• No results found

Tris(di­methyl­phenyl­silyl)methane­tellurenyl iodide

N/A
N/A
Protected

Academic year: 2020

Share "Tris(di­methyl­phenyl­silyl)methane­tellurenyl iodide"

Copied!
8
0
0

Loading.... (view fulltext now)

Full text

(1)

organic papers

Acta Cryst.(2005). E61, o4047–o4048 doi:10.1107/S1600536805035853 Klapo¨tkeet al. C

25H33ISi3Te

o4047

Acta Crystallographica Section E Structure Reports

Online

ISSN 1600-5368

Tris(dimethylphenylsilyl)methanetellurenyl

iodide

Thomas M. Klapo¨tke,* Burkhard Krumm and Ingo Schwab

Department of Chemistry and Biochemistry, Ludwig-Maximilian University, Butenandtstrasse 5–13 (Haus D), D-81377 Munich, Germany

Correspondence e-mail: tmk@cup.uni-muenchen.de

Key indicators

Single-crystal X-ray study T= 200 K

Mean(C–C) = 0.005 A˚ Rfactor = 0.031 wRfactor = 0.073

Data-to-parameter ratio = 22.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

#2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The crystal structure of TpsiTeI [Tpsi = tris(dimethylphenyl-silyl)methyl], C25H33ISi3Te, exhibits discrete molecules

without Te I, Te Te or I I intermolecular contacts. TpsiTeI was prepared by cleavage of its parent ditellane with iodine, and represents a kinetically stabilized alkanetellurenyl iodide with a very bulky substituent. The molecule possesses an angular C—Te—I arrangement [110.53 (7)] with a Te—I single bond [2.7178 (7) A˚ ].

Comment

During the course of our investigations of organotellurenyl azides (Klapo¨tke, Krumm, No¨thet al., 2005), we were able to determine the crystal structure of the benzenetellurenyl iodide Mes*TeI (Klapo¨tke, Krumm & Schwab, 2005) and the alkanetellurenyl derivative TpsiTeI, (I) (Fig. 1).

As can be seen, the crystal structures of both compounds feature kinetically stabilized monomers; neither the Te nor the I atoms show intermolecular secondary interactions.

The Te—I bonds in (I) and Mes*TeI (Klapo¨tke, Krumm & Schwab, 2005) are very similar [2.7178 (7) versus

2.7181 (6) A˚ ]; however, a large difference is found in the C— Te—I angles [110.53 (7) versus 95.75 (8)]. This can be attributed to the increased bulkiness of the trisilylmethyl compared to the 2,4,6-tri-tert-butylphenyl substituent. In between these two, the steric influence of the terphenyl derivative 2,6-Trip2C6H3TeI [Te—I = 2.617 (1) A˚ and C—Te—

I = 106.2 (2)] can be estimated (Klapo¨tke, Krumm, No¨thet al.

2005).

Experimental

To a green solution of 0.28 mmol bis[tris(phenyldimethylsilyl)methyl] ditellane (TpsiTe)2(Klapo¨tke, Krumm, No¨thet al. 2005) in 10 ml of

benzene were added 0.23 mmol of neat iodine. After stirring for 1 h at ambient temperature, the dark-blue–green solution was evaporated in vacuo. Recrystallization at 277 K from n-pentane yielded dark-green blocks of TpsiTeI after several days.

(2)

Crystal data

C25H33ISi3Te Mr= 672.28

Monoclinic,P21=c a= 16.076 (3) A˚ b= 17.248 (3) A˚ c= 9.995 (2) A˚

= 101.18 (3)

V= 2718.9 (9) A˚3 Z= 4

Dx= 1.642 Mg m

3 MoKradiation Cell parameters from 6375

reflections

= 3.1–27.5

= 2.37 mm1 T= 200 (2) K Block, dark green 0.080.050.04 mm

Data collection

Nonius KappaCCD diffractometer

’and!scans

Absorption correction: none 12153 measured reflections 6229 independent reflections 4995 reflections withI> 2(I)

Rint= 0.023

max= 27.5 h=20!20 k=22!21 l=12!12

Refinement

Refinement onF2 R[F2> 2(F2)] = 0.031 wR(F2) = 0.073 S= 1.07 6229 reflections 277 parameters

H-atom parameters constrained

w= 1/[2(F

o2) + (0.0278P)2 + 1.9905P]

whereP= (Fo 2

+ 2Fc 2

)/3 (/)max= 0.002

max= 0.79 e A˚

3 min=1.35 e A˚

[image:2.610.316.564.67.374.2]

3

Table 1

Selected geometric parameters (A˚ ,).

I1—Te1 2.7178 (7) Te1—C1 2.212 (3) Si1—C2 1.869 (3) Si1—C3 1.870 (3) Si1—C4 1.898 (3) Si1—C1 1.942 (3) Si2—C11 1.865 (3)

Si2—C10 1.870 (3) Si2—C12 1.888 (3) Si2—C1 1.917 (3) Si3—C18 1.866 (3) Si3—C19 1.880 (3) Si3—C20 1.892 (3) Si3—C1 1.925 (3)

C1—Te1—I1 110.53 (7)

H atoms were placed in geometrically idealized positions (C—H = 0.95 A˚ and 0.98 A˚ for aromatic CH and methyl groups, respectively) and constrained to ride on their parent atoms, with Uiso(H) =

1.2Ueq(C). The methyl groups were allowed to rotate but not to tip.

The highest residual electron density is located 0.96 A˚ from Te1 and the deepest hole is located 0.75 A˚ from I1.

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:SHELXL97(Sheldrick, 1997); molecular graphics:DIAMOND(Brandenburg, 1996); software used to prepare material for publication:SHELXL97.

The authors thank Dr P. Mayer for data collection and the Ludwig–Maximilian University for financial support of this work.

References

Brandenburg, K. (1996).DIAMOND. University of Bonn, Germany. Klapo¨tke, T. M., Krumm, B., No¨th, H., Galvez-Ruiz, J.-C., Polborn, K., Schwab,

I. & Suter, M. (2005).Inorg. Chem.44, 5254–5265.

Klapo¨tke, T. M., Krumm, B. & Schwab, I. (2005).Acta Cryst. E61, o4045– o4046.

Nonius (2000).COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Go¨ttingen, Germany.

Figure 1

(3)

supporting information

sup-1 Acta Cryst. (2005). E61, o4047–o4048

supporting information

Acta Cryst. (2005). E61, o4047–o4048 [https://doi.org/10.1107/S1600536805035853]

Tris(dimethylphenylsilyl)methanetellurenyl iodide

Thomas M. Klap

ö

tke, Burkhard Krumm and Ingo Schwab

Tris(dimethylphenylsilyl)methanetellurenyl iodide

Crystal data

C25H33ISi3Te

Mr = 672.28

Monoclinic, P21/c

Hall symbol: -P 2ybc

a = 16.076 (3) Å

b = 17.248 (3) Å

c = 9.995 (2) Å

β = 101.18 (3)°

V = 2718.9 (9) Å3

Z = 4

F(000) = 1320

Dx = 1.642 Mg m−3

Mo radiation, λ = 0.71073 Å Cell parameters from 6375 reflections

θ = 3.1–27.5°

µ = 2.37 mm−1

T = 200 K Block, dark green 0.08 × 0.05 × 0.04 mm

Data collection

Nonius KappaCCD diffractometer

Radiation source: fine-focus sealed tube Vertically mounted graphite crystal

monochromator

Detector resolution: 9 pixels mm-1

φ? ω? scans

12153 measured reflections

6229 independent reflections 4995 reflections with I > 2σ(I)

Rint = 0.023

θmax = 27.5°, θmin = 3.2°

h = −20→20

k = −22→21

l = −12→12

Refinement

Refinement on F2

Least-squares matrix: full

R[F2 > 2σ(F2)] = 0.031

wR(F2) = 0.073

S = 1.07 6229 reflections 277 parameters 0 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

w = 1/[σ2(F

o2) + (0.0278P)2 + 1.9905P]

where P = (Fo2 + 2Fc2)/3

(Δ/σ)max = 0.002

Δρmax = 0.79 e Å−3

Δρmin = −1.35 e Å−3

Special details

(4)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2,

conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used

only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2

are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

I1 0.284758 (17) 0.587630 (13) 1.10898 (2) 0.05022 (8) Te1 0.332126 (12) 0.578803 (11) 0.862760 (19) 0.03246 (7) Si1 0.35690 (5) 0.47194 (5) 0.62668 (8) 0.02888 (17) Si2 0.16234 (4) 0.49684 (4) 0.67015 (8) 0.02599 (16) Si3 0.28857 (5) 0.38037 (4) 0.85767 (8) 0.03015 (17) C1 0.27788 (16) 0.47408 (15) 0.7510 (3) 0.0248 (5) C2 0.30891 (19) 0.42521 (18) 0.4610 (3) 0.0380 (7)

H2A 0.2922 0.3720 0.4777 0.046*

H2B 0.3505 0.4245 0.4011 0.046*

H2C 0.2588 0.4547 0.4173 0.046*

C3 0.45965 (19) 0.4231 (2) 0.6991 (4) 0.0442 (8)

H3A 0.4496 0.3679 0.7126 0.053*

H3B 0.4845 0.4469 0.7868 0.053*

H3C 0.4988 0.4290 0.6358 0.053*

C4 0.38904 (17) 0.57411 (16) 0.5877 (3) 0.0303 (6) C5 0.4650 (2) 0.6069 (2) 0.6573 (3) 0.0420 (7)

H5A 0.5002 0.5779 0.7269 0.050*

C6 0.4901 (2) 0.6805 (2) 0.6271 (4) 0.0528 (9)

H6A 0.5411 0.7018 0.6778 0.063*

C7 0.4418 (2) 0.7231 (2) 0.5245 (4) 0.0551 (10)

H7A 0.4590 0.7738 0.5046 0.066*

C8 0.3681 (2) 0.69155 (19) 0.4505 (4) 0.0453 (8)

H8A 0.3351 0.7202 0.3780 0.054*

C9 0.34221 (18) 0.61822 (18) 0.4817 (3) 0.0343 (6)

H9A 0.2914 0.5974 0.4297 0.041*

C10 0.10913 (19) 0.40948 (17) 0.5811 (3) 0.0368 (7)

H10A 0.1020 0.3701 0.6487 0.044*

H10B 0.1440 0.3884 0.5195 0.044*

H10C 0.0534 0.4242 0.5284 0.044*

C11 0.09993 (18) 0.52935 (19) 0.7989 (3) 0.0381 (7)

H11A 0.1012 0.4889 0.8682 0.046*

H11B 0.0411 0.5391 0.7538 0.046*

H11C 0.1247 0.5771 0.8426 0.046*

C12 0.14905 (17) 0.57639 (16) 0.5380 (3) 0.0289 (6) C13 0.12082 (17) 0.56005 (18) 0.3996 (3) 0.0333 (6)

H13A 0.1122 0.5075 0.3717 0.040*

C14 0.10502 (19) 0.6179 (2) 0.3018 (3) 0.0432 (8)

H14A 0.0858 0.6050 0.2086 0.052*

C15 0.1174 (2) 0.6949 (2) 0.3409 (4) 0.0482 (9)

(5)

supporting information

sup-3 Acta Cryst. (2005). E61, o4047–o4048

C16 0.1442 (2) 0.71287 (19) 0.4762 (4) 0.0463 (8)

H16A 0.1524 0.7656 0.5033 0.056*

C17 0.15953 (19) 0.65457 (17) 0.5739 (3) 0.0373 (7)

H17A 0.1775 0.6682 0.6671 0.045*

C18 0.38399 (19) 0.3821 (2) 0.9977 (3) 0.0433 (8)

H18A 0.4342 0.3948 0.9600 0.052*

H18B 0.3915 0.3310 1.0415 0.052*

H18C 0.3764 0.4213 1.0653 0.052*

C19 0.2935 (2) 0.29505 (17) 0.7424 (3) 0.0408 (7)

H19A 0.2427 0.2943 0.6702 0.049*

H19B 0.2964 0.2470 0.7955 0.049*

H19C 0.3440 0.2994 0.7015 0.049*

C20 0.19685 (18) 0.35774 (16) 0.9447 (3) 0.0327 (6) C21 0.1909 (2) 0.39005 (19) 1.0709 (3) 0.0436 (8)

H21A 0.2332 0.4255 1.1132 0.052*

C22 0.1249 (2) 0.3717 (2) 1.1353 (4) 0.0511 (9)

H22A 0.1223 0.3950 1.2205 0.061*

C23 0.0631 (2) 0.3203 (2) 1.0787 (4) 0.0472 (8)

H23A 0.0170 0.3091 1.1224 0.057*

C24 0.0689 (2) 0.28527 (19) 0.9570 (4) 0.0431 (8)

H24A 0.0274 0.2483 0.9179 0.052*

C25 0.13443 (19) 0.30339 (17) 0.8913 (3) 0.0377 (7)

H25A 0.1373 0.2783 0.8076 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

(6)

C17 0.0360 (16) 0.0334 (16) 0.0418 (17) 0.0077 (12) 0.0055 (13) −0.0023 (14) C18 0.0344 (17) 0.0511 (19) 0.0408 (18) 0.0071 (14) −0.0014 (14) 0.0134 (15) C19 0.0436 (18) 0.0301 (15) 0.050 (2) 0.0063 (13) 0.0113 (15) 0.0029 (14) C20 0.0336 (16) 0.0297 (14) 0.0338 (16) 0.0022 (12) 0.0042 (12) 0.0054 (12) C21 0.052 (2) 0.0395 (17) 0.0402 (18) −0.0113 (15) 0.0124 (15) −0.0025 (15) C22 0.059 (2) 0.050 (2) 0.049 (2) −0.0040 (17) 0.0229 (18) −0.0051 (17) C23 0.0422 (19) 0.052 (2) 0.052 (2) −0.0004 (15) 0.0188 (16) 0.0137 (17) C24 0.0352 (17) 0.0426 (18) 0.049 (2) −0.0062 (14) 0.0023 (15) 0.0115 (15) C25 0.0441 (18) 0.0362 (16) 0.0307 (16) −0.0021 (13) 0.0024 (13) 0.0046 (13)

Geometric parameters (Å, º)

I1—Te1 2.7178 (7) C10—H10C 0.9800

Te1—C1 2.212 (3) C11—H11A 0.9800

Si1—C2 1.869 (3) C11—H11B 0.9800

Si1—C3 1.870 (3) C11—H11C 0.9800

Si1—C4 1.898 (3) C12—C17 1.397 (4)

Si1—C1 1.942 (3) C12—C13 1.398 (4)

Si2—C11 1.865 (3) C13—C14 1.386 (4)

Si2—C10 1.870 (3) C13—H13A 0.9500

Si2—C12 1.888 (3) C14—C15 1.387 (5)

Si2—C1 1.917 (3) C14—H14A 0.9500

Si3—C18 1.866 (3) C15—C16 1.373 (5)

Si3—C19 1.880 (3) C15—H15A 0.9500

Si3—C20 1.892 (3) C16—C17 1.390 (4)

Si3—C1 1.925 (3) C16—H16A 0.9500

C2—H2A 0.9800 C17—H17A 0.9500

C2—H2B 0.9800 C18—H18A 0.9800

C2—H2C 0.9800 C18—H18B 0.9800

C3—H3A 0.9800 C18—H18C 0.9800

C3—H3B 0.9800 C19—H19A 0.9800

C3—H3C 0.9800 C19—H19B 0.9800

C4—C9 1.400 (4) C19—H19C 0.9800

C4—C5 1.403 (4) C20—C21 1.399 (5)

C5—C6 1.382 (5) C20—C25 1.401 (4)

C5—H5A 0.9500 C21—C22 1.380 (5)

C6—C7 1.373 (5) C21—H21A 0.9500

C6—H6A 0.9500 C22—C23 1.369 (5)

C7—C8 1.381 (5) C22—H22A 0.9500

C7—H7A 0.9500 C23—C24 1.378 (5)

C8—C9 1.386 (4) C23—H23A 0.9500

C8—H8A 0.9500 C24—C25 1.381 (4)

C9—H9A 0.9500 C24—H24A 0.9500

C10—H10A 0.9800 C25—H25A 0.9500

C10—H10B 0.9800

C1—Te1—I1 110.53 (7) Si2—C10—H10C 109.5

(7)

supporting information

sup-5 Acta Cryst. (2005). E61, o4047–o4048

C2—Si1—C4 107.50 (14) H10B—C10—H10C 109.5

C3—Si1—C4 104.01 (14) Si2—C11—H11A 109.5

C2—Si1—C1 111.50 (13) Si2—C11—H11B 109.5

C3—Si1—C1 113.53 (14) H11A—C11—H11B 109.5

C4—Si1—C1 110.59 (12) Si2—C11—H11C 109.5

C11—Si2—C10 108.24 (15) H11A—C11—H11C 109.5

C11—Si2—C12 105.15 (13) H11B—C11—H11C 109.5

C10—Si2—C12 105.86 (13) C17—C12—C13 116.7 (3)

C11—Si2—C1 112.17 (13) C17—C12—Si2 122.0 (2)

C10—Si2—C1 110.61 (13) C13—C12—Si2 121.1 (2)

C12—Si2—C1 114.38 (12) C14—C13—C12 122.2 (3)

C18—Si3—C19 110.22 (15) C14—C13—H13A 118.9

C18—Si3—C20 105.00 (14) C12—C13—H13A 118.9

C19—Si3—C20 104.46 (14) C13—C14—C15 119.6 (3)

C18—Si3—C1 111.99 (13) C13—C14—H14A 120.2

C19—Si3—C1 109.12 (13) C15—C14—H14A 120.2

C20—Si3—C1 115.72 (12) C16—C15—C14 119.6 (3)

Si2—C1—Si3 112.36 (13) C16—C15—H15A 120.2

Si2—C1—Si1 115.75 (14) C14—C15—H15A 120.2

Si3—C1—Si1 109.82 (13) C15—C16—C17 120.5 (3)

Si2—C1—Te1 107.49 (12) C15—C16—H16A 119.7

Si3—C1—Te1 114.96 (12) C17—C16—H16A 119.7

Si1—C1—Te1 95.50 (11) C16—C17—C12 121.4 (3)

Si1—C2—H2A 109.5 C16—C17—H17A 119.3

Si1—C2—H2B 109.5 C12—C17—H17A 119.3

H2A—C2—H2B 109.5 Si3—C18—H18A 109.5

Si1—C2—H2C 109.5 Si3—C18—H18B 109.5

H2A—C2—H2C 109.5 H18A—C18—H18B 109.5

H2B—C2—H2C 109.5 Si3—C18—H18C 109.5

Si1—C3—H3A 109.5 H18A—C18—H18C 109.5

Si1—C3—H3B 109.5 H18B—C18—H18C 109.5

H3A—C3—H3B 109.5 Si3—C19—H19A 109.5

Si1—C3—H3C 109.5 Si3—C19—H19B 109.5

H3A—C3—H3C 109.5 H19A—C19—H19B 109.5

H3B—C3—H3C 109.5 Si3—C19—H19C 109.5

C9—C4—C5 116.4 (3) H19A—C19—H19C 109.5

C9—C4—Si1 122.2 (2) H19B—C19—H19C 109.5

C5—C4—Si1 121.2 (2) C21—C20—C25 116.2 (3)

C6—C5—C4 121.7 (3) C21—C20—Si3 121.9 (2)

C6—C5—H5A 119.2 C25—C20—Si3 121.8 (2)

C4—C5—H5A 119.2 C22—C21—C20 121.5 (3)

C7—C6—C5 120.5 (3) C22—C21—H21A 119.3

C7—C6—H6A 119.7 C20—C21—H21A 119.3

C5—C6—H6A 119.7 C23—C22—C21 121.2 (3)

C6—C7—C8 119.4 (3) C23—C22—H22A 119.4

C6—C7—H7A 120.3 C21—C22—H22A 119.4

C8—C7—H7A 120.3 C22—C23—C24 118.8 (3)

(8)

C7—C8—H8A 119.9 C24—C23—H23A 120.6

C9—C8—H8A 119.9 C23—C24—C25 120.6 (3)

C8—C9—C4 121.7 (3) C23—C24—H24A 119.7

C8—C9—H9A 119.2 C25—C24—H24A 119.7

C4—C9—H9A 119.2 C24—C25—C20 121.7 (3)

Si2—C10—H10A 109.5 C24—C25—H25A 119.1

Si2—C10—H10B 109.5 C20—C25—H25A 119.1

H10A—C10—H10B 109.5

Figure

Table 1Selected geometric parameters (A˚ , �).

References

Related documents

The purpose of this paper is (i) to state the objectives of higher education commensurate with Islamic requirements; (ii) to examine the current state

Baseline As a baseline, we used the current state-of-the-art model using span representation based on BoW ( Potash et al.. For the overall perfor- mance, we calculated averaged

niezależnie od rodzaju konkurencji ilościowej na rynku produktu oraz formy funkcji kosztów całkowitych produkcji, współpraca przedsiębiorstw jedynie na etapie badań i

Different BMIs are modelled as different diameter water cylinders in order to obtain the corresponding factors for organ doses in paediatric patients undergoing

Using brain data to evaluate the representations learned at different layers of each of the lan- guage encoding models, we find that layers of the LSTM based models achieve

(2019) Linking soy oil demand from the US Renewable Fuel Standard to palm oil expansion through an analysis on vegetable oil

is set to 0.5. We use MedNLI, RQE, QA, and MedQuAD in medical domain as in-domain data and MNLI as external data. For MedNLI, we ad- ditionally find that using MedNLI as in-domain

Keywords: Risk Analysis; Intraday Volatility; National Stock Exchange of India; Nifty Futures; Temporal