −0.005 (2) −0.006 (2) 0.000 (2) 0.000 (2) −0.005 (3) −0.001 (2) −0.001 (3) −0.002 (2) −0.001 (2) 0.001 (2) 0.004 (2) −0.002 (2) −0.001 (2) 0.003 (2) 0.002 (2) −0.007 (3) −0.013 (3) −0.006 (3) 0.002 (3) −0.001 (3) 0.001 (2) 0.005 (2) 0.009 (2) 0.006 (3) −0.003 (3) −0.003 (2) −0.002 (2) −0.010 (3) −0.008 (3) 0.000 (2) 0.004 (2). −0.0011 (17) 0.0005 (15) 0.002 (3) −0.001 (2) −0.004 (2) −0.007 (2) −0.001 (2) 0.000 (2) −0.002 (2) −0.002 (3) −0.004 (4) −0.005 (3) −0.004 (2) 0.000 (2) −0.0025 (19) 0.003 (2) −0.002 (2) −0.002 (2) 0.001 (2) −0.002 (2) 0.004 (2) 0.003 (3) 0.004 (3) 0.012 (3) −0.005 (2) −0.005 (2) −0.004 (2) −0.003 (2) 0.005 (2) 0.005 (2) 0.001 (2) −0.001 (2) 0.002 (2) 0.003 (3) −0.002 (3) −0.006 (3) 0.005 (2) 0.006 (2) 0.0066 (18) 0.003 (2) −0.002 (3) 0.017 (3) 0.003 (2) −0.001 (2) 0.002 (3) −0.007 (2) −0.007 (3) 0.002 (2). sup-5.

(9) supporting information C46 Cl1 Cl2 Cl3. 0.049 (4) 0.0419 (13) 0.286 (4) 0.0557 (11). 0.045 (4) 0.150 (3) 0.0694 (18) 0.0666 (12). 0.034 (4) 0.174 (3) 0.0534 (16) 0.0804 (15). 0.002 (3) −0.0300 (16) 0.029 (2) 0.0139 (10). 0.005 (3) −0.0248 (15) 0.036 (2) 0.0060 (10). 0.003 (3) 0.088 (2) −0.0101 (14) 0.0290 (11). Geometric parameters (Å, º) U—O1 U—O2 U—O3 U—O4 U—O5 U—O7 U—O8 U—C14 O1—C2 O2—C12 O2—C11 O3—C14 O4—C24 O4—C23 O5—C26 O6—C36 O6—C35 C1—C2 C1—C6 C1—C36 C2—C3 C3—C4 C3—C11 C4—C5 C4—H4 C5—C6 C5—C7 C6—H6 C7—C8 C7—C10 C7—C9 C8—H8A C8—H8B C8—H8C C9—H9A C9—H9B C9—H9C C10—H10A C10—H10B C10—H10C C11—H11A. Acta Cryst. (2005). E61, m2278–m2280. 2.224 (3) 2.778 (4) 2.237 (4) 2.833 (3) 2.224 (4) 1.791 (3) 1.795 (3) 3.049 (5) 1.331 (6) 1.457 (6) 1.459 (6) 1.342 (6) 1.450 (6) 1.452 (6) 1.340 (6) 1.438 (6) 1.448 (7) 1.395 (7) 1.406 (7) 1.515 (8) 1.403 (8) 1.396 (7) 1.511 (8) 1.399 (7) 0.9300 1.386 (7) 1.532 (7) 0.9300 1.534 (8) 1.538 (8) 1.541 (9) 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9700. C21—H21C C22—H22A C22—H22B C22—H22C C23—H23A C23—H23B C24—C25 C24—H24A C24—H24B C25—C30 C25—C26 C26—C27 C27—C28 C27—C35 C28—C29 C28—H28 C29—C30 C29—C31 C30—H30 C31—C32 C31—C34 C31—C33 C32—H32A C32—H32B C32—H32C C33—H33A C33—H33B C33—H33C C34—H34A C34—H34B C34—H34C C35—H35A C35—H35B C36—H36A C36—H36B N1—C39 N1—C37 N1—H1A N1—H1B C37—C40 C37—C38. 0.9600 0.9600 0.9600 0.9600 0.9700 0.9700 1.500 (8) 0.9700 0.9700 1.393 (8) 1.409 (7) 1.407 (8) 1.393 (8) 1.487 (7) 1.400 (8) 0.9300 1.389 (7) 1.536 (7) 0.9300 1.529 (8) 1.552 (8) 1.552 (7) 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 0.9700 0.9700 0.9700 0.9700 1.477 (7) 1.509 (6) 0.9000 0.9000 1.509 (7) 1.531 (8). sup-6.

(10) supporting information C11—H11B C12—C13 C12—H12A C12—H12B C13—C18 C13—C14 C14—C15 C15—C16 C15—C23 C16—C17 C16—H16 C17—C18 C17—C19 C18—H18 C19—C20 C19—C22 C19—C21 C20—H20A C20—H20B C20—H20C C21—H21A C21—H21B. 0.9700 1.501 (6) 0.9700 0.9700 1.381 (7) 1.400 (7) 1.405 (7) 1.383 (7) 1.503 (7) 1.390 (7) 0.9300 1.397 (7) 1.543 (7) 0.9300 1.529 (8) 1.540 (8) 1.553 (8) 0.9600 0.9600 0.9600 0.9600 0.9600. C37—H37 C38—H38A C38—H38B C38—H38C C39—H39A C39—H39B C39—H39C C40—C45 C40—C41 C41—C42 C41—H41 C42—C43 C42—H42 C43—C44 C43—H43 C44—C45 C44—H44 C45—H45 C46—Cl3 C46—Cl2 C46—Cl1 C46—H46. 0.9800 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 1.395 (7) 1.395 (7) 1.404 (8) 0.9300 1.386 (8) 0.9300 1.376 (8) 0.9300 1.382 (7) 0.9300 0.9300 1.728 (7) 1.730 (7) 1.749 (7) 0.9800. O1—U—O2 O2—U—O3 O1—U—O3 O3—U—O4 O4—U—O5 O3—U—O5 O5—U—O1 O7—U—O8 O1—U—O7 O1—U—O8 O2—U—O7 O2—U—O8 O3—U—O7 O3—U—O8 O4—U—O7 O4—U—O8 O5—U—O7 O5—U—O8 O1—U—O4 O2—U—O4 O5—U—O2 O7—U—C14 O8—U—C14 O1—U—C14 O5—U—C14. 68.60 (12) 67.48 (12) 128.72 (14) 66.46 (12) 68.89 (11) 126.69 (13) 102.69 (13) 175.44 (16) 86.83 (14) 90.60 (13) 109.17 (14) 73.29 (13) 83.68 (15) 100.86 (14) 111.00 (13) 70.82 (13) 86.40 (15) 90.48 (14) 159.05 (11) 113.04 (10) 161.07 (12) 107.27 (15) 77.27 (14) 128.21 (14) 127.16 (13). C19—C21—H21B H21A—C21—H21B C19—C21—H21C H21A—C21—H21C H21B—C21—H21C C19—C22—H22A C19—C22—H22B H22A—C22—H22B C19—C22—H22C H22A—C22—H22C H22B—C22—H22C O4—C23—C15 O4—C23—H23A C15—C23—H23A O4—C23—H23B C15—C23—H23B H23A—C23—H23B O4—C24—C25 O4—C24—H24A C25—C24—H24A O4—C24—H24B C25—C24—H24B H24A—C24—H24B C30—C25—C26 C30—C25—C24. 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 107.1 (4) 110.3 110.3 110.3 110.3 108.5 107.5 (4) 110.2 110.2 110.2 110.2 108.5 119.2 (5) 121.6 (5). Acta Cryst. (2005). E61, m2278–m2280. sup-7.

(11) supporting information O3—U—C14 O2—U—C14 O4—U—C14 C2—O1—U C12—O2—C11 C12—O2—U C11—O2—U C14—O3—U C24—O4—C23 C24—O4—U C23—O4—U C26—O5—U C36—O6—C35 C2—C1—C6 C2—C1—C36 C6—C1—C36 O1—C2—C1 O1—C2—C3 C1—C2—C3 C4—C3—C2 C4—C3—C11 C2—C3—C11 C3—C4—C5 C3—C4—H4 C5—C4—H4 C6—C5—C4 C6—C5—C7 C4—C5—C7 C5—C6—C1 C5—C6—H6 C1—C6—H6 C5—C7—C8 C5—C7—C10 C8—C7—C10 C5—C7—C9 C8—C7—C9 C10—C7—C9 C7—C8—H8A C7—C8—H8B H8A—C8—H8B C7—C8—H8C H8A—C8—H8C H8B—C8—H8C C7—C9—H9A C7—C9—H9B H9A—C9—H9B C7—C9—H9C H9A—C9—H9C. Acta Cryst. (2005). E61, m2278–m2280. 23.60 (13) 59.65 (12) 58.47 (12) 124.6 (3) 114.3 (4) 120.2 (3) 118.8 (3) 114.5 (3) 113.3 (4) 116.5 (3) 120.3 (3) 124.6 (3) 114.2 (4) 120.4 (5) 117.8 (4) 121.6 (5) 121.8 (5) 119.8 (5) 118.4 (5) 120.1 (5) 121.3 (5) 118.6 (5) 122.1 (5) 119.0 119.0 117.2 (5) 122.5 (5) 120.2 (5) 121.8 (5) 119.1 119.1 111.0 (4) 112.8 (5) 108.2 (5) 109.7 (5) 108.1 (6) 106.8 (5) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5. C26—C25—C24 O5—C26—C27 O5—C26—C25 C27—C26—C25 C28—C27—C26 C28—C27—C35 C26—C27—C35 C27—C28—C29 C27—C28—H28 C29—C28—H28 C30—C29—C28 C30—C29—C31 C28—C29—C31 C29—C30—C25 C29—C30—H30 C25—C30—H30 C32—C31—C29 C32—C31—C34 C29—C31—C34 C32—C31—C33 C29—C31—C33 C34—C31—C33 C31—C32—H32A C31—C32—H32B H32A—C32—H32B C31—C32—H32C H32A—C32—H32C H32B—C32—H32C C31—C33—H33A C31—C33—H33B H33A—C33—H33B C31—C33—H33C H33A—C33—H33C H33B—C33—H33C C31—C34—H34A C31—C34—H34B H34A—C34—H34B C31—C34—H34C H34A—C34—H34C H34B—C34—H34C O6—C35—C27 O6—C35—H35A C27—C35—H35A O6—C35—H35B C27—C35—H35B H35A—C35—H35B O6—C36—C1 O6—C36—H36A. 119.0 (5) 121.3 (5) 119.7 (5) 118.9 (5) 119.6 (5) 121.3 (5) 118.9 (5) 122.6 (5) 118.7 118.7 116.4 (5) 123.2 (5) 120.4 (5) 123.3 (5) 118.4 118.4 110.2 (5) 109.4 (5) 109.7 (4) 107.6 (5) 111.8 (5) 108.1 (5) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 106.6 (5) 110.4 110.4 110.4 110.4 108.6 106.3 (4) 110.5. sup-8.

(12) supporting information H9B—C9—H9C C7—C10—H10A C7—C10—H10B H10A—C10—H10B C7—C10—H10C H10A—C10—H10C H10B—C10—H10C O2—C11—C3 O2—C11—H11A C3—C11—H11A O2—C11—H11B C3—C11—H11B H11A—C11—H11B O2—C12—C13 O2—C12—H12A C13—C12—H12A O2—C12—H12B C13—C12—H12B H12A—C12—H12B C18—C13—C14 C18—C13—C12 C14—C13—C12 O3—C14—C13 O3—C14—C15 C13—C14—C15 O3—C14—U C13—C14—U C15—C14—U C16—C15—C14 C16—C15—C23 C14—C15—C23 C15—C16—C17 C15—C16—H16 C17—C16—H16 C16—C17—C18 C16—C17—C19 C18—C17—C19 C13—C18—C17 C13—C18—H18 C17—C18—H18 C20—C19—C22 C20—C19—C17 C22—C19—C17 C20—C19—C21 C22—C19—C21 C17—C19—C21 C19—C20—H20A C19—C20—H20B. Acta Cryst. (2005). E61, m2278–m2280. 109.5 109.5 109.5 109.5 109.5 109.5 109.5 107.7 (4) 110.2 110.2 110.2 110.2 108.5 108.2 (4) 110.1 110.1 110.1 110.1 108.4 119.7 (4) 122.3 (5) 117.8 (4) 119.8 (4) 121.0 (5) 119.0 (5) 41.9 (2) 109.8 (3) 111.6 (3) 119.3 (5) 123.5 (5) 117.1 (5) 122.5 (5) 118.8 118.8 117.1 (5) 120.0 (5) 122.8 (5) 122.0 (5) 119.0 119.0 109.5 (5) 110.1 (5) 109.2 (5) 108.6 (5) 108.1 (5) 111.3 (4) 109.5 109.5. C1—C36—H36A O6—C36—H36B C1—C36—H36B H36A—C36—H36B C39—N1—C37 C39—N1—H1A C37—N1—H1A C39—N1—H1B C37—N1—H1B H1A—N1—H1B C40—C37—N1 C40—C37—C38 N1—C37—C38 C40—C37—H37 N1—C37—H37 C38—C37—H37 C37—C38—H38A C37—C38—H38B H38A—C38—H38B C37—C38—H38C H38A—C38—H38C H38B—C38—H38C N1—C39—H39A N1—C39—H39B H39A—C39—H39B N1—C39—H39C H39A—C39—H39C H39B—C39—H39C C45—C40—C41 C45—C40—C37 C41—C40—C37 C40—C41—C42 C40—C41—H41 C42—C41—H41 C43—C42—C41 C43—C42—H42 C41—C42—H42 C44—C43—C42 C44—C43—H43 C42—C43—H43 C43—C44—C45 C43—C44—H44 C45—C44—H44 C44—C45—C40 C44—C45—H45 C40—C45—H45 Cl3—C46—Cl2 Cl3—C46—Cl1. 110.5 110.5 110.5 108.7 114.5 (4) 108.6 108.6 108.6 108.6 107.6 111.4 (4) 112.1 (5) 109.2 (4) 108.0 108.0 108.0 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 119.0 (5) 122.4 (5) 118.6 (5) 119.9 (5) 120.1 120.1 120.3 (6) 119.8 119.8 119.2 (5) 120.4 120.4 121.4 (5) 119.3 119.3 120.2 (5) 119.9 119.9 112.8 (4) 109.0 (4). sup-9.

(13) supporting information H20A—C20—H20B C19—C20—H20C H20A—C20—H20C H20B—C20—H20C C19—C21—H21A. 109.5 109.5 109.5 109.5 109.5. Cl2—C46—Cl1 Cl3—C46—H46 Cl2—C46—H46 Cl1—C46—H46. 110.0 (4) 108.3 108.3 108.3. Hydrogen-bond geometry (Å, º) D—H···A. D—H. H···A. D···A. D—H···A. N1—H1A···O8 N1—H1B···Cg C46—H46···O5 C46—H46···O7. 0.90 0.90 0.98 0.98. 1.91 2.68 2.31 2.36. 2.781 (6) 3.460 (4) 3.132 (7) 3.208 (8). 161 146 141 145. Acta Cryst. (2005). E61, m2278–m2280. sup-10.

(14)

New documents

In this paper, we demonstrated that, by simply adding skip connections between all layer pairs of a neural network, we are able to achieve similar perplexity scores as a large stacked

Then the intravascular heat exchange cooling technique combined with plasmapheresis was applied, and the patient’s body temperature and elimination of the thyroid hormone was

TABLE 5: Indexes of Cost of Materials, Salaries and Wages, Total Costs and Remainder of Net Output Per Unit of Output, in Exposed, Sheltered and All Transportable Goods Industries,..

In the fu- ture, we plan to extensively compare the learning of word matrix representations with vector space models in the task of sentiment analysis on several datasets... References

We explore transfer learning based on model adaptation as an approach for training ASR models under constrained GPU memory, throughput and training data.. We conduct several systematic

In blood lipid profile, serum TG level had no signifi- cant difference P > 0.05 in two groups; serum cholesterol levels TC, HDL-C and LDL-C were significantly lower than the control

If this implication seems to clash with experience of small open economies, it is worth noting, however, that in a dynamic, Harrod-Domar, version of such a model, the balance of trade

Figure 2: Pseudo-code for a simple Θn2 time and Θn space algorithm for computing the cardinality of a circle graph’s maximum independent sets... Input: The σ-representation of an n

Other multilingual sentence representation learning techniques include BAE Chandar et al., 2013 which trains bilingual autoencoders with the objective of minimizing reconstruction error

1Center for Hepatobiliary and Pancreatic Diseases, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, China; 2Department of Gastroenterology, The Second