• No results found

r 2,c 6 Bis­(2 chloro­phen­yl) t 3,t 5 di­methyl 1 nitrosopiperidin 4 one oxime

N/A
N/A
Protected

Academic year: 2020

Share "r 2,c 6 Bis­(2 chloro­phen­yl) t 3,t 5 di­methyl 1 nitrosopiperidin 4 one oxime"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o3987–o3989 doi:10.1107/S160053680503521X Hemaet al. C

19H19Cl2N3O2

o3987

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

r

-2,

c

-6-Bis(2-chlorophenyl)-

t

-3,

t

-5-dimethyl-1-nitrosopiperidin-4-one oxime

R. Hema,aV. Parthasarathi,a* K. Ravikumar,bB. Sridhar,b K. Pandiarajancand G. Muthukumaranc

aSchool of Physics, Bharathidasan University,

Tiruchirappalli 620024, India,bLaboratory of

X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500007, India, andcDepartment of Chemistry,

Anna-malai University, AnnaAnna-malai Nagar 608002, India

Correspondence e-mail: vpsarati@yahoo.com

Key indicators Single-crystal X-ray study

T= 273 K

Mean(C–C) = 0.003 A˚

Rfactor = 0.038

wRfactor = 0.101

Data-to-parameter ratio = 13.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

In the title compound, C19H19Cl2N3O2, the piperidine ring

adopts a distorted boat conformation. In the solid state, the molecules exist as O—H N-hydrogen-bonded centrosym-metric dimers.

Comment

Many piperidine derivatives are found to possess pharmaco-logical activities and form an essential part of the molecular structures of important drugs. Several 2,6-disubstituted piperidines are useful as tranquillizers (Bockringer & Soenhe, 1961), and possess hypotensive activity (Severset al., 1965), a combination of stimulant and depressant effects on the central nervous system (Ganelline & Spickett, 1965), as well as bacterial, fungicidal and herbicidal activities (Mobio et al., 1990). Though the piperidine derivatives are pharmacologi-cally important, the N-nitroso derivatives are carcinogens in nature (Ferguson, 1975). These N-nitroso compounds are often found in a variety of environmental samples. Even though the unsubstituted N-nitroso piperidines are potential carcinogens, when an alkyl group is substituted at the position C2, it reduces the carcinogenicity. If-positions of C2 and C6 are substituted by methyl groups, it becomes non-carcinogenic. It appears that the blocking of thepositions to the N atom by methyl groups in cyclic nitrosomines reduces the carcinogenic activity (Lijinsky & Taylor, 1975). Most of the piperidine precursors are known to exist in chair conforma-tions (Sekar & Parthasarathy, 1993). The properties of the piperidine derivatives depend on the nature of the side groups and their orientations. The X-ray structure determination of the title compound, (I), aims to find the influence of the nitroso and oximino groups on the conformation of the piperidine ring and as well as on the orientation of the substituents.

Compound (I) is analogous to a related structure, 3,5-dimethyl-N-nitroso-4-oximino-2,6-diphenylpiperidine-4-one oxime (DMNOH) (Sukumar et al.,1994), except for the substitution of Cl atoms at the ortho positions of the two

(2)

benzene rings. The space group of both structures is the same. Superposition of non-H atoms common to the structure of (I) and DMNOH (Sukumaret al., 1994) gives an r.m.s. deviation of 0.200 A˚ . As observed in DMNOH, the piperidine ring in (I) adopts a distorted boat conformation [Cremer & Pople (1975) puckering parameters areQ= 0.677 (2) A˚ ,= 93.44 (15)and ’ = 248.16 (15)] with the methyl group at C3 in the axial orientation and that at C5 in the equatorial orientation.

From detailed studies of the stereochemistry of various piperidine derivatives, it has been reported that the nitroso group can adopt two possible orientations, namely, roughly in and perpendicular to the mean plane of the piperidine ring, irrespective of the substituents at the 2- and 6-positions of the piperidine ring (Sukumaret al., 1994, and references therein). The dihedral angle between the N1/C3/C4/C6 and nitroso (N1/ N21/O22) planes is 44.3 (1) (39.8for DMNOH). The dihe-dral angle between the N1/C3/C4/C6 plane and the oximino group (C4/N23/O24) is 15.9 (2) (13.8 for DMNOH). The dihedral angle between the nitroso and the oximino groups is 59.8 (2) [52.8 (2) for DMNOH].

A survey of the conformations of 2,6-dialkyl-N-nitroso piperidine and related compounds suggests two possible orientations for the phenyl rings; when the nitroso group is approximately in the mean plane of the piperidine ring, the phenyl ring would have to adopt a perpendicular orientation, and vice versa (Ravindran et al., 1991). As observed in DMNOH, the benzene ring at C2 has a roughly perpendicular orientation, with a C4—C3—C2—C15 torsion angle of 76.14 (19) [68.6 (3) for DMNOH], and the benzene ring at C6 has an in-plane orientation, with a C4—C5—C6—C9 torsion angle of 167.79 (15) [171.7 (3) for DMNOH]. The C9—C14 and C15—C20 planes form dihedral angles of 69.70 (6) and 85.16 (6), respectively, with respect to the N1/ C3/C4/C6 plane. The dihedral angle between the C9—C14 and C15—C20 benzene rings is 69.57 (6)for (I) and 59.2 (1)for

DMNOH. The variation may be due to the substitution of Cl atoms at theorthopositions of the benzene rings.

In (I), the crystal packing is stabilized by O—H N

hydrogen-bonding interactions (Table 1). The O24—

H24 N23(1 x, 2y, z) interactions link pairs of mol-ecules across centres of inversion to form dimers with ring motifR2

2(6) (Bernsteinet al., 1995).

Experimental

t-3,t-5-Dimethyl-r-2,c-6-bis(o-chlorophenyl)piperidin-4-one (50 mmol) and sodium acetate trihydrate (150 mmol) were dissolved in boiling ethanol, and hydroxylamine hydrochloride (60 mmol) was added. The mixture was heated under reflux for 15 min and poured into water. The separated compound (I) was filtered off and recrys-tallized from ethanol (yield 70%, m.p. 475–477 K).

Crystal data

C19H19Cl2N3O2 Mr= 392.27

Triclinic,P1

a= 7.9168 (7) A˚

b= 8.5941 (8) A˚

c= 14.1572 (13) A˚

= 90.225 (2)

= 101.459 (2)

= 94.810 (2)

V= 940.49 (15) A˚3

Z= 2

Dx= 1.385 Mg m

3

MoKradiation Cell parameters from 6230

reflections

= 2.4–28.0

= 0.36 mm1

T= 273 (2) K Block, colourless 0.200.180.18 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

!scan

Absorption correction: none 9029 measured reflections 3313 independent reflections

3062 reflections withI> 2(I)

Rint= 0.015 max= 25.0 h=9!9

k=10!10

l=16!16

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.038 wR(F2) = 0.101

S= 1.04 3313 reflections 238 parameters

H-atom parameters constrained

w= 1/[2

(Fo 2

) + (0.0478P)2 + 0.427P]

whereP= (Fo2+ 2Fc2)/3 (/)max= 0.001

max= 0.41 e A˚

3 min=0.21 e A˚

3

organic papers

o3988

Hemaet al. C

[image:2.610.315.565.71.244.2]

19H19Cl2N3O2 Acta Cryst.(2005). E61, o3987–o3989

Figure 1

A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2

[image:2.610.66.267.72.263.2]
(3)

Table 1

Hydrogen-bond geometry (A˚ ,).

D—H A D—H H A D A D—H A

O24—H24 N23i

0.82 2.09 2.8052 (19) 146

Symmetry code: (i)xþ1;yþ2;z.

H atoms were placed in idealized positions (O—H = 0.82 A˚ and C—H = 0.93–0.98 A˚ ) and constrained to ride on their parent atoms, withUiso(H) values of 1.5Ueq(carrier atom) for methyl and hydroxy H

atoms, and 1.2Ueq(C) for the remaining H atoms. The methyl groups

were allowed to rotate freely about their C—C bond.

Data collection:SMART(Bruker, 2001); cell refinement:SAINT

(Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEP-3 (Farrugia, 1997); software used to prepare material for publication:SHELXL97.

RH thanks UGC, India, for the award of an FIP fellowship (2005–2007).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995).Angew. Chem. Int. Ed. Engl.34, 1555–1573.

Bockringer, C. F. & Sohne, G. M. B. H. (1961).Chem. Abstr.55, 24796. Bruker (2001).SAINT(Version 6.28a) andSMART(Version 5.625). Bruker

AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975).J. Am. Chem. Soc.97, 1354–1358. Farrugia, L. J. (1997).J. Appl. Cryst.30, 565.

Ferguson, L. N. (1975).Chem. Soc. Rev.4, 289–322.

Ganelline, C. R. & Spickett, R. G. W. (1965). J. Med. Chem. 8, 619– 625.

Lijinsky, W. & Taylor, H. W. (1975).Int. J. Cancer.16, 318–322.

Mobio, I. G., Soldatenkov, A. T., Fedorov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenco, E. E., Prostakov, N. S. & Andreeva, E. I. (1990).Khim. Farm. Zh. Chem. Abstr.112, 7331y.

Ravindran, T., Jeyaraman, R., Murray, R. W. & Singh, M. (1991).J. Org. Chem.

56, 4833–4840.

Sekar, K. & Parthasarathy, S. (1993).J. Cryst. Spect. Res.23, 101–105. Severs, W. B., Kinnard, W. J. & Buckley, J. P. (1965). Chem. Abstr. 63,

10538.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Go¨ttingen, Germany.

Sukumar, N. Ponnuswamy, M. N., Vijayalakshmi, R. & Jeyaraman, R. (1994).

Z. Kristallogr.209, 823–825.

organic papers

Acta Cryst.(2005). E61, o3987–o3989 Hemaet al. C

(4)

supporting information

sup-1

Acta Cryst. (2005). E61, o3987–o3989

supporting information

Acta Cryst. (2005). E61, o3987–o3989 [https://doi.org/10.1107/S160053680503521X]

r

-2,

c

-6-Bis(2-chlorophenyl)-

t

-3,

t

-5-dimethyl-1-nitrosopiperidin-4-one oxime

R. Hema, V. Parthasarathi, K. Ravikumar, B. Sridhar, K. Pandiarajan and G. Muthukumaran

t(3),t(5)-Dimethyl N-nitroso-r(2),c(6)-bis(o-chlorophenyl)piperidine-4-one oxime.

Crystal data

C19H19Cl2N3O2 Mr = 392.27 Triclinic, P1 Hall symbol: -P 1

a = 7.9168 (7) Å

b = 8.5941 (8) Å

c = 14.1572 (13) Å

α = 90.225 (2)°

β = 101.459 (2)°

γ = 94.810 (2)°

V = 940.49 (15) Å3

Z = 2

F(000) = 408

Dx = 1.385 Mg m−3

Mo radiation, λ = 0.71073 Å

Cell parameters from 6230 reflections

θ = 2.4–28.0°

µ = 0.36 mm−1

T = 273 K

Block, colourless 0.20 × 0.18 × 0.18 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer

Radiation source: fine-focus sealed tube Graphite monochromator

ω scan

9029 measured reflections 3313 independent reflections

3062 reflections with I > 2σ(I)

Rint = 0.015

θmax = 25.0°, θmin = 2.4°

h = −9→9

k = −10→10

l = −16→16

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.038 wR(F2) = 0.101

S = 1.04

3313 reflections 238 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0478P)2 + 0.427P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.001

Δρmax = 0.41 e Å−3

Δρmin = −0.21 e Å−3

Special details

(5)

supporting information

sup-2

Acta Cryst. (2005). E61, o3987–o3989

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 −0.28911 (7) 0.69334 (7) 0.05545 (4) 0.06533 (19)

Cl2 0.17287 (8) 0.87254 (7) 0.50968 (4) 0.06339 (18)

N1 0.09785 (17) 0.91367 (16) 0.27903 (10) 0.0348 (3)

N21 −0.0258 (2) 0.99265 (18) 0.30342 (12) 0.0468 (4)

N23 0.40854 (19) 0.96741 (17) 0.08402 (11) 0.0407 (3)

O22 −0.17098 (18) 0.95549 (18) 0.25574 (12) 0.0586 (4)

O24 0.51706 (18) 1.10777 (15) 0.09550 (10) 0.0504 (3)

H24 0.5727 1.1137 0.0524 0.060*

C2 0.2749 (2) 0.97996 (19) 0.32025 (12) 0.0365 (4)

H2 0.2634 1.0651 0.3642 0.044*

C3 0.3496 (2) 1.0565 (2) 0.23774 (13) 0.0394 (4)

H3 0.4728 1.0870 0.2616 0.047*

C4 0.3320 (2) 0.9430 (2) 0.15440 (12) 0.0374 (4)

C5 0.2229 (2) 0.7894 (2) 0.15403 (13) 0.0416 (4)

H5 0.2911 0.7221 0.1997 0.050*

C6 0.0567 (2) 0.81217 (19) 0.19219 (12) 0.0354 (4)

H6 −0.0218 0.8646 0.1424 0.043*

C7 0.1824 (3) 0.7036 (3) 0.05703 (17) 0.0679 (7)

H71 0.1186 0.7673 0.0095 0.102*

H72 0.1147 0.6071 0.0619 0.102*

H73 0.2885 0.6823 0.0384 0.102*

C8 0.2589 (3) 1.2033 (2) 0.20598 (16) 0.0559 (5)

H81 0.3077 1.2517 0.1554 0.084*

H82 0.2743 1.2751 0.2598 0.084*

H83 0.1376 1.1754 0.1829 0.084*

C9 −0.0362 (2) 0.65809 (19) 0.21299 (12) 0.0355 (4)

C10 −0.1899 (2) 0.5945 (2) 0.15543 (13) 0.0424 (4)

C11 −0.2689 (3) 0.4517 (2) 0.17451 (15) 0.0506 (5)

H11 −0.3714 0.4121 0.1346 0.061*

C12 −0.1959 (3) 0.3688 (2) 0.25217 (16) 0.0536 (5)

H12 −0.2480 0.2722 0.2648 0.064*

C13 −0.0451 (3) 0.4290 (2) 0.31155 (16) 0.0527 (5)

H13 0.0042 0.3738 0.3649 0.063*

C14 0.0330 (2) 0.5720 (2) 0.29161 (14) 0.0441 (4)

H14 0.1349 0.6114 0.3322 0.053*

C15 0.3865 (2) 0.8666 (2) 0.38052 (13) 0.0400 (4)

C16 0.5340 (2) 0.8172 (2) 0.35496 (16) 0.0538 (5)

H16 0.5616 0.8486 0.2967 0.065*

C17 0.6409 (3) 0.7227 (3) 0.4135 (2) 0.0676 (6)

(6)

supporting information

sup-3

Acta Cryst. (2005). E61, o3987–o3989

C18 0.6025 (3) 0.6753 (3) 0.49956 (19) 0.0690 (7)

H18 0.6748 0.6120 0.5392 0.083*

C19 0.4573 (3) 0.7211 (3) 0.52759 (16) 0.0599 (6)

H19 0.4305 0.6883 0.5858 0.072*

C20 0.3518 (3) 0.8157 (2) 0.46886 (13) 0.0462 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.0584 (3) 0.0712 (4) 0.0560 (3) −0.0062 (3) −0.0090 (2) 0.0103 (3)

Cl2 0.0880 (4) 0.0645 (3) 0.0476 (3) 0.0076 (3) 0.0368 (3) 0.0055 (2)

N1 0.0349 (7) 0.0341 (7) 0.0388 (8) −0.0011 (6) 0.0171 (6) −0.0017 (6)

N21 0.0456 (9) 0.0451 (9) 0.0564 (10) 0.0044 (7) 0.0264 (8) 0.0024 (7)

N23 0.0432 (8) 0.0393 (8) 0.0431 (8) −0.0063 (6) 0.0210 (7) −0.0001 (6)

O22 0.0386 (8) 0.0654 (9) 0.0761 (10) 0.0059 (7) 0.0214 (7) 0.0024 (8)

O24 0.0551 (8) 0.0486 (7) 0.0514 (8) −0.0128 (6) 0.0273 (6) 0.0007 (6)

C2 0.0397 (9) 0.0344 (9) 0.0376 (9) −0.0065 (7) 0.0174 (7) −0.0037 (7)

C3 0.0429 (9) 0.0367 (9) 0.0414 (9) −0.0070 (7) 0.0192 (8) −0.0010 (7)

C4 0.0393 (9) 0.0378 (9) 0.0388 (9) −0.0008 (7) 0.0181 (7) 0.0010 (7)

C5 0.0479 (10) 0.0365 (9) 0.0449 (10) −0.0055 (7) 0.0240 (8) −0.0052 (7)

C6 0.0373 (9) 0.0350 (9) 0.0345 (8) −0.0031 (7) 0.0110 (7) 0.0008 (7)

C7 0.0775 (15) 0.0656 (14) 0.0657 (14) −0.0243 (12) 0.0399 (12) −0.0251 (11)

C8 0.0788 (15) 0.0410 (10) 0.0561 (12) 0.0036 (10) 0.0340 (11) 0.0048 (9)

C9 0.0346 (8) 0.0346 (8) 0.0390 (9) −0.0011 (7) 0.0135 (7) −0.0010 (7)

C10 0.0400 (9) 0.0445 (10) 0.0426 (10) −0.0020 (8) 0.0108 (8) −0.0008 (8)

C11 0.0430 (10) 0.0492 (11) 0.0579 (12) −0.0126 (8) 0.0130 (9) −0.0081 (9)

C12 0.0567 (12) 0.0377 (10) 0.0687 (13) −0.0105 (9) 0.0244 (10) 0.0024 (9)

C13 0.0556 (12) 0.0433 (11) 0.0598 (12) 0.0004 (9) 0.0143 (10) 0.0143 (9)

C14 0.0403 (10) 0.0420 (10) 0.0481 (10) −0.0034 (8) 0.0071 (8) 0.0045 (8)

C15 0.0378 (9) 0.0390 (9) 0.0409 (9) −0.0098 (7) 0.0083 (7) −0.0040 (7)

C16 0.0403 (10) 0.0576 (12) 0.0632 (13) −0.0048 (9) 0.0135 (9) 0.0029 (10)

C17 0.0416 (11) 0.0643 (14) 0.0942 (19) 0.0041 (10) 0.0071 (11) 0.0032 (13)

C18 0.0662 (15) 0.0539 (13) 0.0746 (16) −0.0002 (11) −0.0129 (12) 0.0056 (11)

C19 0.0758 (15) 0.0504 (12) 0.0468 (11) −0.0050 (11) 0.0004 (10) 0.0032 (9)

C20 0.0551 (11) 0.0410 (10) 0.0404 (10) −0.0078 (8) 0.0099 (8) −0.0044 (8)

Geometric parameters (Å, º)

Cl1—C10 1.738 (2) C8—H81 0.96

Cl2—C20 1.738 (2) C8—H82 0.96

N1—N21 1.335 (2) C8—H83 0.96

N1—C6 1.471 (2) C9—C14 1.385 (3)

N1—C2 1.472 (2) C9—C10 1.391 (2)

N21—O22 1.228 (2) C10—C11 1.382 (3)

N23—C4 1.274 (2) C11—C12 1.369 (3)

N23—O24 1.4102 (19) C11—H11 0.93

O24—H24 0.82 C12—C13 1.376 (3)

(7)

supporting information

sup-4

Acta Cryst. (2005). E61, o3987–o3989

C2—C3 1.537 (2) C13—C14 1.384 (3)

C2—H2 0.98 C13—H13 0.93

C3—C4 1.505 (2) C14—H14 0.93

C3—C8 1.530 (3) C15—C16 1.387 (3)

C3—H3 0.98 C15—C20 1.397 (3)

C4—C5 1.515 (2) C16—C17 1.380 (3)

C5—C7 1.520 (3) C16—H16 0.93

C5—C6 1.545 (2) C17—C18 1.369 (4)

C5—H5 0.98 C17—H17 0.93

C6—C9 1.519 (2) C18—C19 1.375 (4)

C6—H6 0.98 C18—H18 0.93

C7—H71 0.96 C19—C20 1.376 (3)

C7—H72 0.96 C19—H19 0.93

C7—H73 0.96

N21—N1—C6 119.37 (14) H81—C8—H82 109.5

N21—N1—C2 114.06 (13) C3—C8—H83 109.5

C6—N1—C2 122.65 (13) H81—C8—H83 109.5

O22—N21—N1 113.91 (15) H82—C8—H83 109.5

C4—N23—O24 112.59 (14) C14—C9—C10 116.56 (16)

N23—O24—H24 109.5 C14—C9—C6 120.19 (15)

N1—C2—C15 114.12 (13) C10—C9—C6 123.24 (16)

N1—C2—C3 107.33 (14) C11—C10—C9 121.98 (18)

C15—C2—C3 115.80 (14) C11—C10—Cl1 117.54 (15)

N1—C2—H2 106.3 C9—C10—Cl1 120.48 (14)

C15—C2—H2 106.3 C12—C11—C10 119.93 (18)

C3—C2—H2 106.3 C12—C11—H11 120.0

C4—C3—C8 110.89 (16) C10—C11—H11 120.0

C4—C3—C2 110.65 (14) C11—C12—C13 119.74 (17)

C8—C3—C2 109.90 (15) C11—C12—H12 120.1

C4—C3—H3 108.4 C13—C12—H12 120.1

C8—C3—H3 108.4 C12—C13—C14 119.80 (19)

C2—C3—H3 108.4 C12—C13—H13 120.1

N23—C4—C3 123.20 (15) C14—C13—H13 120.1

N23—C4—C5 117.39 (15) C13—C14—C9 121.99 (18)

C3—C4—C5 119.38 (14) C13—C14—H14 119.0

C4—C5—C7 113.69 (15) C9—C14—H14 119.0

C4—C5—C6 110.99 (14) C16—C15—C20 116.42 (18)

C7—C5—C6 111.55 (16) C16—C15—C2 122.41 (16)

C4—C5—H5 106.7 C20—C15—C2 121.02 (16)

C7—C5—H5 106.7 C17—C16—C15 121.9 (2)

C6—C5—H5 106.7 C17—C16—H16 119.0

N1—C6—C9 110.35 (13) C15—C16—H16 119.0

N1—C6—C5 110.09 (13) C18—C17—C16 119.9 (2)

C9—C6—C5 112.35 (14) C18—C17—H17 120.1

N1—C6—H6 108.0 C16—C17—H17 120.1

C9—C6—H6 108.0 C17—C18—C19 120.1 (2)

(8)

supporting information

sup-5

Acta Cryst. (2005). E61, o3987–o3989

C5—C7—H71 109.5 C19—C18—H18 119.9

C5—C7—H72 109.5 C18—C19—C20 119.5 (2)

H71—C7—H72 109.5 C18—C19—H19 120.2

C5—C7—H73 109.5 C20—C19—H19 120.2

H71—C7—H73 109.5 C19—C20—C15 122.1 (2)

H72—C7—H73 109.5 C19—C20—Cl2 117.17 (16)

C3—C8—H81 109.5 C15—C20—Cl2 120.70 (16)

C3—C8—H82 109.5

C6—N1—N21—O22 9.0 (2) C5—C6—C9—C14 71.9 (2)

C2—N1—N21—O22 167.34 (15) N1—C6—C9—C10 129.75 (17)

N21—N1—C2—C15 122.96 (16) C5—C6—C9—C10 −106.98 (19)

C6—N1—C2—C15 −79.50 (19) C14—C9—C10—C11 −0.9 (3)

N21—N1—C2—C3 −107.32 (16) C6—C9—C10—C11 178.03 (17)

C6—N1—C2—C3 50.23 (19) C14—C9—C10—Cl1 179.47 (14)

N1—C2—C3—C4 −52.63 (18) C6—C9—C10—Cl1 −1.6 (2)

C15—C2—C3—C4 76.14 (19) C9—C10—C11—C12 0.2 (3)

N1—C2—C3—C8 70.18 (18) Cl1—C10—C11—C12 179.81 (16)

C15—C2—C3—C8 −161.05 (15) C10—C11—C12—C13 0.7 (3)

O24—N23—C4—C3 2.9 (2) C11—C12—C13—C14 −0.9 (3)

O24—N23—C4—C5 −175.24 (15) C12—C13—C14—C9 0.1 (3)

C8—C3—C4—N23 69.9 (2) C10—C9—C14—C13 0.8 (3)

C2—C3—C4—N23 −167.89 (17) C6—C9—C14—C13 −178.20 (17)

C8—C3—C4—C5 −111.99 (18) N1—C2—C15—C16 116.29 (18)

C2—C3—C4—C5 10.2 (2) C3—C2—C15—C16 −9.1 (2)

N23—C4—C5—C7 −15.1 (3) N1—C2—C15—C20 −68.5 (2)

C3—C4—C5—C7 166.72 (19) C3—C2—C15—C20 166.17 (16)

N23—C4—C5—C6 −141.78 (17) C20—C15—C16—C17 0.0 (3)

C3—C4—C5—C6 40.0 (2) C2—C15—C16—C17 175.47 (19)

N21—N1—C6—C9 −79.21 (18) C15—C16—C17—C18 0.0 (3)

C2—N1—C6—C9 124.39 (16) C16—C17—C18—C19 0.3 (4)

N21—N1—C6—C5 156.22 (15) C17—C18—C19—C20 −0.5 (3)

C2—N1—C6—C5 −0.2 (2) C18—C19—C20—C15 0.5 (3)

C4—C5—C6—N1 −44.38 (19) C18—C19—C20—Cl2 −178.71 (17)

C7—C5—C6—N1 −172.28 (17) C16—C15—C20—C19 −0.3 (3)

C4—C5—C6—C9 −167.79 (15) C2—C15—C20—C19 −175.78 (17)

C7—C5—C6—C9 64.3 (2) C16—C15—C20—Cl2 178.92 (14)

N1—C6—C9—C14 −51.3 (2) C2—C15—C20—Cl2 3.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A

O24—H24···N23i 0.82 2.09 2.8052 (19) 146

Figure

Figure 2

References

Related documents

• Storage node - node that runs Account, Container, and Object services • ring - a set of mappings of OpenStack Object Storage data to physical devices To increase reliability, you

The algorithm will only match applicants employers preferred for NESP positions to NESP positions and applicants employers preferred for NETP positions to NETP positions. This way

• Our goal is to make Pittsburgh Public Schools First Choice by offering a portfolio of quality school options that promote high student achievement in the most equitable and

In a surprise move, the Central Bank of Peru (BCRP) reduced its benchmark interest rate by 25 basis points (bps) to 3.25% in mid-January following disappointing economic growth data

Although total labor earnings increase with the unskilled unions’ bargaining power, we can say nothing when the increase in production is due to stronger skilled unions, since

Using a nationwide database of hospital admissions, we established that diverticulitis patients admitted to hospitals that encounter a low volume of diverticulitis cases have

The unit I teach, the site of this research, involves students exercising self- determination in a collaborative, creative mode; a phenomenon Meill and Littleton (2004:18) describe

Although theoretically the likelihood of finding evidence that dumped imports have in- jured the domestic industry should fall as the industry increases its output, the results from